Properties

Label 160.3.p.f.97.2
Level $160$
Weight $3$
Character 160.97
Analytic conductor $4.360$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [160,3,Mod(33,160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("160.33"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(160, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 160.p (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,4,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.35968422976\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(i)\)
Coefficient field: 6.0.3534400.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 3x^{4} + 16x^{3} + x^{2} - 12x + 40 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 97.2
Root \(-1.81837 + 0.301352i\) of defining polynomial
Character \(\chi\) \(=\) 160.97
Dual form 160.3.p.f.33.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.602705 - 0.602705i) q^{3} +(-3.63675 - 3.43134i) q^{5} +(-6.67079 - 6.67079i) q^{7} +8.27349i q^{9} -18.9308 q^{11} +(7.47890 - 7.47890i) q^{13} +(-4.25997 + 0.123802i) q^{15} +(1.45185 + 1.45185i) q^{17} -24.9578i q^{19} -8.04103 q^{21} +(3.74003 - 3.74003i) q^{23} +(1.45185 + 24.9578i) q^{25} +(10.4108 + 10.4108i) q^{27} -29.8615i q^{29} -21.0692 q^{31} +(-11.4097 + 11.4097i) q^{33} +(1.37025 + 47.1497i) q^{35} +(-18.8886 - 18.8886i) q^{37} -9.01514i q^{39} +40.9988 q^{41} +(37.5064 - 37.5064i) q^{43} +(28.3891 - 30.0886i) q^{45} +(48.9161 + 48.9161i) q^{47} +39.9988i q^{49} +1.75008 q^{51} +(-33.9308 + 33.9308i) q^{53} +(68.8464 + 64.9578i) q^{55} +(-15.0422 - 15.0422i) q^{57} +20.6808i q^{59} -19.8228 q^{61} +(55.1907 - 55.1907i) q^{63} +(-52.8615 + 1.53624i) q^{65} +(35.9713 + 35.9713i) q^{67} -4.50827i q^{69} -120.900 q^{71} +(85.6808 - 85.6808i) q^{73} +(15.9172 + 14.1672i) q^{75} +(126.283 + 126.283i) q^{77} -75.7230i q^{79} -61.9121 q^{81} +(-21.5311 + 21.5311i) q^{83} +(-0.298225 - 10.2618i) q^{85} +(-17.9977 - 17.9977i) q^{87} -43.7230i q^{89} -99.7804 q^{91} +(-12.6985 + 12.6985i) q^{93} +(-85.6386 + 90.7652i) q^{95} +(-103.627 - 103.627i) q^{97} -156.623i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 4 q^{5} + 8 q^{7} - 32 q^{11} - 14 q^{13} + 8 q^{15} - 14 q^{17} - 40 q^{21} + 56 q^{23} - 14 q^{25} + 48 q^{27} - 208 q^{31} + 72 q^{33} + 48 q^{35} + 86 q^{37} + 120 q^{41} + 176 q^{43} + 34 q^{45}+ \cdots - 250 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.602705 0.602705i 0.200902 0.200902i −0.599485 0.800386i \(-0.704628\pi\)
0.800386 + 0.599485i \(0.204628\pi\)
\(4\) 0 0
\(5\) −3.63675 3.43134i −0.727349 0.686267i
\(6\) 0 0
\(7\) −6.67079 6.67079i −0.952970 0.952970i 0.0459729 0.998943i \(-0.485361\pi\)
−0.998943 + 0.0459729i \(0.985361\pi\)
\(8\) 0 0
\(9\) 8.27349i 0.919277i
\(10\) 0 0
\(11\) −18.9308 −1.72098 −0.860489 0.509469i \(-0.829842\pi\)
−0.860489 + 0.509469i \(0.829842\pi\)
\(12\) 0 0
\(13\) 7.47890 7.47890i 0.575300 0.575300i −0.358305 0.933605i \(-0.616645\pi\)
0.933605 + 0.358305i \(0.116645\pi\)
\(14\) 0 0
\(15\) −4.25997 + 0.123802i −0.283998 + 0.00825344i
\(16\) 0 0
\(17\) 1.45185 + 1.45185i 0.0854032 + 0.0854032i 0.748518 0.663115i \(-0.230766\pi\)
−0.663115 + 0.748518i \(0.730766\pi\)
\(18\) 0 0
\(19\) 24.9578i 1.31357i −0.754078 0.656784i \(-0.771916\pi\)
0.754078 0.656784i \(-0.228084\pi\)
\(20\) 0 0
\(21\) −8.04103 −0.382906
\(22\) 0 0
\(23\) 3.74003 3.74003i 0.162610 0.162610i −0.621112 0.783722i \(-0.713319\pi\)
0.783722 + 0.621112i \(0.213319\pi\)
\(24\) 0 0
\(25\) 1.45185 + 24.9578i 0.0580742 + 0.998312i
\(26\) 0 0
\(27\) 10.4108 + 10.4108i 0.385586 + 0.385586i
\(28\) 0 0
\(29\) 29.8615i 1.02971i −0.857278 0.514854i \(-0.827846\pi\)
0.857278 0.514854i \(-0.172154\pi\)
\(30\) 0 0
\(31\) −21.0692 −0.679653 −0.339826 0.940488i \(-0.610368\pi\)
−0.339826 + 0.940488i \(0.610368\pi\)
\(32\) 0 0
\(33\) −11.4097 + 11.4097i −0.345747 + 0.345747i
\(34\) 0 0
\(35\) 1.37025 + 47.1497i 0.0391499 + 1.34713i
\(36\) 0 0
\(37\) −18.8886 18.8886i −0.510502 0.510502i 0.404178 0.914680i \(-0.367557\pi\)
−0.914680 + 0.404178i \(0.867557\pi\)
\(38\) 0 0
\(39\) 9.01514i 0.231158i
\(40\) 0 0
\(41\) 40.9988 0.999972 0.499986 0.866034i \(-0.333339\pi\)
0.499986 + 0.866034i \(0.333339\pi\)
\(42\) 0 0
\(43\) 37.5064 37.5064i 0.872242 0.872242i −0.120474 0.992716i \(-0.538442\pi\)
0.992716 + 0.120474i \(0.0384415\pi\)
\(44\) 0 0
\(45\) 28.3891 30.0886i 0.630870 0.668636i
\(46\) 0 0
\(47\) 48.9161 + 48.9161i 1.04077 + 1.04077i 0.999133 + 0.0416346i \(0.0132565\pi\)
0.0416346 + 0.999133i \(0.486743\pi\)
\(48\) 0 0
\(49\) 39.9988i 0.816303i
\(50\) 0 0
\(51\) 1.75008 0.0343153
\(52\) 0 0
\(53\) −33.9308 + 33.9308i −0.640203 + 0.640203i −0.950605 0.310402i \(-0.899536\pi\)
0.310402 + 0.950605i \(0.399536\pi\)
\(54\) 0 0
\(55\) 68.8464 + 64.9578i 1.25175 + 1.18105i
\(56\) 0 0
\(57\) −15.0422 15.0422i −0.263898 0.263898i
\(58\) 0 0
\(59\) 20.6808i 0.350523i 0.984522 + 0.175261i \(0.0560770\pi\)
−0.984522 + 0.175261i \(0.943923\pi\)
\(60\) 0 0
\(61\) −19.8228 −0.324964 −0.162482 0.986712i \(-0.551950\pi\)
−0.162482 + 0.986712i \(0.551950\pi\)
\(62\) 0 0
\(63\) 55.1907 55.1907i 0.876043 0.876043i
\(64\) 0 0
\(65\) −52.8615 + 1.53624i −0.813254 + 0.0236345i
