Properties

Label 16.28.e.a
Level $16$
Weight $28$
Character orbit 16.e
Analytic conductor $73.897$
Analytic rank $0$
Dimension $106$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [16,28,Mod(5,16)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(16, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 28, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("16.5");
 
S:= CuspForms(chi, 28);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 16 = 2^{4} \)
Weight: \( k \) \(=\) \( 28 \)
Character orbit: \([\chi]\) \(=\) 16.e (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(73.8968919741\)
Analytic rank: \(0\)
Dimension: \(106\)
Relative dimension: \(53\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 106 q - 2 q^{2} - 2 q^{3} + 125095688 q^{4} - 2 q^{5} - 59499919472 q^{6} - 287180933804 q^{8}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 106 q - 2 q^{2} - 2 q^{3} + 125095688 q^{4} - 2 q^{5} - 59499919472 q^{6} - 287180933804 q^{8} + 8247210235372 q^{10} - 34039821810222 q^{11} + 17\!\cdots\!80 q^{12}+ \cdots + 16\!\cdots\!66 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
5.1 −11581.2 + 305.932i −2.33243e6 + 2.33243e6i 1.34031e8 7.08611e6i −3.25506e9 3.25506e9i 2.62988e10 2.77259e10i 4.57721e11i −1.55007e12 + 1.23070e11i 3.25487e12i 3.86933e13 + 3.67017e13i
5.2 −11578.9 382.145i −2.39173e6 + 2.39173e6i 1.33926e8 + 8.84966e6i 1.10058e8 + 1.10058e8i 2.86077e10 2.67797e10i 2.84560e11i −1.54733e12 1.53649e11i 3.81516e12i −1.23230e12 1.31641e12i
5.3 −11565.4 677.061i 663110. 663110.i 1.33301e8 + 1.56610e7i 2.21940e8 + 2.21940e8i −8.11812e9 + 7.22019e9i 2.02008e11i −1.53108e12 2.71379e11i 6.74617e12i −2.41657e12 2.71710e12i
5.4 −11441.8 + 1817.09i 153675. 153675.i 1.27614e8 4.15818e7i 2.87142e9 + 2.87142e9i −1.47908e9 + 2.03757e9i 4.55239e11i −1.38458e12 + 7.07660e11i 7.57837e12i −3.80720e13 2.76367e13i
5.5 −11221.9 + 2878.54i 3.13170e6 3.13170e6i 1.17646e8 6.46055e7i 2.99171e9 + 2.99171e9i −2.61290e10 + 4.41585e10i 3.77678e11i −1.13424e12 + 1.06365e12i 1.19895e13i −4.21845e13 2.49610e13i
5.6 −10946.6 + 3793.44i 2.44645e6 2.44645e6i 1.05437e8 8.30503e7i −2.13207e9 2.13207e9i −1.74998e10 + 3.60607e10i 9.04455e10i −8.39133e11 + 1.30909e12i 4.34460e12i 3.14268e13 + 1.52510e13i
5.7 −10852.0 4056.00i 3.04255e6 3.04255e6i 1.01315e8 + 8.80317e7i −1.59485e9 1.59485e9i −4.53584e10 + 2.06772e10i 2.58969e10i −7.42421e11 1.36626e12i 1.08886e13i 1.08387e13 + 2.37761e13i
5.8 −10534.4 4821.21i 923601. 923601.i 8.77296e7 + 1.01577e8i −5.91123e8 5.91123e8i −1.41825e10 + 5.27671e9i 1.68267e11i −4.34455e11 1.49302e12i 5.91952e12i 3.37720e12 + 9.07706e12i
5.9 −9759.73 + 6242.23i −2.84375e6 + 2.84375e6i 5.62868e7 1.21845e8i 1.41523e9 + 1.41523e9i 1.00029e10 4.55056e10i 4.92833e10i 2.11241e11 + 1.54053e12i 8.54826e12i −2.26465e13 4.97807e12i
5.10 −9666.34 6385.89i −1.23946e6 + 1.23946e6i 5.26586e7 + 1.23456e8i 3.17355e9 + 3.17355e9i 1.98961e10 4.06599e9i 1.31495e11i 2.79363e11 1.52964e12i 4.55307e12i −1.04107e13 5.09425e13i
5.11 −9440.77 + 6714.88i −474715. + 474715.i 4.40386e7 1.26787e8i −2.37654e9 2.37654e9i 1.29402e9 7.66932e9i 2.04420e11i 4.35602e11 + 1.49268e12i 7.17489e12i 3.83945e13 + 6.47820e12i
5.12 −9065.18 7213.90i −3.30251e6 + 3.30251e6i 3.01372e7 + 1.30790e8i 3.04061e8 + 3.04061e8i 5.37618e10 6.11388e9i 2.05985e11i 6.70310e11 1.40305e12i 1.41875e13i −5.62903e11 4.94983e12i
5.13 −8692.02 7659.41i −956364. + 956364.i 1.68847e7 + 1.33151e8i −3.72252e9 3.72252e9i 1.56379e10 9.87553e8i 2.96868e11i 8.73099e11 1.28668e12i 5.79634e12i 3.84392e12 + 6.08685e13i
5.14 −8651.50 7705.14i 3.24050e6 3.24050e6i 1.54792e7 + 1.33322e8i 2.55225e9 + 2.55225e9i −5.30037e10 + 3.06667e9i 2.23686e11i 8.93348e11 1.27271e12i 1.33761e13i −2.41534e12 4.17462e13i
5.15 −8488.66 + 7884.18i 356479. 356479.i 9.89700e6 1.33852e8i 8.81914e8 + 8.81914e8i −2.15483e8 + 5.83658e9i 2.95444e10i 9.71304e11 + 1.21426e12i 7.37144e12i −1.44394e13 5.33097e11i
5.16 −6847.52 + 9345.01i 2.95774e6 2.95774e6i −4.04408e7 1.27980e8i 6.75988e8 + 6.75988e8i 7.38694e9 + 4.78933e10i 3.29800e11i 1.47290e12 + 4.98428e11i 9.87086e12i −1.09460e13 + 1.68828e12i
5.17 −5798.80 10029.5i 1.92086e6 1.92086e6i −6.69655e7 + 1.16319e8i 4.80331e8 + 4.80331e8i −3.04040e10 8.12664e9i 4.11420e11i 1.55494e12 2.87564e9i 2.46204e11i 2.03215e12 7.60284e12i
5.18 −5041.21 10430.9i −329571. + 329571.i −8.33902e7 + 1.05169e8i −2.69387e8 2.69387e8i 5.09916e9 + 1.77629e9i 2.71695e11i 1.51739e12 + 3.39659e11i 7.40836e12i −1.45192e12 + 4.16799e12i
5.19 −4635.48 + 10617.4i 631535. 631535.i −9.12424e7 9.84339e7i 2.52651e9 + 2.52651e9i 3.77782e9 + 9.63275e9i 3.51372e11i 1.46807e12 5.12473e11i 6.82793e12i −3.85367e13 + 1.51135e13i
5.20 −4567.90 + 10646.7i −1.19622e6 + 1.19622e6i −9.24863e7 9.72661e7i −1.71680e9 1.71680e9i −7.27159e9 1.82001e10i 4.18265e11i 1.45803e12 5.40371e11i 4.76369e12i 2.61205e13 1.04361e13i
See next 80 embeddings (of 106 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 5.53
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
16.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 16.28.e.a 106
16.e even 4 1 inner 16.28.e.a 106
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
16.28.e.a 106 1.a even 1 1 trivial
16.28.e.a 106 16.e even 4 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{28}^{\mathrm{new}}(16, [\chi])\).