Properties

Label 1575.2.m.c.1457.3
Level $1575$
Weight $2$
Character 1575.1457
Analytic conductor $12.576$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1575,2,Mod(1268,1575)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1575.1268"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1575, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1575.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5764383184\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 107x^{8} + 240x^{6} + 151x^{4} + 30x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 315)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1457.3
Root \(-0.203482i\) of defining polynomial
Character \(\chi\) \(=\) 1575.1457
Dual form 1575.2.m.c.1268.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.876184 + 0.876184i) q^{2} +0.464602i q^{4} +(0.707107 + 0.707107i) q^{7} +(-2.15945 - 2.15945i) q^{8} +4.66231i q^{11} +(-1.54889 + 1.54889i) q^{13} -1.23911 q^{14} +2.85494 q^{16} +(-2.32993 + 2.32993i) q^{17} -3.54791i q^{19} +(-4.08504 - 4.08504i) q^{22} +(-1.44259 - 1.44259i) q^{23} -2.71422i q^{26} +(-0.328523 + 0.328523i) q^{28} -7.58625 q^{29} +8.12691 q^{31} +(1.81744 - 1.81744i) q^{32} -4.08289i q^{34} +(6.00046 + 6.00046i) q^{37} +(3.10862 + 3.10862i) q^{38} -6.72475i q^{41} +(-5.46460 + 5.46460i) q^{43} -2.16612 q^{44} +2.52796 q^{46} +(-5.16658 + 5.16658i) q^{47} +1.00000i q^{49} +(-0.719616 - 0.719616i) q^{52} +(-6.86452 - 6.86452i) q^{53} -3.05392i q^{56} +(6.64695 - 6.64695i) q^{58} -6.40696 q^{59} -13.6036 q^{61} +(-7.12067 + 7.12067i) q^{62} +8.89470i q^{64} +(-2.77125 - 2.77125i) q^{67} +(-1.08249 - 1.08249i) q^{68} -0.576549i q^{71} +(4.94384 - 4.94384i) q^{73} -10.5150 q^{74} +1.64837 q^{76} +(-3.29675 + 3.29675i) q^{77} -2.50976i q^{79} +(5.89212 + 5.89212i) q^{82} +(3.99501 + 3.99501i) q^{83} -9.57600i q^{86} +(10.0680 - 10.0680i) q^{88} +6.86727 q^{89} -2.19046 q^{91} +(0.670232 - 0.670232i) q^{92} -9.05376i q^{94} +(-4.43407 - 4.43407i) q^{97} +(-0.876184 - 0.876184i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 24 q^{8} + 4 q^{13} - 4 q^{14} - 20 q^{16} - 8 q^{17} + 8 q^{22} - 8 q^{23} - 32 q^{29} - 48 q^{32} - 4 q^{37} - 24 q^{38} - 40 q^{43} - 64 q^{44} + 16 q^{46} - 24 q^{47} - 36 q^{52} + 40 q^{53}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1575\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(1226\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.876184 + 0.876184i −0.619556 + 0.619556i −0.945417 0.325862i \(-0.894346\pi\)
0.325862 + 0.945417i \(0.394346\pi\)
\(3\) 0 0
\(4\) 0.464602i 0.232301i
\(5\) 0 0
\(6\) 0 0
\(7\) 0.707107 + 0.707107i 0.267261 + 0.267261i
\(8\) −2.15945 2.15945i −0.763479 0.763479i
\(9\) 0 0
\(10\) 0 0
\(11\) 4.66231i 1.40574i 0.711319 + 0.702870i \(0.248098\pi\)
−0.711319 + 0.702870i \(0.751902\pi\)
\(12\) 0 0
\(13\) −1.54889 + 1.54889i −0.429584 + 0.429584i −0.888487 0.458903i \(-0.848243\pi\)
0.458903 + 0.888487i \(0.348243\pi\)
\(14\) −1.23911 −0.331167
\(15\) 0 0
\(16\) 2.85494 0.713735
\(17\) −2.32993 + 2.32993i −0.565091 + 0.565091i −0.930749 0.365658i \(-0.880844\pi\)
0.365658 + 0.930749i \(0.380844\pi\)
\(18\) 0 0
\(19\) 3.54791i 0.813946i −0.913440 0.406973i \(-0.866584\pi\)
0.913440 0.406973i \(-0.133416\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.08504 4.08504i −0.870934 0.870934i
\(23\) −1.44259 1.44259i −0.300802 0.300802i 0.540526 0.841327i \(-0.318225\pi\)
−0.841327 + 0.540526i \(0.818225\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 2.71422i 0.532303i
\(27\) 0 0
\(28\) −0.328523 + 0.328523i −0.0620851 + 0.0620851i
\(29\) −7.58625 −1.40873 −0.704366 0.709837i \(-0.748768\pi\)
−0.704366 + 0.709837i \(0.748768\pi\)
\(30\) 0 0
\(31\) 8.12691 1.45964 0.729818 0.683641i \(-0.239605\pi\)
0.729818 + 0.683641i \(0.239605\pi\)
\(32\) 1.81744 1.81744i 0.321280 0.321280i
\(33\) 0 0
\(34\) 4.08289i 0.700211i
\(35\) 0 0
\(36\) 0 0
\(37\) 6.00046 + 6.00046i 0.986470 + 0.986470i 0.999910 0.0134395i \(-0.00427804\pi\)
−0.0134395 + 0.999910i \(0.504278\pi\)
\(38\) 3.10862 + 3.10862i 0.504285 + 0.504285i
\(39\) 0 0
\(40\) 0 0
\(41\) 6.72475i 1.05023i −0.851032 0.525114i \(-0.824023\pi\)
0.851032 0.525114i \(-0.175977\pi\)
\(42\) 0 0
\(43\) −5.46460 + 5.46460i −0.833344 + 0.833344i −0.987973 0.154629i \(-0.950582\pi\)
0.154629 + 0.987973i \(0.450582\pi\)
\(44\) −2.16612 −0.326555
\(45\) 0 0
\(46\) 2.52796 0.372727
\(47\) −5.16658 + 5.16658i −0.753623 + 0.753623i −0.975154 0.221530i \(-0.928895\pi\)
0.221530 + 0.975154i \(0.428895\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) 0 0
\(52\) −0.719616 0.719616i −0.0997928 0.0997928i
\(53\) −6.86452 6.86452i −0.942915 0.942915i 0.0555419 0.998456i \(-0.482311\pi\)
−0.998456 + 0.0555419i \(0.982311\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 3.05392i 0.408097i
\(57\) 0 0
\(58\) 6.64695 6.64695i 0.872788 0.872788i
\(59\) −6.40696 −0.834116 −0.417058 0.908880i \(-0.636939\pi\)
−0.417058 + 0.908880i \(0.636939\pi\)
\(60\) 0 0
\(61\) −13.6036 −1.74176 −0.870879 0.491498i \(-0.836450\pi\)
−0.870879 + 0.491498i \(0.836450\pi\)
\(62\) −7.12067 + 7.12067i −0.904326 + 0.904326i
\(63\) 0 0
\(64\) 8.89470i 1.11184i