\(66\) 0 0
\(67\) 35.9713 + 35.9713i 0.536886 + 0.536886i 0.922613 0.385727i \(-0.126049\pi\)
−0.385727 + 0.922613i \(0.626049\pi\)
\(68\) 0 0
\(69\) 4.50827i 0.0653373i
\(70\) 0 0
\(71\) −120.900 −1.70282 −0.851412 0.524498i \(-0.824253\pi\)
−0.851412 + 0.524498i \(0.824253\pi\)
\(72\) 0 0
\(73\) 85.6808 85.6808i 1.17371 1.17371i 0.192392 0.981318i \(-0.438376\pi\)
0.981318 0.192392i \(-0.0616245\pi\)
\(74\) 0 0
\(75\) 15.9172 + 14.1672i 0.212230 + 0.188895i
\(76\) 0 0
\(77\) 126.283 + 126.283i 1.64004 + 1.64004i
\(78\) 0 0
\(79\) 75.7230i 0.958519i −0.877673 0.479260i \(-0.840905\pi\)
0.877673 0.479260i \(-0.159095\pi\)
\(80\) 0 0
\(81\) −61.9121 −0.764347
\(82\) 0 0
\(83\) −21.5311 + 21.5311i −0.259411 + 0.259411i −0.824815 0.565403i \(-0.808721\pi\)
0.565403 + 0.824815i \(0.308721\pi\)
\(84\) 0 0
\(85\) −0.298225 10.2618i −0.00350853 0.120727i
\(86\) 0 0
\(87\) −17.9977 17.9977i −0.206870 0.206870i
\(88\) 0 0
\(89\) 43.7230i 0.491270i −0.969362 0.245635i \(-0.921004\pi\)
0.969362 0.245635i \(-0.0789965\pi\)
\(90\) 0 0
\(91\) −99.7804 −1.09649
\(92\) 0 0
\(93\) −12.6985 + 12.6985i −0.136543 + 0.136543i
\(94\) 0 0
\(95\) −85.6386 + 90.7652i −0.901459 + 0.955423i
\(96\) 0 0
\(97\) −103.627 103.627i −1.06832 1.06832i −0.997489 0.0708284i \(-0.977436\pi\)
−0.0708284 0.997489i \(-0.522564\pi\)
\(98\) 0 0
\(99\) 156.623i 1.58206i
\(100\) 0 0
\(101\) −104.928 −1.03889 −0.519443 0.854505i \(-0.673861\pi\)
−0.519443 + 0.854505i \(0.673861\pi\)
\(102\) 0 0
\(103\) 58.4773 58.4773i 0.567741 0.567741i −0.363754 0.931495i \(-0.618505\pi\)
0.931495 + 0.363754i \(0.118505\pi\)
\(104\) 0 0
\(105\) 29.2432 + 27.5915i 0.278507 + 0.262776i
\(106\) 0 0
\(107\) −35.2285 35.2285i −0.329239 0.329239i 0.523058 0.852297i \(-0.324791\pi\)
−0.852297 + 0.523058i \(0.824791\pi\)
\(108\) 0 0
\(109\) 59.5976i 0.546767i 0.961905 + 0.273384i \(0.0881428\pi\)
−0.961905 + 0.273384i \(0.911857\pi\)
\(110\) 0 0
\(111\) −22.7685 −0.205121
\(112\) 0 0
\(113\) −7.17488 + 7.17488i −0.0634945 + 0.0634945i −0.738141 0.674646i \(-0.764296\pi\)
0.674646 + 0.738141i \(0.264296\pi\)
\(114\) 0 0
\(115\) −26.4349 + 0.768239i −0.229868 + 0.00668034i
\(116\) 0 0
\(117\) 61.8767 + 61.8767i 0.528860 + 0.528860i
\(118\) 0 0
\(119\) 19.3700i 0.162773i
\(120\) 0 0
\(121\) 237.374 1.96177
\(122\) 0 0
\(123\) 24.7102 24.7102i 0.200896 0.200896i
\(124\) 0 0
\(125\) 80.3586 95.7470i 0.642869 0.765976i
\(126\) 0 0
\(127\) −67.8468 67.8468i −0.534227 0.534227i 0.387600 0.921827i \(-0.373304\pi\)
−0.921827 + 0.387600i \(0.873304\pi\)
\(128\) 0 0
\(129\) 45.2106i 0.350470i
\(130\) 0 0
\(131\) −138.593 −1.05796 −0.528982 0.848633i \(-0.677426\pi\)
−0.528982 + 0.848633i \(0.677426\pi\)
\(132\) 0 0
\(133\) −166.488 + 166.488i −1.25179 + 1.25179i
\(134\) 0 0
\(135\) −2.13849 73.5845i −0.0158406 0.545071i
\(136\) 0 0
\(137\) −132.862 132.862i −0.969792 0.969792i 0.0297648 0.999557i \(-0.490524\pi\)
−0.999557 + 0.0297648i \(0.990524\pi\)
\(138\) 0 0
\(139\) 53.3430i 0.383762i 0.981418 + 0.191881i \(0.0614588\pi\)
−0.981418 + 0.191881i \(0.938541\pi\)
\(140\) 0 0
\(141\) 58.9639 0.418184
\(142\) 0 0
\(143\) −141.581 + 141.581i −0.990079 + 0.990079i
\(144\) 0 0
\(145\) −102.465 + 108.599i −0.706655 + 0.748957i
\(146\) 0 0
\(147\) 24.1075 + 24.1075i 0.163997 + 0.163997i
\(148\) 0 0
\(149\) 52.3157i 0.351112i −0.984469 0.175556i \(-0.943828\pi\)
0.984469 0.175556i \(-0.0561723\pi\)
\(150\) 0 0
\(151\) 54.6538 0.361946 0.180973 0.983488i \(-0.442075\pi\)
0.180973 + 0.983488i \(0.442075\pi\)
\(152\) 0 0
\(153\) −12.0119 + 12.0119i −0.0785092 + 0.0785092i
\(154\) 0 0
\(155\) 76.6235 + 72.2957i 0.494345 + 0.466424i
\(156\) 0 0
\(157\) 52.6055 + 52.6055i 0.335067 + 0.335067i 0.854507 0.519440i \(-0.173859\pi\)
−0.519440 + 0.854507i \(0.673859\pi\)
\(158\) 0 0
\(159\) 40.9005i 0.257236i
\(160\) 0 0
\(161\) −49.8979 −0.309925
\(162\) 0 0
\(163\) 139.335 139.335i 0.854818 0.854818i −0.135904 0.990722i \(-0.543394\pi\)
0.990722 + 0.135904i \(0.0433939\pi\)
\(164\) 0 0
\(165\) 80.6444 2.34366i 0.488754 0.0142040i
\(166\) 0 0
\(167\) 137.651 + 137.651i 0.824258 + 0.824258i 0.986715 0.162458i \(-0.0519422\pi\)
−0.162458 + 0.986715i \(0.551942\pi\)
\(168\) 0 0
\(169\) 57.1320i 0.338059i
\(170\) 0 0
\(171\) 206.488 1.20753
\(172\) 0 0
\(173\) 166.581 166.581i 0.962898 0.962898i −0.0364382 0.999336i \(-0.511601\pi\)
0.999336 + 0.0364382i \(0.0116012\pi\)
\(174\) 0 0
\(175\) 156.803 176.173i 0.896019 1.00670i
\(176\) 0 0
\(177\) 12.4644 + 12.4644i 0.0704206 + 0.0704206i
\(178\) 0 0
\(179\) 246.151i 1.37514i 0.726116 + 0.687572i \(0.241323\pi\)
−0.726116 + 0.687572i \(0.758677\pi\)
\(180\) 0 0
\(181\) −244.892 −1.35300 −0.676498 0.736445i \(-0.736503\pi\)
−0.676498 + 0.736445i \(0.736503\pi\)
\(182\) 0 0
\(183\) −11.9473 + 11.9473i −0.0652858 + 0.0652858i
\(184\) 0 0
\(185\) 3.87990 + 133.506i 0.0209724 + 0.721654i
\(186\) 0 0
\(187\) −27.4847 27.4847i −0.146977 0.146977i
\(188\) 0 0
\(189\) 138.897i 0.734903i
\(190\) 0 0
\(191\) 314.485 1.64652 0.823259 0.567666i \(-0.192153\pi\)
0.823259 + 0.567666i \(0.192153\pi\)
\(192\) 0 0
\(193\) 231.199 231.199i 1.19792 1.19792i 0.223133 0.974788i \(-0.428372\pi\)
