Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [16,28,Mod(5,16)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(16, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 28, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("16.5");
S:= CuspForms(chi, 28);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 16 = 2^{4} \) |
Weight: | \( k \) | \(=\) | \( 28 \) |
Character orbit: | \([\chi]\) | \(=\) | 16.e (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(73.8968919741\) |
Analytic rank: | \(0\) |
Dimension: | \(106\) |
Relative dimension: | \(53\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 | −11581.2 | + | 305.932i | −2.33243e6 | + | 2.33243e6i | 1.34031e8 | − | 7.08611e6i | −3.25506e9 | − | 3.25506e9i | 2.62988e10 | − | 2.77259e10i | − | 4.57721e11i | −1.55007e12 | + | 1.23070e11i | − | 3.25487e12i | 3.86933e13 | + | 3.67017e13i | ||
5.2 | −11578.9 | − | 382.145i | −2.39173e6 | + | 2.39173e6i | 1.33926e8 | + | 8.84966e6i | 1.10058e8 | + | 1.10058e8i | 2.86077e10 | − | 2.67797e10i | 2.84560e11i | −1.54733e12 | − | 1.53649e11i | − | 3.81516e12i | −1.23230e12 | − | 1.31641e12i | |||
5.3 | −11565.4 | − | 677.061i | 663110. | − | 663110.i | 1.33301e8 | + | 1.56610e7i | 2.21940e8 | + | 2.21940e8i | −8.11812e9 | + | 7.22019e9i | 2.02008e11i | −1.53108e12 | − | 2.71379e11i | 6.74617e12i | −2.41657e12 | − | 2.71710e12i | ||||
5.4 | −11441.8 | + | 1817.09i | 153675. | − | 153675.i | 1.27614e8 | − | 4.15818e7i | 2.87142e9 | + | 2.87142e9i | −1.47908e9 | + | 2.03757e9i | − | 4.55239e11i | −1.38458e12 | + | 7.07660e11i | 7.57837e12i | −3.80720e13 | − | 2.76367e13i | |||
5.5 | −11221.9 | + | 2878.54i | 3.13170e6 | − | 3.13170e6i | 1.17646e8 | − | 6.46055e7i | 2.99171e9 | + | 2.99171e9i | −2.61290e10 | + | 4.41585e10i | 3.77678e11i | −1.13424e12 | + | 1.06365e12i | − | 1.19895e13i | −4.21845e13 | − | 2.49610e13i | |||
5.6 | −10946.6 | + | 3793.44i | 2.44645e6 | − | 2.44645e6i | 1.05437e8 | − | 8.30503e7i | −2.13207e9 | − | 2.13207e9i | −1.74998e10 | + | 3.60607e10i | − | 9.04455e10i | −8.39133e11 | + | 1.30909e12i | − | 4.34460e12i | 3.14268e13 | + | 1.52510e13i | ||
5.7 | −10852.0 | − | 4056.00i | 3.04255e6 | − | 3.04255e6i | 1.01315e8 | + | 8.80317e7i | −1.59485e9 | − | 1.59485e9i | −4.53584e10 | + | 2.06772e10i | 2.58969e10i | −7.42421e11 | − | 1.36626e12i | − | 1.08886e13i | 1.08387e13 | + | 2.37761e13i | |||
5.8 | −10534.4 | − | 4821.21i | 923601. | − | 923601.i | 8.77296e7 | + | 1.01577e8i | −5.91123e8 | − | 5.91123e8i | −1.41825e10 | + | 5.27671e9i | − | 1.68267e11i | −4.34455e11 | − | 1.49302e12i | 5.91952e12i | 3.37720e12 | + | 9.07706e12i | |||
5.9 | −9759.73 | + | 6242.23i | −2.84375e6 | + | 2.84375e6i | 5.62868e7 | − | 1.21845e8i | 1.41523e9 | + | 1.41523e9i | 1.00029e10 | − | 4.55056e10i | − | 4.92833e10i | 2.11241e11 | + | 1.54053e12i | − | 8.54826e12i | −2.26465e13 | − | 4.97807e12i | ||
5.10 | −9666.34 | − | 6385.89i | −1.23946e6 | + | 1.23946e6i | 5.26586e7 | + | 1.23456e8i | 3.17355e9 | + | 3.17355e9i | 1.98961e10 | − | 4.06599e9i | 1.31495e11i | 2.79363e11 | − | 1.52964e12i | 4.55307e12i | −1.04107e13 | − | 5.09425e13i | ||||