\(65\) 0 0
\(66\) 0 0
\(67\) −2.77125 2.77125i −0.338562 0.338562i 0.517264 0.855826i \(-0.326951\pi\)
−0.855826 + 0.517264i \(0.826951\pi\)
\(68\) −1.08249 1.08249i −0.131271 0.131271i
\(69\) 0 0
\(70\) 0 0
\(71\) 0.576549i 0.0684238i −0.999415 0.0342119i \(-0.989108\pi\)
0.999415 0.0342119i \(-0.0108921\pi\)
\(72\) 0 0
\(73\) 4.94384 4.94384i 0.578632 0.578632i −0.355894 0.934526i \(-0.615824\pi\)
0.934526 + 0.355894i \(0.115824\pi\)
\(74\) −10.5150 −1.22235
\(75\) 0 0
\(76\) 1.64837 0.189081
\(77\) −3.29675 + 3.29675i −0.375700 + 0.375700i
\(78\) 0 0
\(79\) 2.50976i 0.282370i −0.989983 0.141185i \(-0.954909\pi\)
0.989983 0.141185i \(-0.0450913\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 5.89212 + 5.89212i 0.650675 + 0.650675i
\(83\) 3.99501 + 3.99501i 0.438509 + 0.438509i 0.891510 0.453001i \(-0.149647\pi\)
−0.453001 + 0.891510i \(0.649647\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 9.57600i 1.03261i
\(87\) 0 0
\(88\) 10.0680 10.0680i 1.07325 1.07325i
\(89\) 6.86727 0.727929 0.363964 0.931413i \(-0.381423\pi\)
0.363964 + 0.931413i \(0.381423\pi\)
\(90\) 0 0
\(91\) −2.19046 −0.229622
\(92\) 0.670232 0.670232i 0.0698765 0.0698765i
\(93\) 0 0
\(94\) 9.05376i 0.933824i
\(95\) 0 0
\(96\) 0 0
\(97\) −4.43407 4.43407i −0.450212 0.450212i 0.445213 0.895425i \(-0.353128\pi\)
−0.895425 + 0.445213i \(0.853128\pi\)
\(98\) −0.876184 0.876184i −0.0885080 0.0885080i
\(99\) 0 0
\(100\) 0 0
\(101\) 2.63552i 0.262244i 0.991366 + 0.131122i \(0.0418579\pi\)
−0.991366 + 0.131122i \(0.958142\pi\)
\(102\) 0 0
\(103\) −7.45961 + 7.45961i −0.735017 + 0.735017i −0.971609 0.236592i \(-0.923970\pi\)
0.236592 + 0.971609i \(0.423970\pi\)
\(104\) 6.68947 0.655957
\(105\) 0 0
\(106\) 12.0292 1.16838
\(107\) −4.48615 + 4.48615i −0.433692 + 0.433692i −0.889882 0.456190i \(-0.849214\pi\)
0.456190 + 0.889882i \(0.349214\pi\)
\(108\) 0 0
\(109\) 7.54504i 0.722684i −0.932433 0.361342i \(-0.882319\pi\)
0.932433 0.361342i \(-0.117681\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.01875 + 2.01875i 0.190754 + 0.190754i
\(113\) 1.80305 + 1.80305i 0.169617 + 0.169617i 0.786811 0.617194i \(-0.211731\pi\)
−0.617194 + 0.786811i \(0.711731\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 3.52459i 0.327250i
\(117\) 0 0
\(118\) 5.61368 5.61368i 0.516781 0.516781i
\(119\) −3.29502 −0.302054
\(120\) 0 0
\(121\) −10.7371 −0.976102
\(122\) 11.9192 11.9192i 1.07912 1.07912i
\(123\) 0 0
\(124\) 3.77578i 0.339075i
\(125\) 0 0
\(126\) 0 0
\(127\) −14.3511 14.3511i −1.27346 1.27346i −0.944262 0.329195i \(-0.893223\pi\)
−0.329195 0.944262i \(-0.606777\pi\)
\(128\) −4.15852 4.15852i −0.367565 0.367565i
\(129\) 0 0
\(130\) 0 0
\(131\) 3.22579i 0.281839i −0.990021 0.140919i \(-0.954994\pi\)
0.990021 0.140919i \(-0.0450059\pi\)
\(132\) 0 0
\(133\) 2.50875 2.50875i 0.217536 0.217536i
\(134\) 4.85626 0.419517
\(135\) 0 0
\(136\) 10.0627 0.862870
\(137\) 1.36108 1.36108i 0.116285 0.116285i −0.646570 0.762855i \(-0.723797\pi\)
0.762855 + 0.646570i \(0.223797\pi\)
\(138\) 0 0
\(139\) 22.2867i 1.89033i −0.326589 0.945166i \(-0.605899\pi\)
0.326589 0.945166i \(-0.394101\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0.505163 + 0.505163i 0.0423923 + 0.0423923i
\(143\) −7.22139 7.22139i −0.603883 0.603883i
\(144\) 0 0
\(145\) 0 0
\(146\) 8.66342i 0.716990i
\(147\) 0 0
\(148\) −2.78783 + 2.78783i −0.229158 + 0.229158i
\(149\) −23.4052 −1.91743 −0.958713 0.284376i \(-0.908213\pi\)
−0.958713 + 0.284376i \(0.908213\pi\)
\(150\) 0 0
\(151\) 16.9889 1.38254 0.691269 0.722597i \(-0.257052\pi\)
0.691269 + 0.722597i \(0.257052\pi\)
\(152\) −7.66152 + 7.66152i −0.621431 + 0.621431i
\(153\) 0 0
\(154\) 5.77712i 0.465534i
\(155\) 0 0
\(156\) 0 0
\(157\) −8.07929 8.07929i −0.644798 0.644798i 0.306933 0.951731i \(-0.400697\pi\)
−0.951731 + 0.306933i \(0.900697\pi\)
\(158\) 2.19901 + 2.19901i 0.174944 + 0.174944i
\(159\) 0 0
\(160\) 0 0
\(161\) 2.04014i 0.160785i
\(162\) 0 0
\(163\) −9.08622 + 9.08622i −0.711688 + 0.711688i −0.966888 0.255200i \(-0.917859\pi\)
0.255200 + 0.966888i \(0.417859\pi\)
\(164\) 3.12433 0.243969
\(165\) 0 0
\(166\) −7.00073 −0.543362
\(167\) 13.5425 13.5425i 1.04795 1.04795i 0.0491596 0.998791i \(-0.484346\pi\)
0.998791 0.0491596i \(-0.0156543\pi\)
\(168\) 0 0
\(169\) 8.20190i 0.630915i
\(170\) 0 0
\(171\) 0 0
\(172\) −2.53887 2.53887i −0.193587 0.193587i
\(173\) 16.4883 + 16.4883i 1.25358 + 1.25358i 0.954102 + 0.299483i \(0.0968141\pi\)
0.299483 + 0.954102i \(0.403186\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 13.3106i 1.00333i
\(177\) 0 0
\(178\) −6.01699 + 6.01699i −0.450993 + 0.450993i
\(179\) 7.15384 0.534703 0.267352 0.963599i \(-0.413852\pi\)
0.267352 + 0.963599i \(0.413852\pi\)
\(180\) 0 0
\(181\) −4.86285 −0.361453 −0.180726 0.983533i \(-0.557845\pi\)
−0.180726 + 0.983533i \(0.557845\pi\)
\(182\) 1.91924 1.91924i 0.142264 0.142264i
\(183\) 0 0
\(184\) 6.23040i 0.459312i
\(185\) 0 0
\(186\) 0 0
\(187\) −10.8628 10.8628i −0.794370 0.794370i
\(188\) −2.40040 2.40040i −0.175067 0.175067i
\(189\) 0 0
\(190\) 0 0
\(191\) 0.990955i 0.0717030i 0.999357 + 0.0358515i \(0.0114143\pi\)
−0.999357 + 0.0358515i \(0.988586\pi\)
\(192\) 0 0