0.974788 0.223133i \(-0.0716283\pi\)
\(194\) 0 0
\(195\) −30.9340 + 32.7858i −0.158636 + 0.168132i
\(196\) 0 0
\(197\) −31.7923 31.7923i −0.161382 0.161382i 0.621797 0.783179i \(-0.286403\pi\)
−0.783179 + 0.621797i \(0.786403\pi\)
\(198\) 0 0
\(199\) 185.807i 0.933706i 0.884335 + 0.466853i \(0.154612\pi\)
−0.884335 + 0.466853i \(0.845388\pi\)
\(200\) 0 0
\(201\) 43.3602 0.215722
\(202\) 0 0
\(203\) −199.200 + 199.200i −0.981280 + 0.981280i
\(204\) 0 0
\(205\) −149.102 140.681i −0.727329 0.686248i
\(206\) 0 0
\(207\) 30.9431 + 30.9431i 0.149484 + 0.149484i
\(208\) 0 0
\(209\) 472.470i 2.26062i
\(210\) 0 0
\(211\) 208.238 0.986912 0.493456 0.869771i \(-0.335733\pi\)
0.493456 + 0.869771i \(0.335733\pi\)
\(212\) 0 0
\(213\) −72.8673 + 72.8673i −0.342100 + 0.342100i
\(214\) 0 0
\(215\) −265.098 + 7.70419i −1.23302 + 0.0358334i
\(216\) 0 0
\(217\) 140.548 + 140.548i 0.647689 + 0.647689i
\(218\) 0 0
\(219\) 103.281i 0.471601i
\(220\) 0 0
\(221\) 21.7166 0.0982649
\(222\) 0 0
\(223\) −17.2224 + 17.2224i −0.0772305 + 0.0772305i −0.744667 0.667436i \(-0.767392\pi\)
0.667436 + 0.744667i \(0.267392\pi\)
\(224\) 0 0
\(225\) −206.488 + 12.0119i −0.917726 + 0.0533862i
\(226\) 0 0
\(227\) −22.8200 22.8200i −0.100529 0.100529i 0.655054 0.755582i \(-0.272646\pi\)
−0.755582 + 0.655054i \(0.772646\pi\)
\(228\) 0 0
\(229\) 295.440i 1.29013i −0.764128 0.645065i \(-0.776830\pi\)
0.764128 0.645065i \(-0.223170\pi\)
\(230\) 0 0
\(231\) 152.223 0.658973
\(232\) 0 0
\(233\) −142.217 + 142.217i −0.610374 + 0.610374i −0.943043 0.332670i \(-0.892051\pi\)
0.332670 + 0.943043i \(0.392051\pi\)
\(234\) 0 0
\(235\) −10.0478 345.743i −0.0427568 1.47125i
\(236\) 0 0
\(237\) −45.6386 45.6386i −0.192568 0.192568i
\(238\) 0 0
\(239\) 19.8312i 0.0829758i −0.999139 0.0414879i \(-0.986790\pi\)
0.999139 0.0414879i \(-0.0132098\pi\)
\(240\) 0 0
\(241\) 177.318 0.735759 0.367879 0.929874i \(-0.380084\pi\)
0.367879 + 0.929874i \(0.380084\pi\)
\(242\) 0 0
\(243\) −131.012 + 131.012i −0.539145 + 0.539145i
\(244\) 0 0
\(245\) 137.249 145.466i 0.560202 0.593737i
\(246\) 0 0
\(247\) −186.657 186.657i −0.755696 0.755696i
\(248\) 0 0
\(249\) 25.9539i 0.104232i
\(250\) 0 0
\(251\) 193.563 0.771166 0.385583 0.922673i \(-0.374000\pi\)
0.385583 + 0.922673i \(0.374000\pi\)
\(252\) 0 0
\(253\) −70.8016 + 70.8016i −0.279848 + 0.279848i
\(254\) 0 0
\(255\) −6.36459 6.00511i −0.0249592 0.0235495i
\(256\) 0 0
\(257\) −82.8979 82.8979i −0.322560 0.322560i 0.527188 0.849748i \(-0.323246\pi\)
−0.849748 + 0.527188i \(0.823246\pi\)
\(258\) 0 0
\(259\) 252.003i 0.972985i
\(260\) 0 0
\(261\) 247.059 0.946586
\(262\) 0 0
\(263\) −62.7267 + 62.7267i −0.238505 + 0.238505i −0.816231 0.577726i \(-0.803940\pi\)
0.577726 + 0.816231i \(0.303940\pi\)
\(264\) 0 0
\(265\) 239.825 6.96971i 0.905002 0.0263008i
\(266\) 0 0
\(267\) −26.3521 26.3521i −0.0986970 0.0986970i
\(268\) 0 0
\(269\) 182.699i 0.679177i 0.940574 + 0.339588i \(0.110288\pi\)
−0.940574 + 0.339588i \(0.889712\pi\)
\(270\) 0 0
\(271\) −259.516 −0.957622 −0.478811 0.877918i \(-0.658932\pi\)
−0.478811 + 0.877918i \(0.658932\pi\)
\(272\) 0 0
\(273\) −60.1381 + 60.1381i −0.220286 + 0.220286i
\(274\) 0 0
\(275\) −27.4847 472.470i −0.0999444 1.71807i
\(276\) 0 0
\(277\) −21.3166 21.3166i −0.0769553 0.0769553i 0.667581 0.744537i \(-0.267330\pi\)
−0.744537 + 0.667581i \(0.767330\pi\)
\(278\) 0 0
\(279\) 174.316i 0.624789i
\(280\) 0 0
\(281\) −95.2083 −0.338820 −0.169410 0.985546i \(-0.554186\pi\)
−0.169410 + 0.985546i \(0.554186\pi\)
\(282\) 0 0
\(283\) −187.360 + 187.360i −0.662050 + 0.662050i −0.955863 0.293813i \(-0.905076\pi\)
0.293813 + 0.955863i \(0.405076\pi\)
\(284\) 0 0
\(285\) 3.08981 + 106.319i 0.0108415 + 0.373051i
\(286\) 0 0
\(287\) −273.495 273.495i −0.952943 0.952943i
\(288\) 0 0
\(289\) 284.784i 0.985413i
\(290\) 0 0
\(291\) −124.913 −0.429253
\(292\) 0 0
\(293\) 34.1359 34.1359i 0.116505 0.116505i −0.646451 0.762956i \(-0.723747\pi\)
0.762956 + 0.646451i \(0.223747\pi\)
\(294\) 0 0
\(295\) 70.9629 75.2110i 0.240552 0.254952i
\(296\) 0 0
\(297\) −197.085 197.085i −0.663585 0.663585i
\(298\) 0 0
\(299\) 55.9427i 0.187099i
\(300\) 0 0
\(301\) −500.395 −1.66244
\(302\) 0 0
\(303\) −63.2403 + 63.2403i −0.208714 + 0.208714i
\(304\) 0 0
\(305\) 72.0905 + 68.0187i 0.236362 + 0.223012i
\(306\) 0 0
\(307\) −361.766 361.766i −1.17839 1.17839i −0.980154 0.198238i \(-0.936478\pi\)
−0.198238 0.980154i \(-0.563522\pi\)
\(308\) 0 0
\(309\) 70.4891i 0.228120i
\(310\) 0 0
\(311\) 119.100 0.382957 0.191478 0.981497i \(-0.438672\pi\)
0.191478 + 0.981497i \(0.438672\pi\)
\(312\) 0 0
\(313\) −203.337 + 203.337i −0.649640 + 0.649640i −0.952906 0.303266i \(-0.901923\pi\)
0.303266 + 0.952906i \(0.401923\pi\)
\(314\) 0 0
\(315\) −390.093 + 11.3367i −1.23839 + 0.0359896i
\(316\) 0 0
\(317\) 139.533 + 139.533i 0.440167 + 0.440167i 0.892068 0.451901i \(-0.149254\pi\)
−0.451901 + 0.892068i \(0.649254\pi\)
\(318\) 0 0
\(319\) 565.301i 1.77210i
\(320\) 0 0
\(321\) −42.4648 −0.132289
\(322\) 0 0
\(323\) 36.2351 36.2351i 0.112183 0.112183i
\(324\) 0 0
\(325\) 197.515 + 175.799i 0.607739 + 0.540919i
\(326\) 0 0