5.11 | −9440.77 | + | 6714.88i | −474715. | + | 474715.i | 4.40386e7 | − | 1.26787e8i | −2.37654e9 | − | 2.37654e9i | 1.29402e9 | − | 7.66932e9i | 2.04420e11i | 4.35602e11 | + | 1.49268e12i | 7.17489e12i | 3.83945e13 | + | 6.47820e12i | ||||
5.12 | −9065.18 | − | 7213.90i | −3.30251e6 | + | 3.30251e6i | 3.01372e7 | + | 1.30790e8i | 3.04061e8 | + | 3.04061e8i | 5.37618e10 | − | 6.11388e9i | − | 2.05985e11i | 6.70310e11 | − | 1.40305e12i | − | 1.41875e13i | −5.62903e11 | − | 4.94983e12i | ||
5.13 | −8692.02 | − | 7659.41i | −956364. | + | 956364.i | 1.68847e7 | + | 1.33151e8i | −3.72252e9 | − | 3.72252e9i | 1.56379e10 | − | 9.87553e8i | 2.96868e11i | 8.73099e11 | − | 1.28668e12i | 5.79634e12i | 3.84392e12 | + | 6.08685e13i | ||||
5.14 | −8651.50 | − | 7705.14i | 3.24050e6 | − | 3.24050e6i | 1.54792e7 | + | 1.33322e8i | 2.55225e9 | + | 2.55225e9i | −5.30037e10 | + | 3.06667e9i | − | 2.23686e11i | 8.93348e11 | − | 1.27271e12i | − | 1.33761e13i | −2.41534e12 | − | 4.17462e13i | ||
5.15 | −8488.66 | + | 7884.18i | 356479. | − | 356479.i | 9.89700e6 | − | 1.33852e8i | 8.81914e8 | + | 8.81914e8i | −2.15483e8 | + | 5.83658e9i | 2.95444e10i | 9.71304e11 | + | 1.21426e12i | 7.37144e12i | −1.44394e13 | − | 5.33097e11i | ||||
5.16 | −6847.52 | + | 9345.01i | 2.95774e6 | − | 2.95774e6i | −4.04408e7 | − | 1.27980e8i | 6.75988e8 | + | 6.75988e8i | 7.38694e9 | + | 4.78933e10i | − | 3.29800e11i | 1.47290e12 | + | 4.98428e11i | − | 9.87086e12i | −1.09460e13 | + | 1.68828e12i | ||
5.17 | −5798.80 | − | 10029.5i | 1.92086e6 | − | 1.92086e6i | −6.69655e7 | + | 1.16319e8i | 4.80331e8 | + | 4.80331e8i | −3.04040e10 | − | 8.12664e9i | 4.11420e11i | 1.55494e12 | − | 2.87564e9i | 2.46204e11i | 2.03215e12 | − | 7.60284e12i | ||||
5.18 | −5041.21 | − | 10430.9i | −329571. | + | 329571.i | −8.33902e7 | + | 1.05169e8i | −2.69387e8 | − | 2.69387e8i | 5.09916e9 | + | 1.77629e9i | − | 2.71695e11i | 1.51739e12 | + | 3.39659e11i | 7.40836e12i | −1.45192e12 | + | 4.16799e12i | |||
5.19 | −4635.48 | + | 10617.4i | 631535. | − | 631535.i | −9.12424e7 | − | 9.84339e7i | 2.52651e9 | + | 2.52651e9i | 3.77782e9 | + | 9.63275e9i | 3.51372e11i | 1.46807e12 | − | 5.12473e11i | 6.82793e12i | −3.85367e13 | + | 1.51135e13i | ||||
5.20 | −4567.90 | + | 10646.7i | −1.19622e6 | + | 1.19622e6i | −9.24863e7 | − | 9.72661e7i | −1.71680e9 | − | 1.71680e9i | −7.27159e9 | − | 1.82001e10i | − | 4.18265e11i | 1.45803e12 | − | 5.40371e11i | 4.76369e12i | 2.61205e13 | − | 1.04361e13i | |||
See next 80 embeddings (of 106 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
16.e | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 16.28.e.a | ✓ | 106 |
16.e | even | 4 | 1 | inner | 16.28.e.a | ✓ | 106 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
16.28.e.a | ✓ | 106 | 1.a | even | 1 | 1 | trivial |
16.28.e.a | ✓ | 106 | 16.e | even | 4 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{28}^{\mathrm{new}}(16, [\chi])\).