\(193\) −8.22384 + 8.22384i −0.591965 + 0.591965i −0.938162 0.346197i \(-0.887473\pi\)
0.346197 + 0.938162i \(0.387473\pi\)
\(194\) 7.77013 0.557863
\(195\) 0 0
\(196\) −0.464602 −0.0331859
\(197\) 1.80305 1.80305i 0.128462 0.128462i −0.639952 0.768414i \(-0.721046\pi\)
0.768414 + 0.639952i \(0.221046\pi\)
\(198\) 0 0
\(199\) 16.0345i 1.13666i 0.822802 + 0.568328i \(0.192410\pi\)
−0.822802 + 0.568328i \(0.807590\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −2.30920 2.30920i −0.162475 0.162475i
\(203\) −5.36429 5.36429i −0.376499 0.376499i
\(204\) 0 0
\(205\) 0 0
\(206\) 13.0720i 0.910769i
\(207\) 0 0
\(208\) −4.42198 + 4.42198i −0.306609 + 0.306609i
\(209\) 16.5415 1.14420
\(210\) 0 0
\(211\) −22.1632 −1.52578 −0.762890 0.646528i \(-0.776220\pi\)
−0.762890 + 0.646528i \(0.776220\pi\)
\(212\) 3.18927 3.18927i 0.219040 0.219040i
\(213\) 0 0
\(214\) 7.86138i 0.537393i
\(215\) 0 0
\(216\) 0 0
\(217\) 5.74659 + 5.74659i 0.390104 + 0.390104i
\(218\) 6.61085 + 6.61085i 0.447743 + 0.447743i
\(219\) 0 0
\(220\) 0 0
\(221\) 7.21759i 0.485508i
\(222\) 0 0
\(223\) 13.4515 13.4515i 0.900781 0.900781i −0.0947227 0.995504i \(-0.530196\pi\)
0.995504 + 0.0947227i \(0.0301964\pi\)
\(224\) 2.57024 0.171732
\(225\) 0 0
\(226\) −3.15961 −0.210174
\(227\) 8.57603 8.57603i 0.569211 0.569211i −0.362696 0.931907i \(-0.618144\pi\)
0.931907 + 0.362696i \(0.118144\pi\)
\(228\) 0 0
\(229\) 22.4314i 1.48231i 0.671335 + 0.741154i \(0.265721\pi\)
−0.671335 + 0.741154i \(0.734279\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 16.3821 + 16.3821i 1.07554 + 1.07554i
\(233\) −3.98861 3.98861i −0.261303 0.261303i 0.564281 0.825583i \(-0.309154\pi\)
−0.825583 + 0.564281i \(0.809154\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 2.97669i 0.193766i
\(237\) 0 0
\(238\) 2.88704 2.88704i 0.187139 0.187139i
\(239\) −9.15757 −0.592354 −0.296177 0.955133i \(-0.595712\pi\)
−0.296177 + 0.955133i \(0.595712\pi\)
\(240\) 0 0
\(241\) −13.5613 −0.873560 −0.436780 0.899568i \(-0.643881\pi\)
−0.436780 + 0.899568i \(0.643881\pi\)
\(242\) 9.40770 9.40770i 0.604750 0.604750i
\(243\) 0 0
\(244\) 6.32024i 0.404612i
\(245\) 0 0
\(246\) 0 0
\(247\) 5.49531 + 5.49531i 0.349658 + 0.349658i
\(248\) −17.5496 17.5496i −1.11440 1.11440i
\(249\) 0 0
\(250\) 0 0
\(251\) 23.8741i 1.50692i 0.657494 + 0.753460i \(0.271617\pi\)
−0.657494 + 0.753460i \(0.728383\pi\)
\(252\) 0 0
\(253\) 6.72582 6.72582i 0.422848 0.422848i
\(254\) 25.1485 1.57796
\(255\) 0 0
\(256\) −10.5021 −0.656383
\(257\) −12.0222 + 12.0222i −0.749921 + 0.749921i −0.974464 0.224543i \(-0.927911\pi\)
0.224543 + 0.974464i \(0.427911\pi\)
\(258\) 0 0
\(259\) 8.48594i 0.527291i
\(260\) 0 0
\(261\) 0 0
\(262\) 2.82639 + 2.82639i 0.174615 + 0.174615i
\(263\) 1.26198 + 1.26198i 0.0778167 + 0.0778167i 0.744944 0.667127i \(-0.232476\pi\)
−0.667127 + 0.744944i \(0.732476\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 4.39626i 0.269552i
\(267\) 0 0
\(268\) 1.28753 1.28753i 0.0786484 0.0786484i
\(269\) −3.41582 −0.208266 −0.104133 0.994563i \(-0.533207\pi\)
−0.104133 + 0.994563i \(0.533207\pi\)
\(270\) 0 0
\(271\) 8.21326 0.498920 0.249460 0.968385i \(-0.419747\pi\)
0.249460 + 0.968385i \(0.419747\pi\)
\(272\) −6.65181 + 6.65181i −0.403325 + 0.403325i
\(273\) 0 0
\(274\) 2.38511i 0.144090i
\(275\) 0 0
\(276\) 0 0
\(277\) 4.57498 + 4.57498i 0.274884 + 0.274884i 0.831063 0.556179i \(-0.187733\pi\)
−0.556179 + 0.831063i \(0.687733\pi\)
\(278\) 19.5273 + 19.5273i 1.17117 + 1.17117i
\(279\) 0 0
\(280\) 0 0
\(281\) 11.0476i 0.659042i 0.944148 + 0.329521i \(0.106887\pi\)
−0.944148 + 0.329521i \(0.893113\pi\)
\(282\) 0 0
\(283\) 4.42604 4.42604i 0.263101 0.263101i −0.563212 0.826313i \(-0.690434\pi\)
0.826313 + 0.563212i \(0.190434\pi\)
\(284\) 0.267866 0.0158949
\(285\) 0 0
\(286\) 12.6545 0.748278
\(287\) 4.75511 4.75511i 0.280685 0.280685i
\(288\) 0 0
\(289\) 6.14286i 0.361345i
\(290\) 0 0
\(291\) 0 0
\(292\) 2.29692 + 2.29692i 0.134417 + 0.134417i
\(293\) 22.3120 + 22.3120i 1.30348 + 1.30348i 0.926029 + 0.377452i \(0.123200\pi\)
0.377452 + 0.926029i \(0.376800\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 25.9154i 1.50630i
\(297\) 0 0
\(298\) 20.5072 20.5072i 1.18795 1.18795i
\(299\) 4.46883 0.258439
\(300\) 0 0
\(301\) −7.72811 −0.445441
\(302\) −14.8854 + 14.8854i −0.856560 + 0.856560i
\(303\) 0 0
\(304\) 10.1291i 0.580942i
\(305\) 0 0
\(306\) 0 0
\(307\) −4.65242 4.65242i −0.265527 0.265527i 0.561768 0.827295i \(-0.310121\pi\)
−0.827295 + 0.561768i \(0.810121\pi\)
\(308\) −1.53168 1.53168i −0.0872754 0.0872754i
\(309\) 0 0
\(310\) 0 0
\(311\) 12.7033i 0.720337i 0.932887 + 0.360169i \(0.117281\pi\)
−0.932887 + 0.360169i \(0.882719\pi\)
\(312\) 0 0
\(313\) −9.39195 + 9.39195i −0.530864 + 0.530864i −0.920830 0.389965i \(-0.872487\pi\)
0.389965 + 0.920830i \(0.372487\pi\)
\(314\) 14.1579 0.798977
\(315\) 0 0
\(316\) 1.16604 0.0655949
\(317\) 12.0566 12.0566i 0.677166 0.677166i −0.282192 0.959358i \(-0.591061\pi\)
0.959358 + 0.282192i \(0.0910615\pi\)
\(318\) 0 0
\(319\) 35.3694i 1.98031i
\(320\) 0 0
\(321\) 0 0
\(322\) 1.78753 + 1.78753i 0.0996154 + 0.0996154i
\(323\) 8.26638 + 8.26638i 0.459954 + 0.459954i
\(324\) 0 0