\(327\) 35.9198 + 35.9198i 0.109846 + 0.109846i
\(328\) 0 0
\(329\) 652.618i 1.98364i
\(330\) 0 0
\(331\) 144.671 0.437073 0.218536 0.975829i \(-0.429872\pi\)
0.218536 + 0.975829i \(0.429872\pi\)
\(332\) 0 0
\(333\) 156.274 156.274i 0.469293 0.469293i
\(334\) 0 0
\(335\) −7.38887 254.248i −0.0220563 0.758950i
\(336\) 0 0
\(337\) 414.409 + 414.409i 1.22970 + 1.22970i 0.964077 + 0.265625i \(0.0855782\pi\)
0.265625 + 0.964077i \(0.414422\pi\)
\(338\) 0 0
\(339\) 8.64868i 0.0255123i
\(340\) 0 0
\(341\) 398.857 1.16967
\(342\) 0 0
\(343\) −60.0448 + 60.0448i −0.175058 + 0.175058i
\(344\) 0 0
\(345\) −15.4694 + 16.3954i −0.0448388 + 0.0475230i
\(346\) 0 0
\(347\) 109.854 + 109.854i 0.316583 + 0.316583i 0.847453 0.530870i \(-0.178135\pi\)
−0.530870 + 0.847453i \(0.678135\pi\)
\(348\) 0 0
\(349\) 466.068i 1.33544i 0.744414 + 0.667719i \(0.232729\pi\)
−0.744414 + 0.667719i \(0.767271\pi\)
\(350\) 0 0
\(351\) 155.723 0.443655
\(352\) 0 0
\(353\) 275.940 275.940i 0.781699 0.781699i −0.198418 0.980117i \(-0.563580\pi\)
0.980117 + 0.198418i \(0.0635805\pi\)
\(354\) 0 0
\(355\) 439.684 + 414.850i 1.23855 + 1.16859i
\(356\) 0 0
\(357\) −11.6744 11.6744i −0.0327014 0.0327014i
\(358\) 0 0
\(359\) 412.098i 1.14791i −0.818889 0.573953i \(-0.805409\pi\)
0.818889 0.573953i \(-0.194591\pi\)
\(360\) 0 0
\(361\) −261.892 −0.725463
\(362\) 0 0
\(363\) 143.066 143.066i 0.394122 0.394122i
\(364\) 0 0
\(365\) −605.599 + 17.5997i −1.65918 + 0.0482183i
\(366\) 0 0
\(367\) 203.209 + 203.209i 0.553704 + 0.553704i 0.927508 0.373804i \(-0.121947\pi\)
−0.373804 + 0.927508i \(0.621947\pi\)
\(368\) 0 0
\(369\) 339.204i 0.919251i
\(370\) 0 0
\(371\) 452.690 1.22019
\(372\) 0 0
\(373\) −181.027 + 181.027i −0.485327 + 0.485327i −0.906828 0.421501i \(-0.861503\pi\)
0.421501 + 0.906828i \(0.361503\pi\)
\(374\) 0 0
\(375\) −9.27467 106.140i −0.0247324 0.283039i
\(376\) 0 0
\(377\) −223.331 223.331i −0.592391 0.592391i
\(378\) 0 0
\(379\) 221.018i 0.583162i 0.956546 + 0.291581i \(0.0941813\pi\)
−0.956546 + 0.291581i \(0.905819\pi\)
\(380\) 0 0
\(381\) −81.7832 −0.214654
\(382\) 0 0
\(383\) 159.322 159.322i 0.415985 0.415985i −0.467832 0.883817i \(-0.654965\pi\)
0.883817 + 0.467832i \(0.154965\pi\)
\(384\) 0 0
\(385\) −25.9398 892.579i −0.0673761 2.31839i
\(386\) 0 0
\(387\) 310.309 + 310.309i 0.801832 + 0.801832i
\(388\) 0 0
\(389\) 334.871i 0.860851i 0.902626 + 0.430426i \(0.141637\pi\)
−0.902626 + 0.430426i \(0.858363\pi\)
\(390\) 0 0
\(391\) 10.8600 0.0277748
\(392\) 0 0
\(393\) −83.5308 + 83.5308i −0.212547 + 0.212547i
\(394\) 0 0
\(395\) −259.831 + 275.385i −0.657801 + 0.697178i
\(396\) 0 0
\(397\) −0.785479 0.785479i −0.00197854 0.00197854i 0.706117 0.708095i \(-0.250445\pi\)
−0.708095 + 0.706117i \(0.750445\pi\)
\(398\) 0 0
\(399\) 200.687i 0.502974i
\(400\) 0 0
\(401\) −12.9629 −0.0323265 −0.0161632 0.999869i \(-0.505145\pi\)
−0.0161632 + 0.999869i \(0.505145\pi\)
\(402\) 0 0
\(403\) −157.575 + 157.575i −0.391005 + 0.391005i
\(404\) 0 0
\(405\) 225.159 + 212.441i 0.555948 + 0.524547i
\(406\) 0 0
\(407\) 357.575 + 357.575i 0.878562 + 0.878562i
\(408\) 0 0
\(409\) 160.763i 0.393062i 0.980498 + 0.196531i \(0.0629677\pi\)
−0.980498 + 0.196531i \(0.937032\pi\)
\(410\) 0 0
\(411\) −160.153 −0.389666
\(412\) 0 0
\(413\) 137.957 137.957i 0.334038 0.334038i
\(414\) 0 0
\(415\) 152.184 4.42271i 0.366708 0.0106571i
\(416\) 0 0
\(417\) 32.1501 + 32.1501i 0.0770985 + 0.0770985i
\(418\) 0 0
\(419\) 615.188i 1.46823i −0.679026 0.734114i \(-0.737598\pi\)
0.679026 0.734114i \(-0.262402\pi\)
\(420\) 0 0
\(421\) 698.793 1.65984 0.829921 0.557881i \(-0.188386\pi\)
0.829921 + 0.557881i \(0.188386\pi\)
\(422\) 0 0
\(423\) −404.707 + 404.707i −0.956754 + 0.956754i
\(424\) 0 0
\(425\) −34.1272 + 38.3430i −0.0802993 + 0.0902188i
\(426\) 0 0
\(427\) 132.234 + 132.234i 0.309681 + 0.309681i
\(428\) 0 0
\(429\) 170.664i 0.397817i
\(430\) 0 0
\(431\) 217.377 0.504355 0.252178 0.967681i \(-0.418853\pi\)
0.252178 + 0.967681i \(0.418853\pi\)
\(432\) 0 0
\(433\) 335.157 335.157i 0.774035 0.774035i −0.204774 0.978809i \(-0.565646\pi\)
0.978809 + 0.204774i \(0.0656460\pi\)
\(434\) 0 0
\(435\) 3.69690 + 127.209i 0.00849862 + 0.292435i
\(436\) 0 0
\(437\) −93.3430 93.3430i −0.213599 0.213599i
\(438\) 0 0
\(439\) 460.314i 1.04855i 0.851548 + 0.524276i \(0.175664\pi\)
−0.851548 + 0.524276i \(0.824336\pi\)
\(440\) 0 0
\(441\) −330.930 −0.750409
\(442\) 0 0
\(443\) 596.819 596.819i 1.34722 1.34722i 0.458557 0.888665i \(-0.348367\pi\)
0.888665 0.458557i \(-0.151633\pi\)
\(444\) 0 0
\(445\) −150.028 + 159.010i −0.337143 + 0.357325i
\(446\) 0 0
\(447\) −31.5309 31.5309i −0.0705390 0.0705390i
\(448\) 0 0
\(449\) 550.621i 1.22633i −0.789956 0.613164i \(-0.789896\pi\)
0.789956 0.613164i \(-0.210104\pi\)
\(450\) 0 0
\(451\) −776.139 −1.72093
\(452\) 0 0
\(453\) 32.9401 32.9401i 0.0727155 0.0727155i
\(454\) 0 0
\(455\) 362.876 + 342.380i 0.797530 + 0.752484i
\(456\) 0 0
\(457\) −37.3610 37.3610i −0.0817527 0.0817527i 0.665048 0.746801i \(-0.268411\pi\)
−0.746801 + 0.665048i \(0.768411\pi\)
\(458\) 0 0
\(459\) 30.2300i 0.0658605i
\(460\) 0 0
\(461\) −44.1096 −0.0956823 −0.0478412 0.998855i \(-0.515234\pi\)
