Properties

Label 1575.3.f.a.449.5
Level $1575$
Weight $3$
Character 1575.449
Analytic conductor $42.916$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1575,3,Mod(449,1575)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1575, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1575.449"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1575.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.9156416367\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.157351936.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + x^{4} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.5
Root \(-1.28897 - 0.581861i\) of defining polynomial
Character \(\chi\) \(=\) 1575.449
Dual form 1575.3.f.a.449.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.16372 q^{2} -2.64575 q^{4} -2.64575i q^{7} -7.73381 q^{8} -0.412247i q^{11} -4.58301i q^{13} -3.07892i q^{14} +1.58301 q^{16} -32.4382 q^{17} +20.4575 q^{19} -0.479741i q^{22} +35.1779 q^{23} -5.33334i q^{26} +7.00000i q^{28} -25.0436i q^{29} -43.2915 q^{31} +32.7774 q^{32} -37.7490 q^{34} +21.4170i q^{37} +23.8069 q^{38} +59.5430i q^{41} +51.7490i q^{43} +1.09070i q^{44} +40.9373 q^{46} -5.47938 q^{47} -7.00000 q^{49} +12.1255i q^{52} -40.6572 q^{53} +20.4617i q^{56} -29.1438i q^{58} +73.3616i q^{59} +88.5385 q^{61} -50.3793 q^{62} +31.8118 q^{64} +80.0810i q^{67} +85.8233 q^{68} +24.2191i q^{71} -33.0405i q^{73} +24.9234i q^{74} -54.1255 q^{76} -1.09070 q^{77} +22.0000 q^{79} +69.2915i q^{82} +30.9352 q^{83} +60.2215i q^{86} +3.18824i q^{88} -73.2156i q^{89} -12.1255 q^{91} -93.0719 q^{92} -6.37648 q^{94} -34.7085i q^{97} -8.14605 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 72 q^{16} - 48 q^{19} - 304 q^{31} - 48 q^{34} + 264 q^{46} - 56 q^{49} - 96 q^{61} + 64 q^{64} - 560 q^{76} + 176 q^{79} - 224 q^{91} - 432 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1575\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(1226\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.16372 0.581861 0.290930 0.956744i \(-0.406035\pi\)
0.290930 + 0.956744i \(0.406035\pi\)
\(3\) 0 0
\(4\) −2.64575 −0.661438
\(5\) 0 0
\(6\) 0 0
\(7\) − 2.64575i − 0.377964i
\(8\) −7.73381 −0.966726
\(9\) 0 0
\(10\) 0 0
\(11\) − 0.412247i − 0.0374770i −0.999824 0.0187385i \(-0.994035\pi\)
0.999824 0.0187385i \(-0.00596500\pi\)
\(12\) 0 0
\(13\) − 4.58301i − 0.352539i −0.984342 0.176269i \(-0.943597\pi\)
0.984342 0.176269i \(-0.0564030\pi\)
\(14\) − 3.07892i − 0.219923i
\(15\) 0 0
\(16\) 1.58301 0.0989378
\(17\) −32.4382 −1.90813 −0.954064 0.299603i \(-0.903146\pi\)
−0.954064 + 0.299603i \(0.903146\pi\)
\(18\) 0 0
\(19\) 20.4575 1.07671 0.538356 0.842718i \(-0.319046\pi\)
0.538356 + 0.842718i \(0.319046\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 0.479741i − 0.0218064i
\(23\) 35.1779 1.52947 0.764736 0.644343i \(-0.222869\pi\)
0.764736 + 0.644343i \(0.222869\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) − 5.33334i − 0.205129i
\(27\) 0 0
\(28\) 7.00000i 0.250000i
\(29\) − 25.0436i − 0.863572i −0.901976 0.431786i \(-0.857884\pi\)
0.901976 0.431786i \(-0.142116\pi\)
\(30\) 0 0
\(31\) −43.2915 −1.39650 −0.698250 0.715854i \(-0.746038\pi\)
−0.698250 + 0.715854i \(0.746038\pi\)
\(32\) 32.7774 1.02429
\(33\) 0 0
\(34\) −37.7490 −1.11027
\(35\) 0 0
\(36\) 0 0
\(37\) 21.4170i 0.578838i 0.957203 + 0.289419i \(0.0934620\pi\)
−0.957203 + 0.289419i \(0.906538\pi\)
\(38\) 23.8069 0.626496
\(39\) 0 0
\(40\) 0 0
\(41\) 59.5430i 1.45227i 0.687553 + 0.726134i \(0.258685\pi\)
−0.687553 + 0.726134i \(0.741315\pi\)
\(42\) 0 0
\(43\) 51.7490i 1.20347i 0.798698 + 0.601733i \(0.205523\pi\)
−0.798698 + 0.601733i \(0.794477\pi\)
\(44\) 1.09070i 0.0247887i
\(45\) 0 0
\(46\) 40.9373 0.889940
\(47\) −5.47938 −0.116583 −0.0582913 0.998300i \(-0.518565\pi\)
−0.0582913 + 0.998300i \(0.518565\pi\)
\(48\) 0 0
\(49\) −7.00000 −0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 12.1255i 0.233183i
\(53\) −40.6572 −0.767118 −0.383559 0.923516i \(-0.625302\pi\)
−0.383559 + 0.923516i \(0.625302\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 20.4617i 0.365388i
\(57\) 0 0
\(58\) − 29.1438i − 0.502479i
\(59\) 73.3616i 1.24342i 0.783249 + 0.621709i \(0.213561\pi\)
−0.783249 + 0.621709i \(0.786439\pi\)
\(60\) 0 0
\(61\) 88.5385 1.45145 0.725726 0.687984i \(-0.241504\pi\)
0.725726 + 0.687984i \(0.241504\pi\)
\(62\) −50.3793 −0.812569
\(63\) 0 0
\(64\) 31.8118 0.497059
\(65\) 0 0
\(66\) 0 0
\(67\) 80.0810i 1.19524i 0.801780 + 0.597620i \(0.203887\pi\)
−0.801780 + 0.597620i \(0.796113\pi\)
\(68\) 85.8233 1.26211
\(69\) 0 0
\(70\) 0 0
\(71\) 24.2191i 0.341114i 0.985348 + 0.170557i \(0.0545567\pi\)