\(325\) 0 0
\(326\) 15.9224i 0.881861i
\(327\) 0 0
\(328\) −14.5217 + 14.5217i −0.801828 + 0.801828i
\(329\) −7.30665 −0.402829
\(330\) 0 0
\(331\) −0.841491 −0.0462525 −0.0231263 0.999733i \(-0.507362\pi\)
−0.0231263 + 0.999733i \(0.507362\pi\)
\(332\) −1.85609 + 1.85609i −0.101866 + 0.101866i
\(333\) 0 0
\(334\) 23.7315i 1.29853i
\(335\) 0 0
\(336\) 0 0
\(337\) 16.1936 + 16.1936i 0.882124 + 0.882124i 0.993750 0.111626i \(-0.0356059\pi\)
−0.111626 + 0.993750i \(0.535606\pi\)
\(338\) −7.18638 7.18638i −0.390887 0.390887i
\(339\) 0 0
\(340\) 0 0
\(341\) 37.8902i 2.05187i
\(342\) 0 0
\(343\) −0.707107 + 0.707107i −0.0381802 + 0.0381802i
\(344\) 23.6010 1.27248
\(345\) 0 0
\(346\) −28.8936 −1.55333
\(347\) 6.72445 6.72445i 0.360988 0.360988i −0.503189 0.864176i \(-0.667840\pi\)
0.864176 + 0.503189i \(0.167840\pi\)
\(348\) 0 0
\(349\) 25.9697i 1.39013i 0.718949 + 0.695063i \(0.244624\pi\)
−0.718949 + 0.695063i \(0.755376\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 8.47345 + 8.47345i 0.451637 + 0.451637i
\(353\) 20.5943 + 20.5943i 1.09612 + 1.09612i 0.994860 + 0.101264i \(0.0322885\pi\)
0.101264 + 0.994860i \(0.467711\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 3.19055i 0.169099i
\(357\) 0 0
\(358\) −6.26808 + 6.26808i −0.331278 + 0.331278i
\(359\) −29.4326 −1.55339 −0.776697 0.629874i \(-0.783107\pi\)
−0.776697 + 0.629874i \(0.783107\pi\)
\(360\) 0 0
\(361\) 6.41233 0.337491
\(362\) 4.26075 4.26075i 0.223940 0.223940i
\(363\) 0 0
\(364\) 1.01769i 0.0533415i
\(365\) 0 0
\(366\) 0 0
\(367\) 13.4205 + 13.4205i 0.700544 + 0.700544i 0.964527 0.263983i \(-0.0850363\pi\)
−0.263983 + 0.964527i \(0.585036\pi\)
\(368\) −4.11852 4.11852i −0.214693 0.214693i
\(369\) 0 0
\(370\) 0 0
\(371\) 9.70790i 0.504009i
\(372\) 0 0
\(373\) −1.38704 + 1.38704i −0.0718184 + 0.0718184i −0.742104 0.670285i \(-0.766172\pi\)
0.670285 + 0.742104i \(0.266172\pi\)
\(374\) 19.0357 0.984313
\(375\) 0 0
\(376\) 22.3139 1.15075
\(377\) 11.7502 11.7502i 0.605168 0.605168i
\(378\) 0 0
\(379\) 25.3851i 1.30394i 0.758243 + 0.651972i \(0.226058\pi\)
−0.758243 + 0.651972i \(0.773942\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −0.868259 0.868259i −0.0444240 0.0444240i
\(383\) −3.12729 3.12729i −0.159797 0.159797i 0.622680 0.782477i \(-0.286044\pi\)
−0.782477 + 0.622680i \(0.786044\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 14.4112i 0.733511i
\(387\) 0 0
\(388\) 2.06008 2.06008i 0.104585 0.104585i
\(389\) 10.5100 0.532876 0.266438 0.963852i \(-0.414153\pi\)
0.266438 + 0.963852i \(0.414153\pi\)
\(390\) 0 0
\(391\) 6.72228 0.339960
\(392\) 2.15945 2.15945i 0.109068 0.109068i
\(393\) 0 0
\(394\) 3.15961i 0.159179i
\(395\) 0 0
\(396\) 0 0
\(397\) 3.72909 + 3.72909i 0.187158 + 0.187158i 0.794466 0.607308i \(-0.207751\pi\)
−0.607308 + 0.794466i \(0.707751\pi\)
\(398\) −14.0492 14.0492i −0.704222 0.704222i
\(399\) 0 0
\(400\) 0 0
\(401\) 17.8421i 0.890994i 0.895283 + 0.445497i \(0.146973\pi\)
−0.895283 + 0.445497i \(0.853027\pi\)
\(402\) 0 0
\(403\) −12.5877 + 12.5877i −0.627036 + 0.627036i
\(404\) −1.22447 −0.0609195
\(405\) 0 0
\(406\) 9.40021 0.466525
\(407\) −27.9760 + 27.9760i −1.38672 + 1.38672i
\(408\) 0 0
\(409\) 14.9681i 0.740127i −0.929006 0.370064i \(-0.879336\pi\)
0.929006 0.370064i \(-0.120664\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −3.46575 3.46575i −0.170745 0.170745i
\(413\) −4.53041 4.53041i −0.222927 0.222927i
\(414\) 0 0
\(415\) 0 0
\(416\) 5.63001i 0.276034i
\(417\) 0 0
\(418\) −14.4934 + 14.4934i −0.708894 + 0.708894i
\(419\) 6.71408 0.328004 0.164002 0.986460i \(-0.447560\pi\)
0.164002 + 0.986460i \(0.447560\pi\)
\(420\) 0 0
\(421\) −30.1593 −1.46987 −0.734937 0.678136i \(-0.762788\pi\)
−0.734937 + 0.678136i \(0.762788\pi\)
\(422\) 19.4191 19.4191i 0.945307 0.945307i
\(423\) 0 0
\(424\) 29.6471i 1.43979i
\(425\) 0 0
\(426\) 0 0
\(427\) −9.61917 9.61917i −0.465504 0.465504i
\(428\) −2.08427 2.08427i −0.100747 0.100747i
\(429\) 0 0
\(430\) 0 0
\(431\) 14.5595i 0.701304i 0.936506 + 0.350652i \(0.114040\pi\)
−0.936506 + 0.350652i \(0.885960\pi\)
\(432\) 0 0
\(433\) −14.3159 + 14.3159i −0.687976 + 0.687976i −0.961784 0.273808i \(-0.911717\pi\)
0.273808 + 0.961784i \(0.411717\pi\)
\(434\) −10.0702 −0.483383
\(435\) 0 0
\(436\) 3.50544 0.167880
\(437\) −5.11819 + 5.11819i −0.244836 + 0.244836i
\(438\) 0 0
\(439\) 23.7496i 1.13351i 0.823887 + 0.566754i \(0.191801\pi\)
−0.823887 + 0.566754i \(0.808199\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 6.32394 + 6.32394i 0.300799 + 0.300799i
\(443\) −28.0781 28.0781i −1.33403 1.33403i −0.901730 0.432299i \(-0.857702\pi\)
−0.432299 0.901730i \(-0.642298\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 23.5720i 1.11617i
\(447\) 0 0
\(448\) −6.28950 + 6.28950i −0.297151 + 0.297151i
\(449\) 23.1170 1.09096 0.545479 0.838125i \(-0.316348\pi\)
0.545479 + 0.838125i \(0.316348\pi\)
\(450\) 0 0
\(451\) 31.3528 1.47635
\(452\) −0.837701 + 0.837701i −0.0394021 + 0.0394021i
\(453\) 0 0
\(454\) 15.0284i 0.705316i
\(455\) 0 0
\(456\) 0 0
\(457\) 2.41339 + 2.41339i 0.112893 + 0.112893i 0.761297 0.648403i \(-0.224563\pi\)
−0.648403 + 0.761297i \(0.724563\pi\)