−0.0478412 + 0.998855i \(0.515234\pi\)
\(462\) 0 0
\(463\) 456.480 456.480i 0.985917 0.985917i −0.0139851 0.999902i \(-0.504452\pi\)
0.999902 + 0.0139851i \(0.00445175\pi\)
\(464\) 0 0
\(465\) 89.7543 2.60840i 0.193020 0.00560947i
\(466\) 0 0
\(467\) 215.927 + 215.927i 0.462369 + 0.462369i 0.899431 0.437062i \(-0.143981\pi\)
−0.437062 + 0.899431i \(0.643981\pi\)
\(468\) 0 0
\(469\) 479.914i 1.02327i
\(470\) 0 0
\(471\) 63.4112 0.134631
\(472\) 0 0
\(473\) −710.025 + 710.025i −1.50111 + 1.50111i
\(474\) 0 0
\(475\) 622.892 36.2351i 1.31135 0.0762844i
\(476\) 0 0
\(477\) −280.726 280.726i −0.588524 0.588524i
\(478\) 0 0
\(479\) 575.554i 1.20157i −0.799409 0.600787i \(-0.794854\pi\)
0.799409 0.600787i \(-0.205146\pi\)
\(480\) 0 0
\(481\) −282.531 −0.587384
\(482\) 0 0
\(483\) −30.0737 + 30.0737i −0.0622644 + 0.0622644i
\(484\) 0 0
\(485\) 21.2860 + 732.442i 0.0438886 + 1.51019i
\(486\) 0 0
\(487\) −640.184 640.184i −1.31455 1.31455i −0.918027 0.396519i \(-0.870218\pi\)
−0.396519 0.918027i \(-0.629782\pi\)
\(488\) 0 0
\(489\) 167.956i 0.343469i
\(490\) 0 0
\(491\) −366.437 −0.746308 −0.373154 0.927769i \(-0.621724\pi\)
−0.373154 + 0.927769i \(0.621724\pi\)
\(492\) 0 0
\(493\) 43.3546 43.3546i 0.0879403 0.0879403i
\(494\) 0 0
\(495\) −537.428 + 569.600i −1.08571 + 1.15071i
\(496\) 0 0
\(497\) 806.501 + 806.501i 1.62274 + 1.62274i
\(498\) 0 0
\(499\) 155.752i 0.312128i 0.987747 + 0.156064i \(0.0498806\pi\)
−0.987747 + 0.156064i \(0.950119\pi\)
\(500\) 0 0
\(501\) 165.926 0.331189
\(502\) 0 0
\(503\) 369.957 369.957i 0.735501 0.735501i −0.236203 0.971704i \(-0.575903\pi\)
0.971704 + 0.236203i \(0.0759029\pi\)
\(504\) 0 0
\(505\) 381.595 + 360.042i 0.755633 + 0.712954i
\(506\) 0 0
\(507\) 34.4337 + 34.4337i 0.0679167 + 0.0679167i
\(508\) 0 0
\(509\) 26.6087i 0.0522764i −0.999658 0.0261382i \(-0.991679\pi\)
0.999658 0.0261382i \(-0.00832099\pi\)
\(510\) 0 0
\(511\) −1143.12 −2.23702
\(512\) 0 0
\(513\) 259.831 259.831i 0.506494 0.506494i
\(514\) 0 0
\(515\) −413.322 + 12.0118i −0.802568 + 0.0233239i
\(516\) 0 0
\(517\) −926.018 926.018i −1.79114 1.79114i
\(518\) 0 0
\(519\) 200.799i 0.386895i
\(520\) 0 0
\(521\) 225.192 0.432229 0.216115 0.976368i \(-0.430661\pi\)
0.216115 + 0.976368i \(0.430661\pi\)
\(522\) 0 0
\(523\) −149.824 + 149.824i −0.286470 + 0.286470i −0.835683 0.549212i \(-0.814928\pi\)
0.549212 + 0.835683i \(0.314928\pi\)
\(524\) 0 0
\(525\) −11.6744 200.687i −0.0222370 0.382260i
\(526\) 0 0
\(527\) −30.5895 30.5895i −0.0580445 0.0580445i
\(528\) 0 0
\(529\) 501.024i 0.947116i
\(530\) 0 0
\(531\) −171.103 −0.322227
\(532\) 0 0
\(533\) 306.626 306.626i 0.575284 0.575284i
\(534\) 0 0
\(535\) 7.23629 + 248.998i 0.0135258 + 0.465417i
\(536\) 0 0
\(537\) 148.356 + 148.356i 0.276269 + 0.276269i
\(538\) 0 0
\(539\) 757.208i 1.40484i
\(540\) 0 0
\(541\) −88.9275 −0.164376 −0.0821881 0.996617i \(-0.526191\pi\)
−0.0821881 + 0.996617i \(0.526191\pi\)
\(542\) 0 0
\(543\) −147.598 + 147.598i −0.271819 + 0.271819i
\(544\) 0 0
\(545\) 204.499 216.741i 0.375228 0.397691i
\(546\) 0 0
\(547\) −500.839 500.839i −0.915611 0.915611i 0.0810954 0.996706i \(-0.474158\pi\)
−0.996706 + 0.0810954i \(0.974158\pi\)
\(548\) 0 0
\(549\) 164.004i 0.298732i
\(550\) 0 0
\(551\) −745.278 −1.35259
\(552\) 0 0
\(553\) −505.132 + 505.132i −0.913440 + 0.913440i
\(554\) 0 0
\(555\) 82.8031 + 78.1263i 0.149195 + 0.140768i
\(556\) 0 0
\(557\) −154.004 154.004i −0.276488 0.276488i 0.555218 0.831705i \(-0.312635\pi\)
−0.831705 + 0.555218i \(0.812635\pi\)
\(558\) 0 0
\(559\) 561.014i 1.00360i
\(560\) 0 0
\(561\) −33.1303 −0.0590558
\(562\) 0 0
\(563\) 37.9353 37.9353i 0.0673806 0.0673806i −0.672613 0.739994i \(-0.734828\pi\)
0.739994 + 0.672613i \(0.234828\pi\)
\(564\) 0 0
\(565\) 50.7127 1.47379i 0.0897570 0.00260848i
\(566\) 0 0
\(567\) 413.003 + 413.003i 0.728400 + 0.728400i
\(568\) 0 0
\(569\) 34.3477i 0.0603650i −0.999544 0.0301825i \(-0.990391\pi\)
0.999544 0.0301825i \(-0.00960884\pi\)
\(570\) 0 0
\(571\) −746.810 −1.30790 −0.653949 0.756539i \(-0.726889\pi\)
−0.653949 + 0.756539i \(0.726889\pi\)
\(572\) 0 0
\(573\) 189.542 189.542i 0.330788 0.330788i
\(574\) 0 0
\(575\) 98.7730 + 87.9130i 0.171779 + 0.152892i
\(576\) 0 0
\(577\) 159.680 + 159.680i 0.276741 + 0.276741i 0.831807 0.555065i \(-0.187307\pi\)
−0.555065 + 0.831807i \(0.687307\pi\)
\(578\) 0 0
\(579\) 278.689i 0.481328i
\(580\) 0 0
\(581\) 287.259 0.494422
\(582\) 0 0
\(583\) 642.335 642.335i 1.10178 1.10178i
\(584\) 0 0
\(585\) −12.7101 437.349i −0.0217266 0.747606i
\(586\) 0 0
\(587\) −142.577 142.577i −0.242892 0.242892i 0.575154 0.818045i \(-0.304942\pi\)
−0.818045 + 0.575154i \(0.804942\pi\)
\(588\) 0 0
\(589\) 525.842i 0.892771i
\(590\) 0 0
\(591\) −38.3227 −0.0648439
\(592\) 0 0
\(593\) −558.096 + 558.096i −0.941139 + 0.941139i −0.998361 0.0572222i \(-0.981776\pi\)
0.0572222 + 0.998361i \(0.481776\pi\)
\(594\) 0 0
\(595\) −66.4651 + 70.4439i −0.111706 + 0.118393i
\(596\) 0 0
\(597\) 111.987 + 111.987i 0.187583 + 0.187583i
\(598\) 0 0
\(599\) 490.457i 0.818792i −0.912357 0.409396i \(-0.865739\pi\)
0.912357 0.409396i \(-0.134261\pi\)
\(600\) 0 0