−0.985348 + 0.170557i \(0.945443\pi\)
\(72\) 0 0
\(73\) − 33.0405i − 0.452610i −0.974057 0.226305i \(-0.927335\pi\)
0.974057 0.226305i \(-0.0726646\pi\)
\(74\) 24.9234i 0.336803i
\(75\) 0 0
\(76\) −54.1255 −0.712178
\(77\) −1.09070 −0.0141650
\(78\) 0 0
\(79\) 22.0000 0.278481 0.139241 0.990259i \(-0.455534\pi\)
0.139241 + 0.990259i \(0.455534\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 69.2915i 0.845018i
\(83\) 30.9352 0.372714 0.186357 0.982482i \(-0.440332\pi\)
0.186357 + 0.982482i \(0.440332\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 60.2215i 0.700250i
\(87\) 0 0
\(88\) 3.18824i 0.0362300i
\(89\) − 73.2156i − 0.822647i −0.911489 0.411324i \(-0.865067\pi\)
0.911489 0.411324i \(-0.134933\pi\)
\(90\) 0 0
\(91\) −12.1255 −0.133247
\(92\) −93.0719 −1.01165
\(93\) 0 0
\(94\) −6.37648 −0.0678349
\(95\) 0 0
\(96\) 0 0
\(97\) − 34.7085i − 0.357820i −0.983865 0.178910i \(-0.942743\pi\)
0.983865 0.178910i \(-0.0572570\pi\)
\(98\) −8.14605 −0.0831230
\(99\) 0 0
\(100\) 0 0
\(101\) 185.757i 1.83918i 0.392877 + 0.919591i \(0.371480\pi\)
−0.392877 + 0.919591i \(0.628520\pi\)
\(102\) 0 0
\(103\) 125.875i 1.22208i 0.791599 + 0.611041i \(0.209249\pi\)
−0.791599 + 0.611041i \(0.790751\pi\)
\(104\) 35.4441i 0.340808i
\(105\) 0 0
\(106\) −47.3137 −0.446356
\(107\) −11.3710 −0.106271 −0.0531356 0.998587i \(-0.516922\pi\)
−0.0531356 + 0.998587i \(0.516922\pi\)
\(108\) 0 0
\(109\) 1.66798 0.0153026 0.00765128 0.999971i \(-0.497564\pi\)
0.00765128 + 0.999971i \(0.497564\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 4.18824i − 0.0373950i
\(113\) 0.944665 0.00835987 0.00417993 0.999991i \(-0.498669\pi\)
0.00417993 + 0.999991i \(0.498669\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 66.2591i 0.571199i
\(117\) 0 0
\(118\) 85.3725i 0.723496i
\(119\) 85.8233i 0.721205i
\(120\) 0 0
\(121\) 120.830 0.998595
\(122\) 103.034 0.844543
\(123\) 0 0
\(124\) 114.539 0.923698
\(125\) 0 0
\(126\) 0 0
\(127\) 154.413i 1.21585i 0.793994 + 0.607925i \(0.207998\pi\)
−0.793994 + 0.607925i \(0.792002\pi\)
\(128\) −94.0896 −0.735075
\(129\) 0 0
\(130\) 0 0
\(131\) 162.045i 1.23698i 0.785791 + 0.618492i \(0.212256\pi\)
−0.785791 + 0.618492i \(0.787744\pi\)
\(132\) 0 0
\(133\) − 54.1255i − 0.406959i
\(134\) 93.1921i 0.695463i
\(135\) 0 0
\(136\) 250.871 1.84464
\(137\) −203.819 −1.48773 −0.743864 0.668331i \(-0.767009\pi\)
−0.743864 + 0.668331i \(0.767009\pi\)
\(138\) 0 0
\(139\) 197.166 1.41846 0.709230 0.704977i \(-0.249043\pi\)
0.709230 + 0.704977i \(0.249043\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 28.1843i 0.198481i
\(143\) −1.88933 −0.0132121
\(144\) 0 0
\(145\) 0 0
\(146\) − 38.4500i − 0.263356i
\(147\) 0 0
\(148\) − 56.6640i − 0.382865i
\(149\) 102.528i 0.688105i 0.938950 + 0.344053i \(0.111800\pi\)
−0.938950 + 0.344053i \(0.888200\pi\)
\(150\) 0 0
\(151\) −131.749 −0.872510 −0.436255 0.899823i \(-0.643695\pi\)
−0.436255 + 0.899823i \(0.643695\pi\)
\(152\) −158.214 −1.04088
\(153\) 0 0
\(154\) −1.26927 −0.00824204
\(155\) 0 0
\(156\) 0 0
\(157\) − 80.7895i − 0.514583i −0.966334 0.257292i \(-0.917170\pi\)
0.966334 0.257292i \(-0.0828301\pi\)
\(158\) 25.6019 0.162037
\(159\) 0 0
\(160\) 0 0
\(161\) − 93.0719i − 0.578086i
\(162\) 0 0
\(163\) − 64.5830i − 0.396215i −0.980180 0.198107i \(-0.936521\pi\)
0.980180 0.198107i \(-0.0634795\pi\)
\(164\) − 157.536i − 0.960585i
\(165\) 0 0
\(166\) 36.0000 0.216867
\(167\) −187.793 −1.12451 −0.562254 0.826965i \(-0.690066\pi\)
−0.562254 + 0.826965i \(0.690066\pi\)
\(168\) 0 0
\(169\) 147.996 0.875716
\(170\) 0 0
\(171\) 0 0
\(172\) − 136.915i − 0.796018i
\(173\) −166.846 −0.964426 −0.482213 0.876054i \(-0.660167\pi\)
−0.482213 + 0.876054i \(0.660167\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 0.652589i − 0.00370789i
\(177\) 0 0
\(178\) − 85.2026i − 0.478666i
\(179\) 250.608i 1.40004i 0.714121 + 0.700022i \(0.246826\pi\)
−0.714121 + 0.700022i \(0.753174\pi\)
\(180\) 0 0
\(181\) 128.170 0.708121 0.354061 0.935222i \(-0.384801\pi\)
0.354061 + 0.935222i \(0.384801\pi\)
\(182\) −14.1107 −0.0775313
\(183\) 0 0
\(184\) −272.059 −1.47858
\(185\) 0 0
\(186\) 0 0
\(187\) 13.3725i 0.0715109i
\(188\) 14.4971 0.0771121
\(189\) 0 0
\(190\) 0 0
\(191\) 136.761i 0.716026i 0.933717 + 0.358013i \(0.116546\pi\)
−0.933717 + 0.358013i \(0.883454\pi\)
\(192\) 0 0
\(193\) − 96.5020i − 0.500010i −0.968245 0.250005i \(-0.919568\pi\)
0.968245 0.250005i \(-0.0804323\pi\)
\(194\) − 40.3910i − 0.208201i
\(195\) 0 0
\(196\) 18.5203 0.0944911
\(197\) 35.4699 0.180050 0.0900252 0.995939i \(-0.471305\pi\)
0.0900252 + 0.995939i \(0.471305\pi\)
\(198\) 0 0
\(199\) 21.4170 0.107623 0.0538115 0.998551i \(-0.482863\pi\)