\(458\) −19.6540 19.6540i −0.918373 0.918373i
\(459\) 0 0
\(460\) 0 0
\(461\) 12.9836i 0.604705i 0.953196 + 0.302353i \(0.0977720\pi\)
−0.953196 + 0.302353i \(0.902228\pi\)
\(462\) 0 0
\(463\) −21.5619 + 21.5619i −1.00207 + 1.00207i −0.00206902 + 0.999998i \(0.500659\pi\)
−0.999998 + 0.00206902i \(0.999341\pi\)
\(464\) −21.6583 −1.00546
\(465\) 0 0
\(466\) 6.98952 0.323783
\(467\) −4.14681 + 4.14681i −0.191891 + 0.191891i −0.796513 0.604622i \(-0.793324\pi\)
0.604622 + 0.796513i \(0.293324\pi\)
\(468\) 0 0
\(469\) 3.91914i 0.180969i
\(470\) 0 0
\(471\) 0 0
\(472\) 13.8355 + 13.8355i 0.636830 + 0.636830i
\(473\) −25.4777 25.4777i −1.17146 1.17146i
\(474\) 0 0
\(475\) 0 0
\(476\) 1.53087i 0.0701674i
\(477\) 0 0
\(478\) 8.02372 8.02372i 0.366996 0.366996i
\(479\) −11.3977 −0.520774 −0.260387 0.965504i \(-0.583850\pi\)
−0.260387 + 0.965504i \(0.583850\pi\)
\(480\) 0 0
\(481\) −18.5881 −0.847544
\(482\) 11.8822 11.8822i 0.541219 0.541219i
\(483\) 0 0
\(484\) 4.98849i 0.226750i
\(485\) 0 0
\(486\) 0 0
\(487\) 11.0942 + 11.0942i 0.502727 + 0.502727i 0.912284 0.409558i \(-0.134317\pi\)
−0.409558 + 0.912284i \(0.634317\pi\)
\(488\) 29.3762 + 29.3762i 1.32980 + 1.32980i
\(489\) 0 0
\(490\) 0 0
\(491\) 28.4593i 1.28435i −0.766559 0.642174i \(-0.778033\pi\)
0.766559 0.642174i \(-0.221967\pi\)
\(492\) 0 0
\(493\) 17.6754 17.6754i 0.796061 0.796061i
\(494\) −9.62981 −0.433266
\(495\) 0 0
\(496\) 23.2019 1.04179
\(497\) 0.407682 0.407682i 0.0182870 0.0182870i
\(498\) 0 0
\(499\) 13.0081i 0.582323i −0.956674 0.291161i \(-0.905958\pi\)
0.956674 0.291161i \(-0.0940417\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −20.9181 20.9181i −0.933621 0.933621i
\(503\) 19.6010 + 19.6010i 0.873966 + 0.873966i 0.992902 0.118936i \(-0.0379482\pi\)
−0.118936 + 0.992902i \(0.537948\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 11.7861i 0.523957i
\(507\) 0 0
\(508\) 6.66756 6.66756i 0.295825 0.295825i
\(509\) 42.4087 1.87973 0.939866 0.341545i \(-0.110950\pi\)
0.939866 + 0.341545i \(0.110950\pi\)
\(510\) 0 0
\(511\) 6.99164 0.309292
\(512\) 17.5189 17.5189i 0.774231 0.774231i
\(513\) 0 0
\(514\) 21.0672i 0.929236i
\(515\) 0 0
\(516\) 0 0
\(517\) −24.0882 24.0882i −1.05940 1.05940i
\(518\) −7.43525 7.43525i −0.326686 0.326686i
\(519\) 0 0
\(520\) 0 0
\(521\) 13.9987i 0.613296i −0.951823 0.306648i \(-0.900793\pi\)
0.951823 0.306648i \(-0.0992074\pi\)
\(522\) 0 0
\(523\) −15.7665 + 15.7665i −0.689421 + 0.689421i −0.962104 0.272683i \(-0.912089\pi\)
0.272683 + 0.962104i \(0.412089\pi\)
\(524\) 1.49871 0.0654715
\(525\) 0 0
\(526\) −2.21145 −0.0964236
\(527\) −18.9351 + 18.9351i −0.824827 + 0.824827i
\(528\) 0 0
\(529\) 18.8378i 0.819037i
\(530\) 0 0
\(531\) 0 0
\(532\) 1.16557 + 1.16557i 0.0505339 + 0.0505339i
\(533\) 10.4159 + 10.4159i 0.451161 + 0.451161i
\(534\) 0 0
\(535\) 0 0
\(536\) 11.9687i 0.516971i
\(537\) 0 0
\(538\) 2.99289 2.99289i 0.129033 0.129033i
\(539\) −4.66231 −0.200820
\(540\) 0 0
\(541\) 40.1080 1.72438 0.862189 0.506587i \(-0.169093\pi\)
0.862189 + 0.506587i \(0.169093\pi\)
\(542\) −7.19633 + 7.19633i −0.309109 + 0.309109i
\(543\) 0 0
\(544\) 8.46900i 0.363105i
\(545\) 0 0
\(546\) 0 0
\(547\) 8.55083 + 8.55083i 0.365607 + 0.365607i 0.865872 0.500265i \(-0.166764\pi\)
−0.500265 + 0.865872i \(0.666764\pi\)
\(548\) 0.632361 + 0.632361i 0.0270131 + 0.0270131i
\(549\) 0 0
\(550\) 0 0
\(551\) 26.9153i 1.14663i
\(552\) 0 0
\(553\) 1.77467 1.77467i 0.0754667 0.0754667i
\(554\) −8.01704 −0.340612
\(555\) 0 0
\(556\) 10.3544 0.439126
\(557\) 15.5128 15.5128i 0.657300 0.657300i −0.297441 0.954740i \(-0.596133\pi\)
0.954740 + 0.297441i \(0.0961330\pi\)
\(558\) 0 0
\(559\) 16.9281i 0.715982i
\(560\) 0 0
\(561\) 0 0
\(562\) −9.67970 9.67970i −0.408313 0.408313i
\(563\) 15.5187 + 15.5187i 0.654036 + 0.654036i 0.953962 0.299926i \(-0.0969620\pi\)
−0.299926 + 0.953962i \(0.596962\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 7.75605i 0.326011i
\(567\) 0 0
\(568\) −1.24503 + 1.24503i −0.0522401 + 0.0522401i
\(569\) 31.6235 1.32573 0.662863 0.748741i \(-0.269341\pi\)
0.662863 + 0.748741i \(0.269341\pi\)
\(570\) 0 0
\(571\) −25.0465 −1.04816 −0.524082 0.851668i \(-0.675592\pi\)
−0.524082 + 0.851668i \(0.675592\pi\)
\(572\) 3.35507 3.35507i 0.140283 0.140283i
\(573\) 0 0
\(574\) 8.33271i 0.347801i
\(575\) 0 0
\(576\) 0 0
\(577\) 20.1909 + 20.1909i 0.840557 + 0.840557i 0.988931 0.148375i \(-0.0474042\pi\)
−0.148375 + 0.988931i \(0.547404\pi\)
\(578\) −5.38228 5.38228i −0.223873 0.223873i
\(579\) 0 0
\(580\) 0 0
\(581\) 5.64980i 0.234393i
\(582\) 0 0
\(583\) 32.0045 32.0045i 1.32549 1.32549i
\(584\) −21.3519 −0.883548
\(585\) 0 0
\(586\) −39.0989 −1.61516
\(587\) −15.4569 + 15.4569i −0.637976 + 0.637976i −0.950056 0.312080i \(-0.898974\pi\)
0.312080 + 0.950056i \(0.398974\pi\)
\(588\) 0 0
\(589\) 28.8336i 1.18807i
\(590\) 0 0
\(591\) 0 0
\(592\) 17.1310 + 17.1310i 0.704079 + 0.704079i
\(593\) 2.50889 + 2.50889i 0.103028 + 0.103028i 0.756742 0.653714i \(-0.226790\pi\)
−0.653714 + 0.756742i \(0.726790\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 10.8741i 0.445420i
\(597\) 0 0
\(598\) −3.91552 + 3.91552i −0.160117 + 0.160117i