\(601\) 195.955 0.326049 0.163024 0.986622i \(-0.447875\pi\)
0.163024 + 0.986622i \(0.447875\pi\)
\(602\) 0 0
\(603\) −297.609 + 297.609i −0.493547 + 0.493547i
\(604\) 0 0
\(605\) −863.268 814.509i −1.42689 1.34630i
\(606\) 0 0
\(607\) 794.791 + 794.791i 1.30938 + 1.30938i 0.921866 + 0.387510i \(0.126665\pi\)
0.387510 + 0.921866i \(0.373335\pi\)
\(608\) 0 0
\(609\) 240.117i 0.394282i
\(610\) 0 0
\(611\) 731.677 1.19751
\(612\) 0 0
\(613\) 375.064 375.064i 0.611850 0.611850i −0.331578 0.943428i \(-0.607581\pi\)
0.943428 + 0.331578i \(0.107581\pi\)
\(614\) 0 0
\(615\) −174.654 + 5.07572i −0.283990 + 0.00825320i
\(616\) 0 0
\(617\) −104.254 104.254i −0.168969 0.168969i 0.617557 0.786526i \(-0.288122\pi\)
−0.786526 + 0.617557i \(0.788122\pi\)
\(618\) 0 0
\(619\) 814.175i 1.31531i 0.753320 + 0.657654i \(0.228451\pi\)
−0.753320 + 0.657654i \(0.771549\pi\)
\(620\) 0 0
\(621\) 77.8736 0.125400
\(622\) 0 0
\(623\) −291.667 + 291.667i −0.468165 + 0.468165i
\(624\) 0 0
\(625\) −620.784 + 72.4702i −0.993255 + 0.115952i
\(626\) 0 0
\(627\) 284.760 + 284.760i 0.454163 + 0.454163i
\(628\) 0 0
\(629\) 54.8469i 0.0871969i
\(630\) 0 0
\(631\) −527.697 −0.836287 −0.418144 0.908381i \(-0.637319\pi\)
−0.418144 + 0.908381i \(0.637319\pi\)
\(632\) 0 0
\(633\) 125.506 125.506i 0.198272 0.198272i
\(634\) 0 0
\(635\) 13.9364 + 479.547i 0.0219471 + 0.755192i
\(636\) 0 0
\(637\) 299.147 + 299.147i 0.469619 + 0.469619i
\(638\) 0 0
\(639\) 1000.27i 1.56537i
\(640\) 0 0
\(641\) −732.552 −1.14283 −0.571414 0.820662i \(-0.693605\pi\)
−0.571414 + 0.820662i \(0.693605\pi\)
\(642\) 0 0
\(643\) 823.427 823.427i 1.28060 1.28060i 0.340276 0.940326i \(-0.389480\pi\)
0.940326 0.340276i \(-0.110520\pi\)
\(644\) 0 0
\(645\) −155.133 + 164.420i −0.240516 + 0.254914i
\(646\) 0 0
\(647\) 15.7978 + 15.7978i 0.0244170 + 0.0244170i 0.719210 0.694793i \(-0.244504\pi\)
−0.694793 + 0.719210i \(0.744504\pi\)
\(648\) 0 0
\(649\) 391.504i 0.603242i
\(650\) 0 0
\(651\) 169.419 0.260243
\(652\) 0 0
\(653\) 688.691 688.691i 1.05466 1.05466i 0.0562395 0.998417i \(-0.482089\pi\)
0.998417 0.0562395i \(-0.0179110\pi\)
\(654\) 0 0
\(655\) 504.028 + 475.560i 0.769509 + 0.726046i
\(656\) 0 0
\(657\) 708.880 + 708.880i 1.07896 + 1.07896i
\(658\) 0 0
\(659\) 107.478i 0.163092i −0.996670 0.0815461i \(-0.974014\pi\)
0.996670 0.0815461i \(-0.0259858\pi\)
\(660\) 0 0
\(661\) 90.5769 0.137030 0.0685151 0.997650i \(-0.478174\pi\)
0.0685151 + 0.997650i \(0.478174\pi\)
\(662\) 0 0
\(663\) 13.0887 13.0887i 0.0197416 0.0197416i
\(664\) 0 0
\(665\) 1176.75 34.1983i 1.76955 0.0514261i
\(666\) 0 0
\(667\) −111.683 111.683i −0.167441 0.167441i
\(668\) 0 0
\(669\) 20.7601i 0.0310315i
\(670\) 0 0
\(671\) 375.261 0.559256
\(672\) 0 0
\(673\) 475.529 475.529i 0.706582 0.706582i −0.259233 0.965815i \(-0.583470\pi\)
0.965815 + 0.259233i \(0.0834698\pi\)
\(674\) 0 0
\(675\) −244.716 + 274.946i −0.362543 + 0.407328i
\(676\) 0 0
\(677\) −180.515 180.515i −0.266640 0.266640i 0.561105 0.827745i \(-0.310376\pi\)
−0.827745 + 0.561105i \(0.810376\pi\)
\(678\) 0 0
\(679\) 1382.54i 2.03615i
\(680\) 0 0
\(681\) −27.5075 −0.0403928
\(682\) 0 0
\(683\) 110.821 110.821i 0.162257 0.162257i −0.621309 0.783566i \(-0.713399\pi\)
0.783566 + 0.621309i \(0.213399\pi\)
\(684\) 0 0
\(685\) 27.2911 + 939.076i 0.0398410 + 1.37091i
\(686\) 0 0
\(687\) −178.063 178.063i −0.259189 0.259189i
\(688\) 0 0
\(689\) 507.530i 0.736618i
\(690\) 0 0
\(691\) −151.424 −0.219138 −0.109569 0.993979i \(-0.534947\pi\)
−0.109569 + 0.993979i \(0.534947\pi\)
\(692\) 0 0
\(693\) −1044.80 + 1044.80i −1.50765 + 1.50765i
\(694\) 0 0
\(695\) 183.038 193.995i 0.263364 0.279129i
\(696\) 0 0
\(697\) 59.5243 + 59.5243i 0.0854008 + 0.0854008i
\(698\) 0 0
\(699\) 171.430i 0.245250i
\(700\) 0 0
\(701\) −749.571 −1.06929 −0.534644 0.845078i \(-0.679554\pi\)
−0.534644 + 0.845078i \(0.679554\pi\)
\(702\) 0 0
\(703\) −471.417 + 471.417i −0.670579 + 0.670579i
\(704\) 0 0
\(705\) −214.437 202.325i −0.304166 0.286986i
\(706\) 0 0
\(707\) 699.949 + 699.949i 0.990027 + 0.990027i
\(708\) 0 0
\(709\) 693.295i 0.977849i −0.872326 0.488924i \(-0.837389\pi\)
0.872326 0.488924i \(-0.162611\pi\)
\(710\) 0 0
\(711\) 626.494 0.881145
\(712\) 0 0
\(713\) −78.7996 + 78.7996i −0.110518 + 0.110518i
\(714\) 0 0
\(715\) 1000.71 29.0822i 1.39959 0.0406744i
\(716\) 0 0
\(717\) −11.9524 11.9524i −0.0166700 0.0166700i
\(718\) 0 0
\(719\) 551.737i 0.767368i 0.923465 + 0.383684i \(0.125345\pi\)
−0.923465 + 0.383684i \(0.874655\pi\)
\(720\) 0 0
\(721\) −780.179 −1.08208
\(722\) 0 0
\(723\) 106.870 106.870i 0.147815 0.147815i
\(724\) 0 0
\(725\) 745.278 43.3546i 1.02797 0.0597994i
\(726\) 0 0
\(727\) −135.393 135.393i −0.186235 0.186235i 0.607831 0.794066i \(-0.292040\pi\)
−0.794066 + 0.607831i \(0.792040\pi\)
\(728\) 0 0
\(729\) 399.286i 0.547717i
\(730\) 0 0
\(731\) 108.908 0.148985
\(732\) 0 0
\(733\) 175.077 175.077i 0.238850 0.238850i −0.577524 0.816374i \(-0.695981\pi\)
0.816374 + 0.577524i \(0.195981\pi\)
\(734\) 0 0
\(735\) −4.95192 170.394i −0.00673730 0.231828i
\(736\) 0 0
\(737\) −680.965 680.965i −0.923968 0.923968i
\(738\) 0 0
\(739\) 843.090i 1.14085i 0.821349 + 0.570426i \(0.193222\pi\)