0.0538115 + 0.998551i \(0.482863\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 216.170i 1.07015i
\(203\) −66.2591 −0.326400
\(204\) 0 0
\(205\) 0 0
\(206\) 146.483i 0.711082i
\(207\) 0 0
\(208\) − 7.25492i − 0.0348794i
\(209\) − 8.43355i − 0.0403519i
\(210\) 0 0
\(211\) 364.162 1.72589 0.862943 0.505301i \(-0.168618\pi\)
0.862943 + 0.505301i \(0.168618\pi\)
\(212\) 107.569 0.507401
\(213\) 0 0
\(214\) −13.2327 −0.0618350
\(215\) 0 0
\(216\) 0 0
\(217\) 114.539i 0.527827i
\(218\) 1.94106 0.00890396
\(219\) 0 0
\(220\) 0 0
\(221\) 148.664i 0.672689i
\(222\) 0 0
\(223\) 155.911i 0.699153i 0.936908 + 0.349576i \(0.113675\pi\)
−0.936908 + 0.349576i \(0.886325\pi\)
\(224\) − 86.7209i − 0.387147i
\(225\) 0 0
\(226\) 1.09933 0.00486428
\(227\) −18.5678 −0.0817965 −0.0408983 0.999163i \(-0.513022\pi\)
−0.0408983 + 0.999163i \(0.513022\pi\)
\(228\) 0 0
\(229\) −229.247 −1.00108 −0.500539 0.865714i \(-0.666865\pi\)
−0.500539 + 0.865714i \(0.666865\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 193.682i 0.834838i
\(233\) 230.339 0.988581 0.494290 0.869297i \(-0.335428\pi\)
0.494290 + 0.869297i \(0.335428\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) − 194.097i − 0.822443i
\(237\) 0 0
\(238\) 99.8745i 0.419641i
\(239\) − 272.766i − 1.14128i −0.821201 0.570640i \(-0.806695\pi\)
0.821201 0.570640i \(-0.193305\pi\)
\(240\) 0 0
\(241\) −51.6235 −0.214205 −0.107103 0.994248i \(-0.534157\pi\)
−0.107103 + 0.994248i \(0.534157\pi\)
\(242\) 140.613 0.581044
\(243\) 0 0
\(244\) −234.251 −0.960045
\(245\) 0 0
\(246\) 0 0
\(247\) − 93.7569i − 0.379583i
\(248\) 334.808 1.35003
\(249\) 0 0
\(250\) 0 0
\(251\) 50.6713i 0.201878i 0.994893 + 0.100939i \(0.0321847\pi\)
−0.994893 + 0.100939i \(0.967815\pi\)
\(252\) 0 0
\(253\) − 14.5020i − 0.0573200i
\(254\) 179.694i 0.707456i
\(255\) 0 0
\(256\) −236.741 −0.924770
\(257\) −320.697 −1.24785 −0.623925 0.781484i \(-0.714463\pi\)
−0.623925 + 0.781484i \(0.714463\pi\)
\(258\) 0 0
\(259\) 56.6640 0.218780
\(260\) 0 0
\(261\) 0 0
\(262\) 188.575i 0.719752i
\(263\) −108.832 −0.413808 −0.206904 0.978361i \(-0.566339\pi\)
−0.206904 + 0.978361i \(0.566339\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) − 62.9870i − 0.236793i
\(267\) 0 0
\(268\) − 211.875i − 0.790577i
\(269\) 331.364i 1.23184i 0.787810 + 0.615918i \(0.211215\pi\)
−0.787810 + 0.615918i \(0.788785\pi\)
\(270\) 0 0
\(271\) 137.535 0.507508 0.253754 0.967269i \(-0.418335\pi\)
0.253754 + 0.967269i \(0.418335\pi\)
\(272\) −51.3498 −0.188786
\(273\) 0 0
\(274\) −237.188 −0.865651
\(275\) 0 0
\(276\) 0 0
\(277\) − 334.162i − 1.20636i −0.797605 0.603181i \(-0.793900\pi\)
0.797605 0.603181i \(-0.206100\pi\)
\(278\) 229.446 0.825347
\(279\) 0 0
\(280\) 0 0
\(281\) − 175.649i − 0.625085i −0.949904 0.312543i \(-0.898819\pi\)
0.949904 0.312543i \(-0.101181\pi\)
\(282\) 0 0
\(283\) − 428.458i − 1.51398i −0.653424 0.756992i \(-0.726668\pi\)
0.653424 0.756992i \(-0.273332\pi\)
\(284\) − 64.0777i − 0.225626i
\(285\) 0 0
\(286\) −2.19865 −0.00768760
\(287\) 157.536 0.548906
\(288\) 0 0
\(289\) 763.235 2.64095
\(290\) 0 0
\(291\) 0 0
\(292\) 87.4170i 0.299373i
\(293\) −390.469 −1.33266 −0.666329 0.745658i \(-0.732135\pi\)
−0.666329 + 0.745658i \(0.732135\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) − 165.635i − 0.559577i
\(297\) 0 0
\(298\) 119.314i 0.400382i
\(299\) − 161.220i − 0.539198i
\(300\) 0 0
\(301\) 136.915 0.454867
\(302\) −153.319 −0.507680
\(303\) 0 0
\(304\) 32.3844 0.106527
\(305\) 0 0
\(306\) 0 0
\(307\) − 436.029i − 1.42029i −0.704056 0.710144i \(-0.748630\pi\)
0.704056 0.710144i \(-0.251370\pi\)
\(308\) 2.88573 0.00936925
\(309\) 0 0
\(310\) 0 0
\(311\) − 170.238i − 0.547389i −0.961817 0.273695i \(-0.911754\pi\)
0.961817 0.273695i \(-0.0882458\pi\)
\(312\) 0 0
\(313\) − 228.745i − 0.730815i −0.930848 0.365407i \(-0.880930\pi\)
0.930848 0.365407i \(-0.119070\pi\)
\(314\) − 94.0166i − 0.299416i
\(315\) 0 0
\(316\) −58.2065 −0.184198
\(317\) 89.4393 0.282143 0.141071 0.989999i \(-0.454945\pi\)
0.141071 + 0.989999i \(0.454945\pi\)
\(318\) 0 0
\(319\) −10.3241 −0.0323641
\(320\) 0 0
\(321\) 0 0
\(322\) − 108.310i − 0.336366i
\(323\) −663.604 −2.05450
\(324\) 0 0
\(325\) 0 0
\(326\) − 75.1567i − 0.230542i
\(327\) 0 0
\(328\) − 460.494i − 1.40395i
\(329\) 14.4971i 0.0440641i
\(330\) 0 0
\(331\) 340.988 1.03018 0.515088 0.857137i \(-0.327759\pi\)
0.515088 + 0.857137i \(0.327759\pi\)
\(332\) −81.8469 −0.246527
\(333\) 0 0
\(334\) −218.539 −0.654307
\(335\) 0 0
\(336\) 0 0
\(337\) − 38.9229i − 0.115498i −0.998331 0.0577491i \(-0.981608\pi\)
0.998331 0.0577491i \(-0.0183923\pi\)
\(338\) 172.226 0.509545
\(339\) 0 0
\(340\) 0 0