\(599\) −23.0111 −0.940207 −0.470104 0.882611i \(-0.655783\pi\)
−0.470104 + 0.882611i \(0.655783\pi\)
\(600\) 0 0
\(601\) 11.4097 0.465411 0.232706 0.972547i \(-0.425242\pi\)
0.232706 + 0.972547i \(0.425242\pi\)
\(602\) 6.77125 6.77125i 0.275976 0.275976i
\(603\) 0 0
\(604\) 7.89308i 0.321165i
\(605\) 0 0
\(606\) 0 0
\(607\) −26.7473 26.7473i −1.08564 1.08564i −0.995972 0.0896663i \(-0.971420\pi\)
−0.0896663 0.995972i \(-0.528580\pi\)
\(608\) −6.44810 6.44810i −0.261505 0.261505i
\(609\) 0 0
\(610\) 0 0
\(611\) 16.0049i 0.647489i
\(612\) 0 0
\(613\) 9.33197 9.33197i 0.376915 0.376915i −0.493073 0.869988i \(-0.664126\pi\)
0.869988 + 0.493073i \(0.164126\pi\)
\(614\) 8.15275 0.329018
\(615\) 0 0
\(616\) 14.2383 0.573678
\(617\) −3.34333 + 3.34333i −0.134597 + 0.134597i −0.771196 0.636598i \(-0.780341\pi\)
0.636598 + 0.771196i \(0.280341\pi\)
\(618\) 0 0
\(619\) 15.3147i 0.615549i −0.951459 0.307774i \(-0.900416\pi\)
0.951459 0.307774i \(-0.0995842\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −11.1304 11.1304i −0.446289 0.446289i
\(623\) 4.85589 + 4.85589i 0.194547 + 0.194547i
\(624\) 0 0
\(625\) 0 0
\(626\) 16.4582i 0.657800i
\(627\) 0 0
\(628\) 3.75366 3.75366i 0.149787 0.149787i
\(629\) −27.9613 −1.11489
\(630\) 0 0
\(631\) −25.4390 −1.01271 −0.506355 0.862325i \(-0.669007\pi\)
−0.506355 + 0.862325i \(0.669007\pi\)
\(632\) −5.41970 + 5.41970i −0.215584 + 0.215584i
\(633\) 0 0
\(634\) 21.1276i 0.839085i
\(635\) 0 0
\(636\) 0 0
\(637\) −1.54889 1.54889i −0.0613691 0.0613691i
\(638\) 30.9902 + 30.9902i 1.22691 + 1.22691i
\(639\) 0 0
\(640\) 0 0
\(641\) 19.2081i 0.758674i −0.925259 0.379337i \(-0.876152\pi\)
0.925259 0.379337i \(-0.123848\pi\)
\(642\) 0 0
\(643\) 2.50256 2.50256i 0.0986915 0.0986915i −0.656037 0.754729i \(-0.727769\pi\)
0.754729 + 0.656037i \(0.227769\pi\)
\(644\) 0.947851 0.0373506
\(645\) 0 0
\(646\) −14.4857 −0.569934
\(647\) −10.7695 + 10.7695i −0.423393 + 0.423393i −0.886370 0.462977i \(-0.846781\pi\)
0.462977 + 0.886370i \(0.346781\pi\)
\(648\) 0 0
\(649\) 29.8712i 1.17255i
\(650\) 0 0
\(651\) 0 0
\(652\) −4.22148 4.22148i −0.165326 0.165326i
\(653\) 26.4630 + 26.4630i 1.03558 + 1.03558i 0.999343 + 0.0362330i \(0.0115358\pi\)
0.0362330 + 0.999343i \(0.488464\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 19.1988i 0.749585i
\(657\) 0 0
\(658\) 6.40197 6.40197i 0.249575 0.249575i
\(659\) 8.78898 0.342370 0.171185 0.985239i \(-0.445240\pi\)
0.171185 + 0.985239i \(0.445240\pi\)
\(660\) 0 0
\(661\) −7.11790 −0.276854 −0.138427 0.990373i \(-0.544205\pi\)
−0.138427 + 0.990373i \(0.544205\pi\)
\(662\) 0.737301 0.737301i 0.0286560 0.0286560i
\(663\) 0 0
\(664\) 17.2540i 0.669586i
\(665\) 0 0
\(666\) 0 0
\(667\) 10.9439 + 10.9439i 0.423749 + 0.423749i
\(668\) 6.29188 + 6.29188i 0.243440 + 0.243440i
\(669\) 0 0
\(670\) 0 0
\(671\) 63.4240i 2.44846i
\(672\) 0 0
\(673\) −0.822154 + 0.822154i −0.0316917 + 0.0316917i −0.722775 0.691083i \(-0.757134\pi\)
0.691083 + 0.722775i \(0.257134\pi\)
\(674\) −28.3772 −1.09305
\(675\) 0 0
\(676\) −3.81062 −0.146562
\(677\) −19.7788 + 19.7788i −0.760162 + 0.760162i −0.976352 0.216189i \(-0.930637\pi\)
0.216189 + 0.976352i \(0.430637\pi\)
\(678\) 0 0
\(679\) 6.27073i 0.240648i
\(680\) 0 0
\(681\) 0 0
\(682\) −33.1988 33.1988i −1.27125 1.27125i
\(683\) −22.2292 22.2292i −0.850576 0.850576i 0.139628 0.990204i \(-0.455409\pi\)
−0.990204 + 0.139628i \(0.955409\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1.23911i 0.0473095i
\(687\) 0 0
\(688\) −15.6011 + 15.6011i −0.594787 + 0.594787i
\(689\) 21.2647 0.810122
\(690\) 0 0
\(691\) 10.5768 0.402361 0.201180 0.979554i \(-0.435522\pi\)
0.201180 + 0.979554i \(0.435522\pi\)
\(692\) −7.66051 + 7.66051i −0.291209 + 0.291209i
\(693\) 0 0
\(694\) 11.7837i 0.447304i
\(695\) 0 0
\(696\) 0 0
\(697\) 15.6682 + 15.6682i 0.593475 + 0.593475i
\(698\) −22.7542 22.7542i −0.861261 0.861261i
\(699\) 0 0
\(700\) 0 0
\(701\) 20.2841i 0.766121i 0.923723 + 0.383061i \(0.125130\pi\)
−0.923723 + 0.383061i \(0.874870\pi\)
\(702\) 0 0
\(703\) 21.2891 21.2891i 0.802934 0.802934i
\(704\) −41.4698 −1.56295
\(705\) 0 0
\(706\) −36.0888 −1.35822
\(707\) −1.86359 + 1.86359i −0.0700876 + 0.0700876i
\(708\) 0 0
\(709\) 10.7396i 0.403333i 0.979454 + 0.201666i \(0.0646356\pi\)
−0.979454 + 0.201666i \(0.935364\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −14.8295 14.8295i −0.555759 0.555759i
\(713\) −11.7238 11.7238i −0.439061 0.439061i
\(714\) 0 0
\(715\) 0 0
\(716\) 3.32369i 0.124212i
\(717\) 0 0
\(718\) 25.7884 25.7884i 0.962415 0.962415i
\(719\) −24.5967 −0.917302 −0.458651 0.888616i \(-0.651667\pi\)
−0.458651 + 0.888616i \(0.651667\pi\)
\(720\) 0 0
\(721\) −10.5495 −0.392883
\(722\) −5.61838 + 5.61838i −0.209095 + 0.209095i
\(723\) 0 0
\(724\) 2.25929i 0.0839658i
\(725\) 0 0
\(726\) 0 0
\(727\) 22.1032 + 22.1032i 0.819763 + 0.819763i 0.986073 0.166310i \(-0.0531854\pi\)
−0.166310 + 0.986073i \(0.553185\pi\)
\(728\) 4.73017 + 4.73017i 0.175312 + 0.175312i
\(729\) 0 0
\(730\) 0 0
\(731\) 25.4643i 0.941830i
\(732\) 0 0
\(733\) −3.38234 + 3.38234i −0.124930 + 0.124930i −0.766807 0.641878i \(-0.778156\pi\)
0.641878 + 0.766807i \(0.278156\pi\)
\(734\) −23.5177 −0.868053
\(735\) 0 0