−0.821349 + 0.570426i \(0.806778\pi\)
\(740\) 0 0
\(741\) −224.998 −0.303641
\(742\) 0 0
\(743\) 258.146 258.146i 0.347438 0.347438i −0.511717 0.859154i \(-0.670990\pi\)
0.859154 + 0.511717i \(0.170990\pi\)
\(744\) 0 0
\(745\) −179.513 + 190.259i −0.240957 + 0.255381i
\(746\) 0 0
\(747\) −178.138 178.138i −0.238471 0.238471i
\(748\) 0 0
\(749\) 470.004i 0.627509i
\(750\) 0 0
\(751\) 1085.72 1.44569 0.722847 0.691008i \(-0.242833\pi\)
0.722847 + 0.691008i \(0.242833\pi\)
\(752\) 0 0
\(753\) 116.661 116.661i 0.154928 0.154928i
\(754\) 0 0
\(755\) −198.762 187.536i −0.263261 0.248391i
\(756\) 0 0
\(757\) −66.2802 66.2802i −0.0875564 0.0875564i 0.661972 0.749528i \(-0.269720\pi\)
−0.749528 + 0.661972i \(0.769720\pi\)
\(758\) 0 0
\(759\) 85.3450i 0.112444i
\(760\) 0 0
\(761\) 843.565 1.10850 0.554248 0.832352i \(-0.313006\pi\)
0.554248 + 0.832352i \(0.313006\pi\)
\(762\) 0 0
\(763\) 397.563 397.563i 0.521052 0.521052i
\(764\) 0 0
\(765\) 84.9012 2.46736i 0.110982 0.00322531i
\(766\) 0 0
\(767\) 154.670 + 154.670i 0.201656 + 0.201656i
\(768\) 0 0
\(769\) 510.795i 0.664233i −0.943238 0.332117i \(-0.892237\pi\)
0.943238 0.332117i \(-0.107763\pi\)
\(770\) 0 0
\(771\) −99.9260 −0.129606
\(772\) 0 0
\(773\) −738.046 + 738.046i −0.954782 + 0.954782i −0.999021 0.0442392i \(-0.985914\pi\)
0.0442392 + 0.999021i \(0.485914\pi\)
\(774\) 0 0
\(775\) −30.5895 525.842i −0.0394703 0.678506i
\(776\) 0 0
\(777\) 151.884 + 151.884i 0.195474 + 0.195474i
\(778\) 0 0
\(779\) 1023.24i 1.31353i
\(780\) 0 0
\(781\) 2288.74 2.93052
\(782\) 0 0
\(783\) 310.883 310.883i 0.397041 0.397041i
\(784\) 0 0
\(785\) −10.8057 371.820i −0.0137652 0.473656i
\(786\) 0 0
\(787\) −37.7557 37.7557i −0.0479742 0.0479742i 0.682713 0.730687i \(-0.260800\pi\)
−0.730687 + 0.682713i \(0.760800\pi\)
\(788\) 0 0
\(789\) 75.6114i 0.0958320i
\(790\) 0 0
\(791\) 95.7243 0.121017
\(792\) 0 0
\(793\) −148.253 + 148.253i −0.186952 + 0.186952i
\(794\) 0 0
\(795\) 140.343 148.745i 0.176532 0.187100i
\(796\) 0 0
\(797\) 548.908 + 548.908i 0.688717 + 0.688717i 0.961948 0.273231i \(-0.0880924\pi\)
−0.273231 + 0.961948i \(0.588092\pi\)
\(798\) 0 0
\(799\) 142.038i 0.177770i
\(800\) 0 0
\(801\) 361.742 0.451613
\(802\) 0 0
\(803\) −1622.00 + 1622.00i −2.01993 + 2.01993i
\(804\) 0 0
\(805\) 181.466 + 171.217i 0.225424 + 0.212691i
\(806\) 0 0
\(807\) 110.113 + 110.113i 0.136448 + 0.136448i
\(808\) 0 0
\(809\) 1107.00i 1.36836i −0.729314 0.684179i \(-0.760161\pi\)
0.729314 0.684179i \(-0.239839\pi\)
\(810\) 0 0
\(811\) −515.451 −0.635575 −0.317787 0.948162i \(-0.602940\pi\)
−0.317787 + 0.948162i \(0.602940\pi\)
\(812\) 0 0
\(813\) −156.411 + 156.411i −0.192388 + 0.192388i
\(814\) 0 0
\(815\) −984.834 + 28.6208i −1.20838 + 0.0351176i
\(816\) 0 0
\(817\) −936.078 936.078i −1.14575 1.14575i
\(818\) 0 0
\(819\) 825.532i 1.00798i
\(820\) 0 0
\(821\) −1033.03 −1.25826 −0.629132 0.777299i \(-0.716589\pi\)
−0.629132 + 0.777299i \(0.716589\pi\)
\(822\) 0 0
\(823\) −914.257 + 914.257i −1.11088 + 1.11088i −0.117852 + 0.993031i \(0.537601\pi\)
−0.993031 + 0.117852i \(0.962399\pi\)
\(824\) 0 0
\(825\) −301.325 268.195i −0.365243 0.325085i
\(826\) 0 0
\(827\) 78.1826 + 78.1826i 0.0945376 + 0.0945376i 0.752794 0.658256i \(-0.228706\pi\)
−0.658256 + 0.752794i \(0.728706\pi\)
\(828\) 0 0
\(829\) 585.489i 0.706260i 0.935574 + 0.353130i \(0.114883\pi\)
−0.935574 + 0.353130i \(0.885117\pi\)
\(830\) 0 0
\(831\) −25.6952 −0.0309209
\(832\) 0 0
\(833\) −58.0725 + 58.0725i −0.0697149 + 0.0697149i
\(834\) 0 0
\(835\) −28.2749 972.929i −0.0338621 1.16518i
\(836\) 0 0
\(837\) −219.348 219.348i −0.262065 0.262065i
\(838\) 0 0
\(839\) 562.781i 0.670776i 0.942080 + 0.335388i \(0.108867\pi\)
−0.942080 + 0.335388i \(0.891133\pi\)
\(840\) 0 0
\(841\) −50.7101 −0.0602974
\(842\) 0 0
\(843\) −57.3825 + 57.3825i −0.0680694 + 0.0680694i
\(844\) 0 0
\(845\) 196.039 207.775i 0.231999 0.245887i
\(846\) 0 0
\(847\) −1583.47 1583.47i −1.86950 1.86950i
\(848\) 0 0
\(849\) 225.846i 0.266014i
\(850\) 0 0
\(851\) −141.288 −0.166025
\(852\) 0 0
\(853\) −802.876 + 802.876i −0.941238 + 0.941238i −0.998367 0.0571289i \(-0.981805\pi\)
0.0571289 + 0.998367i \(0.481805\pi\)
\(854\) 0 0
\(855\) −750.945 708.531i −0.878299 0.828691i
\(856\) 0 0
\(857\) −326.199 326.199i −0.380629 0.380629i 0.490700 0.871329i \(-0.336741\pi\)
−0.871329 + 0.490700i \(0.836741\pi\)
\(858\) 0 0
\(859\) 316.369i 0.368299i 0.982898 + 0.184150i \(0.0589531\pi\)
−0.982898 + 0.184150i \(0.941047\pi\)
\(860\) 0 0
\(861\) −329.673 −0.382896
\(862\) 0 0
\(863\) 58.4008 58.4008i 0.0676718 0.0676718i −0.672461 0.740133i \(-0.734763\pi\)
0.740133 + 0.672461i \(0.234763\pi\)
\(864\) 0 0
\(865\) −1177.41 + 34.2174i −1.36117 + 0.0395577i
\(866\) 0 0
\(867\) −171.641 171.641i −0.197971 0.197971i
\(868\) 0 0
\(869\) 1433.49i 1.64959i
\(870\) 0 0
\(871\) 538.052 0.617741
\(872\) 0 0
\(873\) 857.355 857.355i 0.982079 0.982079i
\(874\) 0 0
\(875\) −1174.76 + 102.653i −1.34259 + 0.117317i
\(876\) 0 0
\(877\) 385.728 + 385.728i 0.439826 + 0.439826i 0.891953 0.452127i \(-0.149335\pi\)
−0.452127 + 0.891953i \(0.649335\pi\)
\(878\) 0 0
\(879\) 41.1478i 0.0468120i
\(880\) 0 0