\(341\) 17.8468i 0.0523366i
\(342\) 0 0
\(343\) 18.5203i 0.0539949i
\(344\) − 400.217i − 1.16342i
\(345\) 0 0
\(346\) −194.162 −0.561162
\(347\) 257.444 0.741914 0.370957 0.928650i \(-0.379030\pi\)
0.370957 + 0.928650i \(0.379030\pi\)
\(348\) 0 0
\(349\) −491.535 −1.40841 −0.704204 0.709997i \(-0.748696\pi\)
−0.704204 + 0.709997i \(0.748696\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 13.5124i − 0.0383875i
\(353\) 275.557 0.780615 0.390308 0.920685i \(-0.372369\pi\)
0.390308 + 0.920685i \(0.372369\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 193.710i 0.544130i
\(357\) 0 0
\(358\) 291.638i 0.814631i
\(359\) − 215.018i − 0.598935i −0.954106 0.299468i \(-0.903191\pi\)
0.954106 0.299468i \(-0.0968091\pi\)
\(360\) 0 0
\(361\) 57.5098 0.159307
\(362\) 149.154 0.412028
\(363\) 0 0
\(364\) 32.0810 0.0881347
\(365\) 0 0
\(366\) 0 0
\(367\) − 436.575i − 1.18958i −0.803882 0.594789i \(-0.797236\pi\)
0.803882 0.594789i \(-0.202764\pi\)
\(368\) 55.6867 0.151323
\(369\) 0 0
\(370\) 0 0
\(371\) 107.569i 0.289943i
\(372\) 0 0
\(373\) 370.988i 0.994606i 0.867577 + 0.497303i \(0.165676\pi\)
−0.867577 + 0.497303i \(0.834324\pi\)
\(374\) 15.5619i 0.0416094i
\(375\) 0 0
\(376\) 42.3765 0.112703
\(377\) −114.775 −0.304443
\(378\) 0 0
\(379\) 163.158 0.430496 0.215248 0.976559i \(-0.430944\pi\)
0.215248 + 0.976559i \(0.430944\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 159.152i 0.416627i
\(383\) −230.511 −0.601857 −0.300929 0.953647i \(-0.597297\pi\)
−0.300929 + 0.953647i \(0.597297\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) − 112.301i − 0.290936i
\(387\) 0 0
\(388\) 91.8301i 0.236675i
\(389\) 71.5925i 0.184042i 0.995757 + 0.0920212i \(0.0293327\pi\)
−0.995757 + 0.0920212i \(0.970667\pi\)
\(390\) 0 0
\(391\) −1141.11 −2.91843
\(392\) 54.1366 0.138104
\(393\) 0 0
\(394\) 41.2771 0.104764
\(395\) 0 0
\(396\) 0 0
\(397\) 750.782i 1.89114i 0.325422 + 0.945569i \(0.394494\pi\)
−0.325422 + 0.945569i \(0.605506\pi\)
\(398\) 24.9234 0.0626217
\(399\) 0 0
\(400\) 0 0
\(401\) − 546.047i − 1.36171i −0.732417 0.680857i \(-0.761608\pi\)
0.732417 0.680857i \(-0.238392\pi\)
\(402\) 0 0
\(403\) 198.405i 0.492321i
\(404\) − 491.468i − 1.21650i
\(405\) 0 0
\(406\) −77.1072 −0.189919
\(407\) 8.82909 0.0216931
\(408\) 0 0
\(409\) 206.871 0.505796 0.252898 0.967493i \(-0.418616\pi\)
0.252898 + 0.967493i \(0.418616\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 333.033i − 0.808332i
\(413\) 194.097 0.469968
\(414\) 0 0
\(415\) 0 0
\(416\) − 150.219i − 0.361103i
\(417\) 0 0
\(418\) − 9.81430i − 0.0234792i
\(419\) 504.514i 1.20409i 0.798462 + 0.602045i \(0.205647\pi\)
−0.798462 + 0.602045i \(0.794353\pi\)
\(420\) 0 0
\(421\) −568.996 −1.35153 −0.675767 0.737115i \(-0.736188\pi\)
−0.675767 + 0.737115i \(0.736188\pi\)
\(422\) 423.783 1.00423
\(423\) 0 0
\(424\) 314.435 0.741593
\(425\) 0 0
\(426\) 0 0
\(427\) − 234.251i − 0.548597i
\(428\) 30.0849 0.0702917
\(429\) 0 0
\(430\) 0 0
\(431\) − 627.018i − 1.45480i −0.686215 0.727399i \(-0.740729\pi\)
0.686215 0.727399i \(-0.259271\pi\)
\(432\) 0 0
\(433\) 475.417i 1.09796i 0.835835 + 0.548980i \(0.184984\pi\)
−0.835835 + 0.548980i \(0.815016\pi\)
\(434\) 133.291i 0.307122i
\(435\) 0 0
\(436\) −4.41306 −0.0101217
\(437\) 719.652 1.64680
\(438\) 0 0
\(439\) −186.834 −0.425590 −0.212795 0.977097i \(-0.568257\pi\)
−0.212795 + 0.977097i \(0.568257\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 173.004i 0.391412i
\(443\) −168.125 −0.379515 −0.189757 0.981831i \(-0.560770\pi\)
−0.189757 + 0.981831i \(0.560770\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 181.437i 0.406810i
\(447\) 0 0
\(448\) − 84.1660i − 0.187871i
\(449\) 742.806i 1.65436i 0.561940 + 0.827178i \(0.310055\pi\)
−0.561940 + 0.827178i \(0.689945\pi\)
\(450\) 0 0
\(451\) 24.5464 0.0544267
\(452\) −2.49935 −0.00552953
\(453\) 0 0
\(454\) −21.6078 −0.0475942
\(455\) 0 0
\(456\) 0 0
\(457\) 39.3202i 0.0860398i 0.999074 + 0.0430199i \(0.0136979\pi\)
−0.999074 + 0.0430199i \(0.986302\pi\)
\(458\) −266.780 −0.582489
\(459\) 0 0
\(460\) 0 0
\(461\) 464.174i 1.00689i 0.864028 + 0.503443i \(0.167934\pi\)
−0.864028 + 0.503443i \(0.832066\pi\)
\(462\) 0 0
\(463\) 85.9268i 0.185587i 0.995685 + 0.0927936i \(0.0295797\pi\)
−0.995685 + 0.0927936i \(0.970420\pi\)
\(464\) − 39.6441i − 0.0854400i
\(465\) 0 0
\(466\) 268.051 0.575217
\(467\) −344.014 −0.736648 −0.368324 0.929698i \(-0.620068\pi\)
−0.368324 + 0.929698i \(0.620068\pi\)
\(468\) 0 0
\(469\) 211.875 0.451758
\(470\) 0 0
\(471\) 0 0
\(472\) − 567.365i − 1.20204i
\(473\) 21.3334 0.0451023
\(474\) 0 0
\(475\) 0 0
\(476\) − 227.067i − 0.477032i
\(477\) 0 0
\(478\) − 317.423i − 0.664066i
