Properties

Label 160.3
Level 160
Weight 3
Dimension 762
Nonzero newspaces 10
Newform subspaces 19
Sturm bound 4608
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 10 \)
Newform subspaces: \( 19 \)
Sturm bound: \(4608\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(160))\).

Total New Old
Modular forms 1664 822 842
Cusp forms 1408 762 646
Eisenstein series 256 60 196

Trace form

\( 762 q - 8 q^{2} - 8 q^{3} - 8 q^{4} - 16 q^{5} - 24 q^{6} - 4 q^{7} - 8 q^{8} + 22 q^{9} + 28 q^{10} + 12 q^{11} + 88 q^{12} + 48 q^{13} + 24 q^{14} - 4 q^{15} - 64 q^{16} - 84 q^{17} - 128 q^{18} - 68 q^{19}+ \cdots + 68 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(160))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
160.3.b \(\chi_{160}(31, \cdot)\) 160.3.b.a 4 1
160.3.b.b 4
160.3.e \(\chi_{160}(79, \cdot)\) 160.3.e.a 1 1
160.3.e.b 1
160.3.e.c 8
160.3.g \(\chi_{160}(111, \cdot)\) 160.3.g.a 8 1
160.3.h \(\chi_{160}(159, \cdot)\) 160.3.h.a 6 1
160.3.h.b 6
160.3.i \(\chi_{160}(57, \cdot)\) None 0 2
160.3.k \(\chi_{160}(39, \cdot)\) None 0 2
160.3.m \(\chi_{160}(17, \cdot)\) 160.3.m.a 20 2
160.3.p \(\chi_{160}(33, \cdot)\) 160.3.p.a 2 2
160.3.p.b 2
160.3.p.c 4
160.3.p.d 4
160.3.p.e 6
160.3.p.f 6
160.3.r \(\chi_{160}(71, \cdot)\) None 0 2
160.3.t \(\chi_{160}(137, \cdot)\) None 0 2
160.3.v \(\chi_{160}(13, \cdot)\) 160.3.v.a 184 4
160.3.w \(\chi_{160}(11, \cdot)\) 160.3.w.a 128 4
160.3.y \(\chi_{160}(19, \cdot)\) 160.3.y.a 184 4
160.3.bb \(\chi_{160}(53, \cdot)\) 160.3.bb.a 184 4

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(160))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(160)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 2}\)