Properties

Label 16.28.e
Level 1616
Weight 2828
Character orbit 16.e
Rep. character χ16(5,)\chi_{16}(5,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 106106
Newform subspaces 11
Sturm bound 5656
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 16=24 16 = 2^{4}
Weight: k k == 28 28
Character orbit: [χ][\chi] == 16.e (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 16 16
Character field: Q(i)\Q(i)
Newform subspaces: 1 1
Sturm bound: 5656
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M28(16,[χ])M_{28}(16, [\chi]).

Total New Old
Modular forms 110 110 0
Cusp forms 106 106 0
Eisenstein series 4 4 0

Trace form

106q2q22q3+125095688q42q559499919472q6287180933804q8+8247210235372q1034039821810222q11+17 ⁣ ⁣80q122q1371 ⁣ ⁣60q1415 ⁣ ⁣04q15++16 ⁣ ⁣66q99+O(q100) 106 q - 2 q^{2} - 2 q^{3} + 125095688 q^{4} - 2 q^{5} - 59499919472 q^{6} - 287180933804 q^{8} + 8247210235372 q^{10} - 34039821810222 q^{11} + 17\!\cdots\!80 q^{12} - 2 q^{13} - 71\!\cdots\!60 q^{14} - 15\!\cdots\!04 q^{15}+ \cdots + 16\!\cdots\!66 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S28new(16,[χ])S_{28}^{\mathrm{new}}(16, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
16.28.e.a 16.e 16.e 106106 73.89773.897 None 16.28.e.a 2-2 2-2 2-2 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}]