\(479\) − 344.599i − 0.719412i −0.933066 0.359706i \(-0.882877\pi\)
0.933066 0.359706i \(-0.117123\pi\)
\(480\) 0 0
\(481\) 98.1542 0.204063
\(482\) −60.0754 −0.124638
\(483\) 0 0
\(484\) −319.686 −0.660509
\(485\) 0 0
\(486\) 0 0
\(487\) − 334.405i − 0.686664i −0.939214 0.343332i \(-0.888444\pi\)
0.939214 0.343332i \(-0.111556\pi\)
\(488\) −684.740 −1.40316
\(489\) 0 0
\(490\) 0 0
\(491\) − 367.616i − 0.748709i −0.927286 0.374354i \(-0.877864\pi\)
0.927286 0.374354i \(-0.122136\pi\)
\(492\) 0 0
\(493\) 812.369i 1.64781i
\(494\) − 109.107i − 0.220864i
\(495\) 0 0
\(496\) −68.5307 −0.138167
\(497\) 64.0777 0.128929
\(498\) 0 0
\(499\) −232.915 −0.466764 −0.233382 0.972385i \(-0.574979\pi\)
−0.233382 + 0.972385i \(0.574979\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 58.9674i 0.117465i
\(503\) 327.576 0.651245 0.325623 0.945500i \(-0.394426\pi\)
0.325623 + 0.945500i \(0.394426\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) − 16.8763i − 0.0333523i
\(507\) 0 0
\(508\) − 408.539i − 0.804210i
\(509\) 1.26261i 0.00248057i 0.999999 + 0.00124028i \(0.000394794\pi\)
−0.999999 + 0.00124028i \(0.999605\pi\)
\(510\) 0 0
\(511\) −87.4170 −0.171070
\(512\) 100.857 0.196987
\(513\) 0 0
\(514\) −373.203 −0.726075
\(515\) 0 0
\(516\) 0 0
\(517\) 2.25886i 0.00436917i
\(518\) 65.9412 0.127300
\(519\) 0 0
\(520\) 0 0
\(521\) 667.237i 1.28069i 0.768089 + 0.640343i \(0.221208\pi\)
−0.768089 + 0.640343i \(0.778792\pi\)
\(522\) 0 0
\(523\) 282.154i 0.539492i 0.962932 + 0.269746i \(0.0869397\pi\)
−0.962932 + 0.269746i \(0.913060\pi\)
\(524\) − 428.730i − 0.818188i
\(525\) 0 0
\(526\) −126.650 −0.240779
\(527\) 1404.30 2.66470
\(528\) 0 0
\(529\) 708.482 1.33929
\(530\) 0 0
\(531\) 0 0
\(532\) 143.203i 0.269178i
\(533\) 272.886 0.511981
\(534\) 0 0
\(535\) 0 0
\(536\) − 619.331i − 1.15547i
\(537\) 0 0
\(538\) 385.616i 0.716758i
\(539\) 2.88573i 0.00535386i
\(540\) 0 0
\(541\) 238.988 0.441753 0.220876 0.975302i \(-0.429108\pi\)
0.220876 + 0.975302i \(0.429108\pi\)
\(542\) 160.052 0.295299
\(543\) 0 0
\(544\) −1063.24 −1.95448
\(545\) 0 0
\(546\) 0 0
\(547\) 378.842i 0.692581i 0.938127 + 0.346291i \(0.112559\pi\)
−0.938127 + 0.346291i \(0.887441\pi\)
\(548\) 539.253 0.984039
\(549\) 0 0
\(550\) 0 0
\(551\) − 512.330i − 0.929818i
\(552\) 0 0
\(553\) − 58.2065i − 0.105256i
\(554\) − 388.872i − 0.701935i
\(555\) 0 0
\(556\) −521.652 −0.938223
\(557\) 933.845 1.67656 0.838281 0.545239i \(-0.183561\pi\)
0.838281 + 0.545239i \(0.183561\pi\)
\(558\) 0 0
\(559\) 237.166 0.424268
\(560\) 0 0
\(561\) 0 0
\(562\) − 204.407i − 0.363713i
\(563\) −360.900 −0.641030 −0.320515 0.947243i \(-0.603856\pi\)
−0.320515 + 0.947243i \(0.603856\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) − 498.605i − 0.880928i
\(567\) 0 0
\(568\) − 187.306i − 0.329764i
\(569\) 176.130i 0.309542i 0.987950 + 0.154771i \(0.0494641\pi\)
−0.987950 + 0.154771i \(0.950536\pi\)
\(570\) 0 0
\(571\) −732.478 −1.28280 −0.641400 0.767207i \(-0.721646\pi\)
−0.641400 + 0.767207i \(0.721646\pi\)
\(572\) 4.99870 0.00873898
\(573\) 0 0
\(574\) 183.328 0.319387
\(575\) 0 0
\(576\) 0 0
\(577\) − 449.911i − 0.779742i −0.920869 0.389871i \(-0.872520\pi\)
0.920869 0.389871i \(-0.127480\pi\)
\(578\) 888.194 1.53667
\(579\) 0 0
\(580\) 0 0
\(581\) − 81.8469i − 0.140872i
\(582\) 0 0
\(583\) 16.7608i 0.0287493i
\(584\) 255.529i 0.437550i
\(585\) 0 0
\(586\) −454.397 −0.775422
\(587\) −832.674 −1.41852 −0.709262 0.704944i \(-0.750972\pi\)
−0.709262 + 0.704944i \(0.750972\pi\)
\(588\) 0 0
\(589\) −885.636 −1.50363
\(590\) 0 0
\(591\) 0 0
\(592\) 33.9032i 0.0572689i
\(593\) −200.890 −0.338770 −0.169385 0.985550i \(-0.554178\pi\)
−0.169385 + 0.985550i \(0.554178\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) − 271.263i − 0.455139i
\(597\) 0 0
\(598\) − 187.616i − 0.313739i
\(599\) 866.358i 1.44634i 0.690670 + 0.723170i \(0.257316\pi\)
−0.690670 + 0.723170i \(0.742684\pi\)
\(600\) 0 0
\(601\) −357.393 −0.594665 −0.297332 0.954774i \(-0.596097\pi\)
−0.297332 + 0.954774i \(0.596097\pi\)
\(602\) 159.331 0.264669
\(603\) 0 0
\(604\) 348.575 0.577111
\(605\) 0 0
\(606\) 0 0
\(607\) 364.753i 0.600911i 0.953796 + 0.300455i \(0.0971387\pi\)
−0.953796 + 0.300455i \(0.902861\pi\)
\(608\) 670.544 1.10287
\(609\) 0 0
\(610\) 0 0
\(611\) 25.1120i 0.0410999i
\(612\) 0 0
\(613\) 672.907i 1.09773i 0.835912 + 0.548864i \(0.184939\pi\)
−0.835912 + 0.548864i \(0.815061\pi\)
\(614\) − 507.416i − 0.826411i
\(615\) 0 0
\(616\) 8.43529 0.0136936
\(617\) −536.874 −0.870137 −0.435068 0.900397i \(-0.643276\pi\)
−0.435068 + 0.900397i \(0.643276\pi\)
\(618\) 0 0
\(619\) 573.563 0.926597 0.463298 0.886202i \(-0.346666\pi\)