\(881\) 571.152 0.648299 0.324150 0.946006i \(-0.394922\pi\)
0.324150 + 0.946006i \(0.394922\pi\)
\(882\) 0 0
\(883\) 421.346 421.346i 0.477176 0.477176i −0.427052 0.904227i \(-0.640448\pi\)
0.904227 + 0.427052i \(0.140448\pi\)
\(884\) 0 0
\(885\) −2.56032 88.0997i −0.00289302 0.0995477i
\(886\) 0 0
\(887\) −630.048 630.048i −0.710313 0.710313i 0.256287 0.966601i \(-0.417501\pi\)
−0.966601 + 0.256287i \(0.917501\pi\)
\(888\) 0 0
\(889\) 905.184i 1.01820i
\(890\) 0 0
\(891\) 1172.04 1.31542
\(892\) 0 0
\(893\) 1220.84 1220.84i 1.36712 1.36712i
\(894\) 0 0
\(895\) 844.626 895.188i 0.943716 1.00021i
\(896\) 0 0
\(897\) −33.7169 33.7169i −0.0375885 0.0375885i
\(898\) 0 0
\(899\) 629.160i 0.699844i
\(900\) 0 0
\(901\) −98.5250 −0.109351
\(902\) 0 0
\(903\) −301.590 + 301.590i −0.333987 + 0.333987i
\(904\) 0 0
\(905\) 890.611 + 840.307i 0.984100 + 0.928516i
\(906\) 0 0
\(907\) −442.774 442.774i −0.488174 0.488174i 0.419556 0.907730i \(-0.362186\pi\)
−0.907730 + 0.419556i \(0.862186\pi\)
\(908\) 0 0
\(909\) 868.117i 0.955024i
\(910\) 0 0
\(911\) −66.1784 −0.0726437 −0.0363218 0.999340i \(-0.511564\pi\)
−0.0363218 + 0.999340i \(0.511564\pi\)
\(912\) 0 0
\(913\) 407.601 407.601i 0.446441 0.446441i
\(914\) 0 0
\(915\) 84.4445 2.45409i 0.0922891 0.00268207i
\(916\) 0 0
\(917\) 924.526 + 924.526i 1.00821 + 1.00821i
\(918\) 0 0
\(919\) 1418.58i 1.54361i −0.635858 0.771806i \(-0.719353\pi\)
0.635858 0.771806i \(-0.280647\pi\)
\(920\) 0 0
\(921\) −436.077 −0.473482
\(922\) 0 0
\(923\) −904.203 + 904.203i −0.979635 + 0.979635i
\(924\) 0 0
\(925\) 443.994 498.841i 0.479993 0.539287i
\(926\) 0 0
\(927\) 483.811 + 483.811i 0.521911 + 0.521911i
\(928\) 0 0
\(929\) 594.537i 0.639975i 0.947422 + 0.319987i \(0.103679\pi\)
−0.947422 + 0.319987i \(0.896321\pi\)
\(930\) 0 0
\(931\) 998.283 1.07227
\(932\) 0 0
\(933\) 71.7819 71.7819i 0.0769366 0.0769366i
\(934\) 0 0
\(935\) 5.64563 + 194.264i 0.00603810 + 0.207769i
\(936\) 0 0
\(937\) 183.026 + 183.026i 0.195332 + 0.195332i 0.797996 0.602663i \(-0.205894\pi\)
−0.602663 + 0.797996i \(0.705894\pi\)
\(938\) 0 0
\(939\) 245.105i 0.261027i
\(940\) 0 0
\(941\) −1438.39 −1.52857 −0.764286 0.644877i \(-0.776908\pi\)
−0.764286 + 0.644877i \(0.776908\pi\)
\(942\) 0 0
\(943\) 153.337 153.337i 0.162605 0.162605i
\(944\) 0 0
\(945\) −476.602 + 505.132i −0.504340 + 0.534532i
\(946\) 0 0
\(947\) −917.916 917.916i −0.969289 0.969289i 0.0302535 0.999542i \(-0.490369\pi\)
−0.999542 + 0.0302535i \(0.990369\pi\)
\(948\) 0 0
\(949\) 1281.60i 1.35047i
\(950\) 0 0
\(951\) 168.194 0.176861
\(952\) 0 0
\(953\) 304.518 304.518i 0.319537 0.319537i −0.529052 0.848589i \(-0.677453\pi\)
0.848589 + 0.529052i \(0.177453\pi\)
\(954\) 0 0
\(955\) −1143.70 1079.10i −1.19759 1.12995i
\(956\) 0 0
\(957\) 340.710 + 340.710i 0.356019 + 0.356019i
\(958\) 0 0
\(959\) 1772.58i 1.84837i
\(960\) 0 0
\(961\) −517.087 −0.538072
\(962\) 0 0
\(963\) 291.463 291.463i 0.302661 0.302661i
\(964\) 0 0
\(965\) −1634.13 + 47.4905i −1.69340 + 0.0492129i
\(966\) 0 0
\(967\) 196.607 + 196.607i 0.203317 + 0.203317i 0.801419 0.598103i \(-0.204079\pi\)
−0.598103 + 0.801419i \(0.704079\pi\)
\(968\) 0 0
\(969\) 43.6781i 0.0450755i
\(970\) 0 0
\(971\) 508.204 0.523382 0.261691 0.965152i \(-0.415720\pi\)
0.261691 + 0.965152i \(0.415720\pi\)
\(972\) 0 0
\(973\) 355.840 355.840i 0.365714 0.365714i
\(974\) 0 0
\(975\) 224.998 13.0887i 0.230767 0.0134243i
\(976\) 0 0
\(977\) −312.722 312.722i −0.320084 0.320084i 0.528716 0.848799i \(-0.322674\pi\)
−0.848799 + 0.528716i \(0.822674\pi\)
\(978\) 0 0
\(979\) 827.710i 0.845465i
\(980\) 0 0
\(981\) −493.080 −0.502630
\(982\) 0 0
\(983\) −978.034 + 978.034i −0.994948 + 0.994948i −0.999987 0.00503914i \(-0.998396\pi\)
0.00503914 + 0.999987i \(0.498396\pi\)
\(984\) 0 0
\(985\) 6.53045 + 224.710i 0.00662989 + 0.228132i
\(986\) 0 0
\(987\) −393.336 393.336i −0.398517 0.398517i
\(988\) 0 0
\(989\) 280.550i 0.283671i
\(990\) 0 0
\(991\) −1032.30 −1.04168 −0.520838 0.853656i \(-0.674380\pi\)
−0.520838 + 0.853656i \(0.674380\pi\)
\(992\) 0 0
\(993\) 87.1940 87.1940i 0.0878087 0.0878087i
\(994\) 0 0
\(995\) 637.568 675.735i 0.640772 0.679130i
\(996\) 0 0
\(997\) −430.764 430.764i −0.432060 0.432060i 0.457268 0.889329i \(-0.348828\pi\)
−0.889329 + 0.457268i \(0.848828\pi\)
\(998\) 0 0
\(999\) 393.291i 0.393685i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 160.3.p.f.97.2 yes 6
4.3 odd 2 160.3.p.e.97.2 yes 6
5.2 odd 4 800.3.p.i.193.2 6
5.3 odd 4 inner 160.3.p.f.33.2 yes 6
5.4 even 2 800.3.p.i.257.2 6
8.3 odd 2 320.3.p.m.257.2 6
8.5 even 2 320.3.p.n.257.2 6
20.3 even 4 160.3.p.e.33.2 6
20.7 even 4 800.3.p.j.193.2 6
20.19 odd 2 800.3.p.j.257.2 6
40.3 even 4 320.3.p.m.193.2 6
40.13 odd 4 320.3.p.n.193.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.3.p.e.33.2 6 20.3 even 4
160.3.p.e.97.2 yes 6 4.3 odd 2
160.3.p.f.33.2 yes 6 5.3 odd 4 inner
160.3.p.f.97.2 yes 6 1.1 even 1 trivial
320.3.p.m.193.2 6 40.3 even 4
320.3.p.m.257.2 6 8.3 odd 2
320.3.p.n.193.2 6 40.13 odd 4
320.3.p.n.257.2 6 8.5 even 2
800.3.p.i.193.2 6 5.2 odd 4
800.3.p.i.257.2 6 5.4 even 2
800.3.p.j.193.2 6 20.7 even 4
800.3.p.j.257.2 6 20.19 odd 2