L(s) = 1 | + (−0.876 + 0.876i)2-s + 0.464i·4-s + (0.707 + 0.707i)7-s + (−2.15 − 2.15i)8-s + 4.66i·11-s + (−1.54 + 1.54i)13-s − 1.23·14-s + 2.85·16-s + (−2.32 + 2.32i)17-s − 3.54i·19-s + (−4.08 − 4.08i)22-s + (−1.44 − 1.44i)23-s − 2.71i·26-s + (−0.328 + 0.328i)28-s − 7.58·29-s + ⋯ |
L(s) = 1 | + (−0.619 + 0.619i)2-s + 0.232i·4-s + (0.267 + 0.267i)7-s + (−0.763 − 0.763i)8-s + 1.40i·11-s + (−0.429 + 0.429i)13-s − 0.331·14-s + 0.713·16-s + (−0.565 + 0.565i)17-s − 0.813i·19-s + (−0.870 − 0.870i)22-s + (−0.300 − 0.300i)23-s − 0.532i·26-s + (−0.0620 + 0.0620i)28-s − 1.40·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.662 + 0.749i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.662 + 0.749i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.3812347544\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3812347544\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-0.707 - 0.707i)T \) |
good | 2 | \( 1 + (0.876 - 0.876i)T - 2iT^{2} \) |
| 11 | \( 1 - 4.66iT - 11T^{2} \) |
| 13 | \( 1 + (1.54 - 1.54i)T - 13iT^{2} \) |
| 17 | \( 1 + (2.32 - 2.32i)T - 17iT^{2} \) |
| 19 | \( 1 + 3.54iT - 19T^{2} \) |
| 23 | \( 1 + (1.44 + 1.44i)T + 23iT^{2} \) |
| 29 | \( 1 + 7.58T + 29T^{2} \) |
| 31 | \( 1 - 8.12T + 31T^{2} \) |
| 37 | \( 1 + (-6.00 - 6.00i)T + 37iT^{2} \) |
| 41 | \( 1 + 6.72iT - 41T^{2} \) |
| 43 | \( 1 + (5.46 - 5.46i)T - 43iT^{2} \) |
| 47 | \( 1 + (5.16 - 5.16i)T - 47iT^{2} \) |
| 53 | \( 1 + (6.86 + 6.86i)T + 53iT^{2} \) |
| 59 | \( 1 + 6.40T + 59T^{2} \) |
| 61 | \( 1 + 13.6T + 61T^{2} \) |
| 67 | \( 1 + (2.77 + 2.77i)T + 67iT^{2} \) |
| 71 | \( 1 + 0.576iT - 71T^{2} \) |
| 73 | \( 1 + (-4.94 + 4.94i)T - 73iT^{2} \) |
| 79 | \( 1 + 2.50iT - 79T^{2} \) |
| 83 | \( 1 + (-3.99 - 3.99i)T + 83iT^{2} \) |
| 89 | \( 1 - 6.86T + 89T^{2} \) |
| 97 | \( 1 + (4.43 + 4.43i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.492928346882827347070824757352, −9.266672768912213040453300185122, −8.143290588529029985408277675814, −7.70148374368234270897657256093, −6.75792362204359369012281662306, −6.29051108957546606847105709006, −4.87843848941323596227930893258, −4.25991496047938067566120938546, −2.92428389531327404699729078501, −1.81850118354582125250360404091,
0.18330694315185295069848401144, 1.38094630255968198479815281574, 2.57873209285399111718773648538, 3.51091216042756513750894112495, 4.77973900105204184424322466714, 5.71913709977593745964078997735, 6.32296691449186749907478716615, 7.63646052633534735765819189974, 8.244848468647259240088187863515, 9.073867633143155519113861352921