\(736\) −5.24365 −0.193283
\(737\) 12.9204 12.9204i 0.475930 0.475930i
\(738\) 0 0
\(739\) 18.0189i 0.662838i −0.943484 0.331419i \(-0.892473\pi\)
0.943484 0.331419i \(-0.107527\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 8.50591 + 8.50591i 0.312262 + 0.312262i
\(743\) −13.7680 13.7680i −0.505099 0.505099i 0.407919 0.913018i \(-0.366255\pi\)
−0.913018 + 0.407919i \(0.866255\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 2.43061i 0.0889910i
\(747\) 0 0
\(748\) 5.04690 5.04690i 0.184533 0.184533i
\(749\) −6.34437 −0.231818
\(750\) 0 0
\(751\) −12.7248 −0.464336 −0.232168 0.972676i \(-0.574582\pi\)
−0.232168 + 0.972676i \(0.574582\pi\)
\(752\) −14.7503 + 14.7503i −0.537888 + 0.537888i
\(753\) 0 0
\(754\) 20.5908i 0.749871i
\(755\) 0 0
\(756\) 0 0
\(757\) −31.2644 31.2644i −1.13633 1.13633i −0.989103 0.147222i \(-0.952967\pi\)
−0.147222 0.989103i \(-0.547033\pi\)
\(758\) −22.2420 22.2420i −0.807866 0.807866i
\(759\) 0 0
\(760\) 0 0
\(761\) 35.1072i 1.27264i −0.771427 0.636318i \(-0.780457\pi\)
0.771427 0.636318i \(-0.219543\pi\)
\(762\) 0 0
\(763\) 5.33515 5.33515i 0.193145 0.193145i
\(764\) −0.460400 −0.0166567
\(765\) 0 0
\(766\) 5.48017 0.198006
\(767\) 9.92366 9.92366i 0.358323 0.358323i
\(768\) 0 0
\(769\) 25.2815i 0.911673i 0.890063 + 0.455837i \(0.150660\pi\)
−0.890063 + 0.455837i \(0.849340\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −3.82081 3.82081i −0.137514 0.137514i
\(773\) −15.4411 15.4411i −0.555376 0.555376i 0.372611 0.927988i \(-0.378463\pi\)
−0.927988 + 0.372611i \(0.878463\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 19.1503i 0.687455i
\(777\) 0 0
\(778\) −9.20867 + 9.20867i −0.330147 + 0.330147i
\(779\) −23.8588 −0.854830
\(780\) 0 0
\(781\) 2.68805 0.0961859
\(782\) −5.88996 + 5.88996i −0.210624 + 0.210624i
\(783\) 0 0
\(784\) 2.85494i 0.101962i
\(785\) 0 0
\(786\) 0 0
\(787\) −17.7487 17.7487i −0.632673 0.632673i 0.316065 0.948738i \(-0.397638\pi\)
−0.948738 + 0.316065i \(0.897638\pi\)
\(788\) 0.837701 + 0.837701i 0.0298419 + 0.0298419i
\(789\) 0 0
\(790\) 0 0
\(791\) 2.54990i 0.0906639i
\(792\) 0 0
\(793\) 21.0704 21.0704i 0.748231 0.748231i
\(794\) −6.53474 −0.231909
\(795\) 0 0
\(796\) −7.44966 −0.264046
\(797\) 17.3136 17.3136i 0.613280 0.613280i −0.330520 0.943799i \(-0.607224\pi\)
0.943799 + 0.330520i \(0.107224\pi\)
\(798\) 0 0
\(799\) 24.0755i 0.851731i
\(800\) 0 0
\(801\) 0 0
\(802\) −15.6330 15.6330i −0.552021 0.552021i
\(803\) 23.0497 + 23.0497i 0.813406 + 0.813406i
\(804\) 0 0
\(805\) 0 0
\(806\) 22.0582i 0.776968i
\(807\) 0 0
\(808\) 5.69126 5.69126i 0.200218 0.200218i
\(809\) 23.6436 0.831265 0.415632 0.909533i \(-0.363560\pi\)
0.415632 + 0.909533i \(0.363560\pi\)
\(810\) 0 0
\(811\) −13.9945 −0.491412 −0.245706 0.969344i \(-0.579020\pi\)
−0.245706 + 0.969344i \(0.579020\pi\)
\(812\) 2.49226 2.49226i 0.0874612 0.0874612i
\(813\) 0 0
\(814\) 49.0243i 1.71830i
\(815\) 0 0
\(816\) 0 0
\(817\) 19.3879 + 19.3879i 0.678297 + 0.678297i
\(818\) 13.1149 + 13.1149i 0.458550 + 0.458550i
\(819\) 0 0
\(820\) 0 0
\(821\) 32.7797i 1.14402i 0.820247 + 0.572010i \(0.193836\pi\)
−0.820247 + 0.572010i \(0.806164\pi\)
\(822\) 0 0
\(823\) 15.2743 15.2743i 0.532430 0.532430i −0.388865 0.921295i \(-0.627133\pi\)
0.921295 + 0.388865i \(0.127133\pi\)
\(824\) 32.2173 1.12234
\(825\) 0 0
\(826\) 7.93894 0.276231
\(827\) −19.3251 + 19.3251i −0.672000 + 0.672000i −0.958177 0.286177i \(-0.907615\pi\)
0.286177 + 0.958177i \(0.407615\pi\)
\(828\) 0 0
\(829\) 46.8148i 1.62595i 0.582302 + 0.812973i \(0.302152\pi\)
−0.582302 + 0.812973i \(0.697848\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −13.7769 13.7769i −0.477628 0.477628i
\(833\) −2.32993 2.32993i −0.0807272 0.0807272i
\(834\) 0 0
\(835\) 0 0
\(836\) 7.68519i 0.265798i
\(837\) 0 0
\(838\) −5.88277 + 5.88277i −0.203217 + 0.203217i
\(839\) 31.1400 1.07507 0.537535 0.843241i \(-0.319355\pi\)
0.537535 + 0.843241i \(0.319355\pi\)
\(840\) 0 0
\(841\) 28.5512 0.984524
\(842\) 26.4251 26.4251i 0.910669 0.910669i
\(843\) 0 0
\(844\) 10.2971i 0.354440i
\(845\) 0 0
\(846\) 0 0
\(847\) −7.59229 7.59229i −0.260874 0.260874i
\(848\) −19.5978 19.5978i −0.672991 0.672991i
\(849\) 0 0
\(850\) 0 0
\(851\) 17.3125i 0.593464i
\(852\) 0 0
\(853\) −34.5421 + 34.5421i −1.18270 + 1.18270i −0.203657 + 0.979042i \(0.565283\pi\)
−0.979042 + 0.203657i \(0.934717\pi\)
\(854\) 16.8563 0.576812
\(855\) 0 0
\(856\) 19.3752 0.662230
\(857\) 29.4941 29.4941i 1.00750 1.00750i 0.00752899 0.999972i \(-0.497603\pi\)
0.999972 0.00752899i \(-0.00239658\pi\)
\(858\) 0 0
\(859\) 43.7748i 1.49358i −0.665061 0.746789i \(-0.731594\pi\)
0.665061 0.746789i \(-0.268406\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −12.7568 12.7568i −0.434497 0.434497i
\(863\) −9.59074 9.59074i −0.326472 0.326472i 0.524771 0.851243i \(-0.324151\pi\)
−0.851243 + 0.524771i \(0.824151\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 25.0867i 0.852479i
\(867\) 0 0
\(868\) −2.66988 + 2.66988i −0.0906216 + 0.0906216i
\(869\) 11.7013 0.396939
\(870\) 0 0
\(871\) 8.58471 0.290882
\(872\) −16.2931 + 16.2931i −0.551754 + 0.551754i
\(873\) 0 0
\(874\) 8.96896i 0.303380i
\(875\) 0 0
\(876\) 0 0