0.463298 + 0.886202i \(0.346666\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 198.110i − 0.318504i
\(623\) −193.710 −0.310931
\(624\) 0 0
\(625\) 0 0
\(626\) − 266.196i − 0.425233i
\(627\) 0 0
\(628\) 213.749i 0.340365i
\(629\) − 694.728i − 1.10450i
\(630\) 0 0
\(631\) 661.733 1.04871 0.524353 0.851501i \(-0.324307\pi\)
0.524353 + 0.851501i \(0.324307\pi\)
\(632\) −170.144 −0.269215
\(633\) 0 0
\(634\) 104.082 0.164168
\(635\) 0 0
\(636\) 0 0
\(637\) 32.0810i 0.0503627i
\(638\) −12.0144 −0.0188314
\(639\) 0 0
\(640\) 0 0
\(641\) 1074.95i 1.67699i 0.544908 + 0.838496i \(0.316565\pi\)
−0.544908 + 0.838496i \(0.683435\pi\)
\(642\) 0 0
\(643\) − 359.616i − 0.559278i −0.960105 0.279639i \(-0.909785\pi\)
0.960105 0.279639i \(-0.0902148\pi\)
\(644\) 246.245i 0.382368i
\(645\) 0 0
\(646\) −772.251 −1.19543
\(647\) 134.064 0.207208 0.103604 0.994619i \(-0.466962\pi\)
0.103604 + 0.994619i \(0.466962\pi\)
\(648\) 0 0
\(649\) 30.2431 0.0465996
\(650\) 0 0
\(651\) 0 0
\(652\) 170.871i 0.262071i
\(653\) −332.850 −0.509725 −0.254862 0.966977i \(-0.582030\pi\)
−0.254862 + 0.966977i \(0.582030\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 94.2569i 0.143684i
\(657\) 0 0
\(658\) 16.8706i 0.0256392i
\(659\) − 1139.67i − 1.72940i −0.502291 0.864699i \(-0.667509\pi\)
0.502291 0.864699i \(-0.332491\pi\)
\(660\) 0 0
\(661\) −45.7203 −0.0691684 −0.0345842 0.999402i \(-0.511011\pi\)
−0.0345842 + 0.999402i \(0.511011\pi\)
\(662\) 396.815 0.599419
\(663\) 0 0
\(664\) −239.247 −0.360312
\(665\) 0 0
\(666\) 0 0
\(667\) − 880.980i − 1.32081i
\(668\) 496.853 0.743792
\(669\) 0 0
\(670\) 0 0
\(671\) − 36.4997i − 0.0543960i
\(672\) 0 0
\(673\) − 525.830i − 0.781323i −0.920535 0.390661i \(-0.872246\pi\)
0.920535 0.390661i \(-0.127754\pi\)
\(674\) − 45.2954i − 0.0672039i
\(675\) 0 0
\(676\) −391.561 −0.579232
\(677\) −955.925 −1.41200 −0.706001 0.708211i \(-0.749503\pi\)
−0.706001 + 0.708211i \(0.749503\pi\)
\(678\) 0 0
\(679\) −91.8301 −0.135243
\(680\) 0 0
\(681\) 0 0
\(682\) 20.7687i 0.0304526i
\(683\) 219.724 0.321705 0.160852 0.986978i \(-0.448576\pi\)
0.160852 + 0.986978i \(0.448576\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 21.5524i 0.0314175i
\(687\) 0 0
\(688\) 81.9190i 0.119068i
\(689\) 186.332i 0.270439i
\(690\) 0 0
\(691\) −142.243 −0.205851 −0.102926 0.994689i \(-0.532820\pi\)
−0.102926 + 0.994689i \(0.532820\pi\)
\(692\) 441.432 0.637908
\(693\) 0 0
\(694\) 299.593 0.431691
\(695\) 0 0
\(696\) 0 0
\(697\) − 1931.47i − 2.77111i
\(698\) −572.010 −0.819498
\(699\) 0 0
\(700\) 0 0
\(701\) 491.597i 0.701280i 0.936510 + 0.350640i \(0.114036\pi\)
−0.936510 + 0.350640i \(0.885964\pi\)
\(702\) 0 0
\(703\) 438.138i 0.623241i
\(704\) − 13.1143i − 0.0186283i
\(705\) 0 0
\(706\) 320.672 0.454210
\(707\) 491.468 0.695145
\(708\) 0 0
\(709\) 590.154 0.832375 0.416188 0.909279i \(-0.363366\pi\)
0.416188 + 0.909279i \(0.363366\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 566.235i 0.795274i
\(713\) −1522.90 −2.13591
\(714\) 0 0
\(715\) 0 0
\(716\) − 663.046i − 0.926042i
\(717\) 0 0
\(718\) − 250.221i − 0.348497i
\(719\) − 1024.93i − 1.42550i −0.701419 0.712749i \(-0.747450\pi\)
0.701419 0.712749i \(-0.252550\pi\)
\(720\) 0 0
\(721\) 333.033 0.461904
\(722\) 66.9255 0.0926945
\(723\) 0 0
\(724\) −339.106 −0.468378
\(725\) 0 0
\(726\) 0 0
\(727\) 570.125i 0.784217i 0.919919 + 0.392108i \(0.128254\pi\)
−0.919919 + 0.392108i \(0.871746\pi\)
\(728\) 93.7762 0.128813
\(729\) 0 0
\(730\) 0 0
\(731\) − 1678.64i − 2.29637i
\(732\) 0 0
\(733\) − 153.660i − 0.209632i −0.994492 0.104816i \(-0.966575\pi\)
0.994492 0.104816i \(-0.0334253\pi\)
\(734\) − 508.052i − 0.692169i
\(735\) 0 0
\(736\) 1153.04 1.56663
\(737\) 33.0132 0.0447940
\(738\) 0 0
\(739\) −453.069 −0.613084 −0.306542 0.951857i \(-0.599172\pi\)
−0.306542 + 0.951857i \(0.599172\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 125.180i 0.168707i
\(743\) 393.312 0.529357 0.264678 0.964337i \(-0.414734\pi\)
0.264678 + 0.964337i \(0.414734\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 431.727i 0.578723i
\(747\) 0 0
\(748\) − 35.3804i − 0.0473000i
\(749\) 30.0849i 0.0401667i
\(750\) 0 0
\(751\) −174.818 −0.232781 −0.116390 0.993204i \(-0.537132\pi\)
−0.116390 + 0.993204i \(0.537132\pi\)
\(752\) −8.67389 −0.0115344
\(753\) 0 0
\(754\) −133.566 −0.177143
\(755\) 0 0
\(756\) 0 0
\(757\) 277.474i 0.366545i 0.983062 + 0.183272i \(0.0586690\pi\)
−0.983062 + 0.183272i \(0.941331\pi\)
\(758\) 189.871 0.250489
\(759\) 0 0
\(760\) 0 0
\(761\) − 267.553i − 0.351580i −0.984428 0.175790i \(-0.943752\pi\)
0.984428 0.175790i \(-0.0562480\pi\)
\(762\) 0 0
\(763\) − 4.41306i − 0.00578382i