\(877\) −38.7983 38.7983i −1.31013 1.31013i −0.921319 0.388809i \(-0.872887\pi\)
−0.388809 0.921319i \(-0.627113\pi\)
\(878\) −20.8091 20.8091i −0.702272 0.702272i
\(879\) 0 0
\(880\) 0 0
\(881\) 14.2447i 0.479918i −0.970783 0.239959i \(-0.922866\pi\)
0.970783 0.239959i \(-0.0771339\pi\)
\(882\) 0 0
\(883\) 34.0748 34.0748i 1.14671 1.14671i 0.159511 0.987196i \(-0.449008\pi\)
0.987196 0.159511i \(-0.0509916\pi\)
\(884\) 3.35331 0.112784
\(885\) 0 0
\(886\) 49.2031 1.65301
\(887\) −0.895283 + 0.895283i −0.0300607 + 0.0300607i −0.721977 0.691917i \(-0.756767\pi\)
0.691917 + 0.721977i \(0.256767\pi\)
\(888\) 0 0
\(889\) 20.2956i 0.680691i
\(890\) 0 0
\(891\) 0 0
\(892\) 6.24961 + 6.24961i 0.209252 + 0.209252i
\(893\) 18.3306 + 18.3306i 0.613409 + 0.613409i
\(894\) 0 0
\(895\) 0 0
\(896\) 5.88104i 0.196472i
\(897\) 0 0
\(898\) −20.2547 + 20.2547i −0.675909 + 0.675909i
\(899\) −61.6528 −2.05624
\(900\) 0 0
\(901\) 31.9877 1.06566
\(902\) −27.4709 + 27.4709i −0.914680 + 0.914680i
\(903\) 0 0
\(904\) 7.78718i 0.258998i
\(905\) 0 0
\(906\) 0 0
\(907\) −16.4485 16.4485i −0.546164 0.546164i 0.379165 0.925329i \(-0.376211\pi\)
−0.925329 + 0.379165i \(0.876211\pi\)
\(908\) 3.98444 + 3.98444i 0.132228 + 0.132228i
\(909\) 0 0
\(910\) 0 0
\(911\) 19.8928i 0.659078i 0.944142 + 0.329539i \(0.106893\pi\)
−0.944142 + 0.329539i \(0.893107\pi\)
\(912\) 0 0
\(913\) −18.6260 + 18.6260i −0.616430 + 0.616430i
\(914\) −4.22914 −0.139888
\(915\) 0 0
\(916\) −10.4217 −0.344342
\(917\) 2.28098 2.28098i 0.0753246 0.0753246i
\(918\) 0 0
\(919\) 39.3303i 1.29739i −0.761050 0.648693i \(-0.775316\pi\)
0.761050 0.648693i \(-0.224684\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −11.3760 11.3760i −0.374649 0.374649i
\(923\) 0.893009 + 0.893009i 0.0293937 + 0.0293937i
\(924\) 0 0
\(925\) 0 0
\(926\) 37.7844i 1.24167i
\(927\) 0 0
\(928\) −13.7875 + 13.7875i −0.452598 + 0.452598i
\(929\) −26.3786 −0.865455 −0.432728 0.901525i \(-0.642449\pi\)
−0.432728 + 0.901525i \(0.642449\pi\)
\(930\) 0 0
\(931\) 3.54791 0.116278
\(932\) 1.85312 1.85312i 0.0607008 0.0607008i
\(933\) 0 0
\(934\) 7.26673i 0.237775i
\(935\) 0 0
\(936\) 0 0
\(937\) 37.2937 + 37.2937i 1.21833 + 1.21833i 0.968215 + 0.250118i \(0.0804694\pi\)
0.250118 + 0.968215i \(0.419531\pi\)
\(938\) 3.43389 + 3.43389i 0.112121 + 0.112121i
\(939\) 0 0
\(940\) 0 0
\(941\) 48.3991i 1.57776i 0.614544 + 0.788882i \(0.289340\pi\)
−0.614544 + 0.788882i \(0.710660\pi\)
\(942\) 0 0
\(943\) −9.70107 + 9.70107i −0.315910 + 0.315910i
\(944\) −18.2915 −0.595338
\(945\) 0 0
\(946\) 44.6463 1.45158
\(947\) −27.4439 + 27.4439i −0.891806 + 0.891806i −0.994693 0.102887i \(-0.967192\pi\)
0.102887 + 0.994693i \(0.467192\pi\)
\(948\) 0 0
\(949\) 15.3149i 0.497142i
\(950\) 0 0
\(951\) 0 0
\(952\) 7.11541 + 7.11541i 0.230612 + 0.230612i
\(953\) 7.74667 + 7.74667i 0.250939 + 0.250939i 0.821356 0.570416i \(-0.193218\pi\)
−0.570416 + 0.821356i \(0.693218\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 4.25463i 0.137604i
\(957\) 0 0
\(958\) 9.98648 9.98648i 0.322648 0.322648i
\(959\) 1.92486 0.0621569
\(960\) 0 0
\(961\) 35.0467 1.13054
\(962\) 16.2866 16.2866i 0.525101 0.525101i
\(963\) 0 0
\(964\) 6.30061i 0.202929i
\(965\) 0 0
\(966\) 0 0
\(967\) −12.8257 12.8257i −0.412448 0.412448i 0.470143 0.882590i \(-0.344203\pi\)
−0.882590 + 0.470143i \(0.844203\pi\)
\(968\) 23.1862 + 23.1862i 0.745234 + 0.745234i
\(969\) 0 0
\(970\) 0 0
\(971\) 30.4338i 0.976666i 0.872657 + 0.488333i \(0.162395\pi\)
−0.872657 + 0.488333i \(0.837605\pi\)
\(972\) 0 0
\(973\) 15.7591 15.7591i 0.505213 0.505213i
\(974\) −19.4412 −0.622935
\(975\) 0 0
\(976\) −38.8374 −1.24315
\(977\) −4.71670 + 4.71670i −0.150901 + 0.150901i −0.778520 0.627620i \(-0.784029\pi\)
0.627620 + 0.778520i \(0.284029\pi\)
\(978\) 0 0
\(979\) 32.0173i 1.02328i
\(980\) 0 0
\(981\) 0 0
\(982\) 24.9356 + 24.9356i 0.795726 + 0.795726i
\(983\) −28.6631 28.6631i −0.914211 0.914211i 0.0823888 0.996600i \(-0.473745\pi\)
−0.996600 + 0.0823888i \(0.973745\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 30.9739i 0.986409i
\(987\) 0 0
\(988\) −2.55313 + 2.55313i −0.0812260 + 0.0812260i
\(989\) 15.7664 0.501342
\(990\) 0 0
\(991\) 40.6787 1.29220 0.646101 0.763252i \(-0.276398\pi\)
0.646101 + 0.763252i \(0.276398\pi\)
\(992\) 14.7701 14.7701i 0.468953 0.468953i
\(993\) 0 0
\(994\) 0.714408i 0.0226597i
\(995\) 0 0
\(996\) 0 0
\(997\) 24.6947 + 24.6947i 0.782090 + 0.782090i 0.980183 0.198094i \(-0.0634750\pi\)
−0.198094 + 0.980183i \(0.563475\pi\)
\(998\) 11.3975 + 11.3975i 0.360782 + 0.360782i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.2.m.c.1457.3 12
3.2 odd 2 1575.2.m.d.1457.4 12
5.2 odd 4 315.2.m.b.8.3 yes 12
5.3 odd 4 1575.2.m.d.1268.4 12
5.4 even 2 315.2.m.a.197.4 yes 12
15.2 even 4 315.2.m.a.8.4 12
15.8 even 4 inner 1575.2.m.c.1268.3 12
15.14 odd 2 315.2.m.b.197.3 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.m.a.8.4 12 15.2 even 4
315.2.m.a.197.4 yes 12 5.4 even 2
315.2.m.b.8.3 yes 12 5.2 odd 4
315.2.m.b.197.3 yes 12 15.14 odd 2
1575.2.m.c.1268.3 12 15.8 even 4 inner
1575.2.m.c.1457.3 12 1.1 even 1 trivial
1575.2.m.d.1268.4 12 5.3 odd 4
1575.2.m.d.1457.4 12 3.2 odd 2