\(764\) − 361.835i − 0.473606i
\(765\) 0 0
\(766\) −268.251 −0.350197
\(767\) 336.217 0.438353
\(768\) 0 0
\(769\) −1077.00 −1.40052 −0.700258 0.713890i \(-0.746931\pi\)
−0.700258 + 0.713890i \(0.746931\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 255.320i 0.330726i
\(773\) 325.301 0.420829 0.210414 0.977612i \(-0.432519\pi\)
0.210414 + 0.977612i \(0.432519\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 268.429i 0.345913i
\(777\) 0 0
\(778\) 83.3137i 0.107087i
\(779\) 1218.10i 1.56367i
\(780\) 0 0
\(781\) 9.98425 0.0127839
\(782\) −1327.93 −1.69812
\(783\) 0 0
\(784\) −11.0810 −0.0141340
\(785\) 0 0
\(786\) 0 0
\(787\) 1290.82i 1.64018i 0.572238 + 0.820088i \(0.306075\pi\)
−0.572238 + 0.820088i \(0.693925\pi\)
\(788\) −93.8446 −0.119092
\(789\) 0 0
\(790\) 0 0
\(791\) − 2.49935i − 0.00315973i
\(792\) 0 0
\(793\) − 405.773i − 0.511693i
\(794\) 873.701i 1.10038i
\(795\) 0 0
\(796\) −56.6640 −0.0711860
\(797\) 53.9602 0.0677041 0.0338520 0.999427i \(-0.489223\pi\)
0.0338520 + 0.999427i \(0.489223\pi\)
\(798\) 0 0
\(799\) 177.741 0.222454
\(800\) 0 0
\(801\) 0 0
\(802\) − 635.447i − 0.792328i
\(803\) −13.6209 −0.0169625
\(804\) 0 0
\(805\) 0 0
\(806\) 230.888i 0.286462i
\(807\) 0 0
\(808\) − 1436.61i − 1.77798i
\(809\) 812.784i 1.00468i 0.864671 + 0.502339i \(0.167527\pi\)
−0.864671 + 0.502339i \(0.832473\pi\)
\(810\) 0 0
\(811\) −359.749 −0.443587 −0.221793 0.975094i \(-0.571191\pi\)
−0.221793 + 0.975094i \(0.571191\pi\)
\(812\) 175.305 0.215893
\(813\) 0 0
\(814\) 10.2746 0.0126224
\(815\) 0 0
\(816\) 0 0
\(817\) 1058.66i 1.29578i
\(818\) 240.740 0.294303
\(819\) 0 0
\(820\) 0 0
\(821\) − 555.889i − 0.677088i −0.940951 0.338544i \(-0.890066\pi\)
0.940951 0.338544i \(-0.109934\pi\)
\(822\) 0 0
\(823\) − 1020.14i − 1.23954i −0.784785 0.619768i \(-0.787227\pi\)
0.784785 0.619768i \(-0.212773\pi\)
\(824\) − 973.489i − 1.18142i
\(825\) 0 0
\(826\) 225.875 0.273456
\(827\) 497.986 0.602160 0.301080 0.953599i \(-0.402653\pi\)
0.301080 + 0.953599i \(0.402653\pi\)
\(828\) 0 0
\(829\) 1191.98 1.43785 0.718924 0.695088i \(-0.244635\pi\)
0.718924 + 0.695088i \(0.244635\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 145.793i − 0.175233i
\(833\) 227.067 0.272590
\(834\) 0 0
\(835\) 0 0
\(836\) 22.3131i 0.0266903i
\(837\) 0 0
\(838\) 587.114i 0.700613i
\(839\) 1160.56i 1.38327i 0.722249 + 0.691633i \(0.243109\pi\)
−0.722249 + 0.691633i \(0.756891\pi\)
\(840\) 0 0
\(841\) 213.818 0.254243
\(842\) −662.153 −0.786405
\(843\) 0 0
\(844\) −963.482 −1.14157
\(845\) 0 0
\(846\) 0 0
\(847\) − 319.686i − 0.377434i
\(848\) −64.3606 −0.0758970
\(849\) 0 0
\(850\) 0 0
\(851\) 753.404i 0.885316i
\(852\) 0 0
\(853\) − 64.3765i − 0.0754707i −0.999288 0.0377353i \(-0.987986\pi\)
0.999288 0.0377353i \(-0.0120144\pi\)
\(854\) − 272.603i − 0.319207i
\(855\) 0 0
\(856\) 87.9412 0.102735
\(857\) −255.048 −0.297606 −0.148803 0.988867i \(-0.547542\pi\)
−0.148803 + 0.988867i \(0.547542\pi\)
\(858\) 0 0
\(859\) 219.114 0.255080 0.127540 0.991833i \(-0.459292\pi\)
0.127540 + 0.991833i \(0.459292\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) − 729.674i − 0.846490i
\(863\) −16.7987 −0.0194654 −0.00973271 0.999953i \(-0.503098\pi\)
−0.00973271 + 0.999953i \(0.503098\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 553.253i 0.638860i
\(867\) 0 0
\(868\) − 303.041i − 0.349125i
\(869\) − 9.06943i − 0.0104366i
\(870\) 0 0
\(871\) 367.012 0.421368
\(872\) −12.8998 −0.0147934
\(873\) 0 0
\(874\) 837.474 0.958209
\(875\) 0 0
\(876\) 0 0
\(877\) 1083.56i 1.23553i 0.786361 + 0.617767i \(0.211963\pi\)
−0.786361 + 0.617767i \(0.788037\pi\)
\(878\) −217.423 −0.247634
\(879\) 0 0
\(880\) 0 0
\(881\) 422.573i 0.479651i 0.970816 + 0.239825i \(0.0770902\pi\)
−0.970816 + 0.239825i \(0.922910\pi\)
\(882\) 0 0
\(883\) 1413.73i 1.60105i 0.599301 + 0.800524i \(0.295445\pi\)
−0.599301 + 0.800524i \(0.704555\pi\)
\(884\) − 393.329i − 0.444942i
\(885\) 0 0
\(886\) −195.651 −0.220825
\(887\) −1128.46 −1.27222 −0.636109 0.771599i \(-0.719457\pi\)
−0.636109 + 0.771599i \(0.719457\pi\)
\(888\) 0 0
\(889\) 408.539 0.459548
\(890\) 0 0
\(891\) 0 0
\(892\) − 412.502i − 0.462446i
\(893\) −112.095 −0.125526
\(894\) 0 0
\(895\) 0 0
\(896\) 248.938i 0.277832i
\(897\) 0 0
\(898\) 864.420i 0.962605i
\(899\) 1084.17i 1.20598i
\(900\) 0 0
\(901\) 1318.85 1.46376
\(902\) 28.5652 0.0316687
\(903\) 0 0
\(904\) −7.30586 −0.00808170
\(905\) 0 0
\(906\) 0 0
\(907\) 99.2470i 0.109423i 0.998502 + 0.0547117i \(0.0174240\pi\)
−0.998502 + 0.0547117i \(0.982576\pi\)
\(908\) 49.1258 0.0541033
\(909\) 0 0
\(910\) 0 0
\(911\) 598.711i 0.657202i 0.944469 + 0.328601i \(0.106577\pi\)
−0.944469 + 0.328601i \(0.893423\pi\)
\(912\) 0 0
\(913\) − 12.7530i − 0.0139682i
\(914\) 45.7578i 0.0500632i
\(915\) 0 0
\(916\) 606.531 0.662151
\(917\) 428.730 0.467536
\(918\) 0 0
\(919\) −73.2707 −0.0797287 −0.0398643 0.999205i \(-0.512693\pi\)
−0.0398643 + 0.999205i \(0.512693\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 540.170i 0.585868i
\(923\) 110.996 0.120256
\(924\) 0 0
\(925\) 0 0
\(926\) 99.9949i 0.107986i
\(927\) 0 0
\(928\) − 820.864i − 0.884552i
\(929\) − 885.277i − 0.952936i −0.879192 0.476468i \(-0.841917\pi\)
0.879192 0.476468i \(-0.158083\pi\)
\(930\) 0 0
\(931\) −143.203 −0.153816
\(932\) −609.421 −0.653885
\(933\) 0 0
\(934\) −400.337 −0.428626
\(935\) 0 0
\(936\) 0 0
\(937\) 149.676i 0.159739i 0.996805 + 0.0798697i \(0.0254504\pi\)
−0.996805 + 0.0798697i \(0.974550\pi\)
\(938\) 246.563 0.262860
\(939\) 0 0
\(940\) 0 0
\(941\) 68.5607i 0.0728594i 0.999336 + 0.0364297i \(0.0115985\pi\)
−0.999336 + 0.0364297i \(0.988401\pi\)
\(942\) 0 0
\(943\) 2094.60i 2.22120i
\(944\) 116.132i 0.123021i
\(945\) 0 0
\(946\) 24.8261 0.0262433
\(947\) 1764.25 1.86299 0.931496 0.363753i \(-0.118505\pi\)
0.931496 + 0.363753i \(0.118505\pi\)
\(948\) 0 0
\(949\) −151.425 −0.159563
\(950\) 0 0
\(951\) 0 0
\(952\) − 663.741i − 0.697207i
\(953\) −686.467 −0.720322 −0.360161 0.932890i \(-0.617278\pi\)
−0.360161 + 0.932890i \(0.617278\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 721.670i 0.754885i
\(957\) 0 0
\(958\) − 401.017i − 0.418598i
\(959\) 539.253i 0.562308i
\(960\) 0 0
\(961\) 913.154 0.950212
\(962\) 114.224 0.118736
\(963\) 0 0
\(964\) 136.583 0.141684
\(965\) 0 0
\(966\) 0 0
\(967\) 1616.57i 1.67173i 0.548932 + 0.835867i \(0.315035\pi\)
−0.548932 + 0.835867i \(0.684965\pi\)
\(968\) −934.476 −0.965368
\(969\) 0 0
\(970\) 0 0
\(971\) 634.799i 0.653758i 0.945066 + 0.326879i \(0.105997\pi\)
−0.945066 + 0.326879i \(0.894003\pi\)
\(972\) 0 0
\(973\) − 521.652i − 0.536128i
\(974\) − 389.155i − 0.399543i
\(975\) 0 0
\(976\) 140.157 0.143603
\(977\) −19.6159 −0.0200777 −0.0100389 0.999950i \(-0.503196\pi\)
−0.0100389 + 0.999950i \(0.503196\pi\)
\(978\) 0 0
\(979\) −30.1829 −0.0308303
\(980\) 0 0
\(981\) 0 0
\(982\) − 427.803i − 0.435644i
\(983\) −1462.10 −1.48738 −0.743691 0.668523i \(-0.766927\pi\)
−0.743691 + 0.668523i \(0.766927\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 945.371i 0.958794i
\(987\) 0 0
\(988\) 248.057i 0.251070i
\(989\) 1820.42i 1.84067i
\(990\) 0 0
\(991\) 280.235 0.282780 0.141390 0.989954i \(-0.454843\pi\)
0.141390 + 0.989954i \(0.454843\pi\)
\(992\) −1418.98 −1.43043
\(993\) 0 0
\(994\) 74.5687 0.0750188
\(995\) 0 0
\(996\) 0 0
\(997\) − 810.797i − 0.813237i −0.913598 0.406619i \(-0.866708\pi\)
0.913598 0.406619i \(-0.133292\pi\)
\(998\) −271.048 −0.271592
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.3.f.a.449.5 8
3.2 odd 2 inner 1575.3.f.a.449.3 8
5.2 odd 4 63.3.b.a.8.3 yes 4
5.3 odd 4 1575.3.c.a.701.2 4
5.4 even 2 inner 1575.3.f.a.449.4 8
15.2 even 4 63.3.b.a.8.2 4
15.8 even 4 1575.3.c.a.701.3 4
15.14 odd 2 inner 1575.3.f.a.449.6 8
20.7 even 4 1008.3.d.d.449.3 4
35.2 odd 12 441.3.q.b.116.3 8
35.12 even 12 441.3.q.a.116.3 8
35.17 even 12 441.3.q.a.422.2 8
35.27 even 4 441.3.b.b.197.3 4
35.32 odd 12 441.3.q.b.422.2 8
40.27 even 4 4032.3.d.c.449.2 4
40.37 odd 4 4032.3.d.b.449.2 4
45.2 even 12 567.3.r.a.134.2 8
45.7 odd 12 567.3.r.a.134.3 8
45.22 odd 12 567.3.r.a.512.2 8
45.32 even 12 567.3.r.a.512.3 8
60.47 odd 4 1008.3.d.d.449.2 4
105.2 even 12 441.3.q.b.116.2 8
105.17 odd 12 441.3.q.a.422.3 8
105.32 even 12 441.3.q.b.422.3 8
105.47 odd 12 441.3.q.a.116.2 8
105.62 odd 4 441.3.b.b.197.2 4
120.77 even 4 4032.3.d.b.449.3 4
120.107 odd 4 4032.3.d.c.449.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.3.b.a.8.2 4 15.2 even 4
63.3.b.a.8.3 yes 4 5.2 odd 4
441.3.b.b.197.2 4 105.62 odd 4
441.3.b.b.197.3 4 35.27 even 4
441.3.q.a.116.2 8 105.47 odd 12
441.3.q.a.116.3 8 35.12 even 12
441.3.q.a.422.2 8 35.17 even 12
441.3.q.a.422.3 8 105.17 odd 12
441.3.q.b.116.2 8 105.2 even 12
441.3.q.b.116.3 8 35.2 odd 12
441.3.q.b.422.2 8 35.32 odd 12
441.3.q.b.422.3 8 105.32 even 12
567.3.r.a.134.2 8 45.2 even 12
567.3.r.a.134.3 8 45.7 odd 12
567.3.r.a.512.2 8 45.22 odd 12
567.3.r.a.512.3 8 45.32 even 12
1008.3.d.d.449.2 4 60.47 odd 4
1008.3.d.d.449.3 4 20.7 even 4
1575.3.c.a.701.2 4 5.3 odd 4
1575.3.c.a.701.3 4 15.8 even 4
1575.3.f.a.449.3 8 3.2 odd 2 inner
1575.3.f.a.449.4 8 5.4 even 2 inner
1575.3.f.a.449.5 8 1.1 even 1 trivial
1575.3.f.a.449.6 8 15.14 odd 2 inner
4032.3.d.b.449.2 4 40.37 odd 4
4032.3.d.b.449.3 4 120.77 even 4
4032.3.d.c.449.2 4 40.27 even 4
4032.3.d.c.449.3 4 120.107 odd 4