Properties

Label 1573.4.a.q.1.8
Level $1573$
Weight $4$
Character 1573.1
Self dual yes
Analytic conductor $92.810$
Analytic rank $0$
Dimension $38$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1573,4,Mod(1,1573)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1573, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1573.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1573 = 11^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1573.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [38,-3,19,181,52] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(92.8100044390\)
Analytic rank: \(0\)
Dimension: \(38\)
Twist minimal: no (minimal twist has level 143)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Character \(\chi\) \(=\) 1573.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.98792 q^{2} -2.76589 q^{3} +7.90349 q^{4} -14.0062 q^{5} +11.0301 q^{6} +21.9303 q^{7} +0.384876 q^{8} -19.3499 q^{9} +55.8554 q^{10} -21.8602 q^{12} -13.0000 q^{13} -87.4562 q^{14} +38.7395 q^{15} -64.7628 q^{16} +72.0473 q^{17} +77.1656 q^{18} +87.9826 q^{19} -110.697 q^{20} -60.6568 q^{21} -7.78478 q^{23} -1.06452 q^{24} +71.1724 q^{25} +51.8429 q^{26} +128.199 q^{27} +173.326 q^{28} -59.3694 q^{29} -154.490 q^{30} +69.0151 q^{31} +255.190 q^{32} -287.319 q^{34} -307.159 q^{35} -152.931 q^{36} -146.741 q^{37} -350.868 q^{38} +35.9566 q^{39} -5.39063 q^{40} +465.434 q^{41} +241.894 q^{42} +156.756 q^{43} +271.017 q^{45} +31.0451 q^{46} +89.3598 q^{47} +179.127 q^{48} +137.937 q^{49} -283.830 q^{50} -199.275 q^{51} -102.745 q^{52} +237.991 q^{53} -511.245 q^{54} +8.44044 q^{56} -243.350 q^{57} +236.760 q^{58} +756.132 q^{59} +306.177 q^{60} -665.147 q^{61} -275.227 q^{62} -424.348 q^{63} -499.573 q^{64} +182.080 q^{65} -706.040 q^{67} +569.425 q^{68} +21.5318 q^{69} +1224.92 q^{70} -93.1411 q^{71} -7.44730 q^{72} -790.781 q^{73} +585.191 q^{74} -196.855 q^{75} +695.370 q^{76} -143.392 q^{78} -226.942 q^{79} +907.077 q^{80} +167.863 q^{81} -1856.11 q^{82} +911.939 q^{83} -479.400 q^{84} -1009.11 q^{85} -625.131 q^{86} +164.209 q^{87} -936.077 q^{89} -1080.79 q^{90} -285.094 q^{91} -61.5269 q^{92} -190.888 q^{93} -356.360 q^{94} -1232.30 q^{95} -705.826 q^{96} +1063.80 q^{97} -550.083 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q - 3 q^{2} + 19 q^{3} + 181 q^{4} + 52 q^{5} - 104 q^{6} - 12 q^{7} - 57 q^{8} + 477 q^{9} + 30 q^{10} + 122 q^{12} - 494 q^{13} + 181 q^{14} + 264 q^{15} + 961 q^{16} + 33 q^{17} - 28 q^{18} - 107 q^{19}+ \cdots - 2043 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.98792 −1.40994 −0.704971 0.709236i \(-0.749040\pi\)
−0.704971 + 0.709236i \(0.749040\pi\)
\(3\) −2.76589 −0.532296 −0.266148 0.963932i \(-0.585751\pi\)
−0.266148 + 0.963932i \(0.585751\pi\)
\(4\) 7.90349 0.987936
\(5\) −14.0062 −1.25275 −0.626374 0.779522i \(-0.715462\pi\)
−0.626374 + 0.779522i \(0.715462\pi\)
\(6\) 11.0301 0.750506
\(7\) 21.9303 1.18412 0.592062 0.805892i \(-0.298314\pi\)
0.592062 + 0.805892i \(0.298314\pi\)
\(8\) 0.384876 0.0170093
\(9\) −19.3499 −0.716661
\(10\) 55.8554 1.76630
\(11\) 0 0
\(12\) −21.8602 −0.525874
\(13\) −13.0000 −0.277350
\(14\) −87.4562 −1.66955
\(15\) 38.7395 0.666833
\(16\) −64.7628 −1.01192
\(17\) 72.0473 1.02789 0.513943 0.857825i \(-0.328184\pi\)
0.513943 + 0.857825i \(0.328184\pi\)
\(18\) 77.1656 1.01045
\(19\) 87.9826 1.06235 0.531174 0.847263i \(-0.321751\pi\)
0.531174 + 0.847263i \(0.321751\pi\)
\(20\) −110.697 −1.23764
\(21\) −60.6568 −0.630304
\(22\) 0 0
\(23\) −7.78478 −0.0705756 −0.0352878 0.999377i \(-0.511235\pi\)
−0.0352878 + 0.999377i \(0.511235\pi\)
\(24\) −1.06452 −0.00905397
\(25\) 71.1724 0.569379
\(26\) 51.8429 0.391048
\(27\) 128.199 0.913771
\(28\) 173.326 1.16984
\(29\) −59.3694 −0.380159 −0.190080 0.981769i \(-0.560875\pi\)
−0.190080 + 0.981769i \(0.560875\pi\)
\(30\) −154.490 −0.940195
\(31\) 69.0151 0.399854 0.199927 0.979811i \(-0.435929\pi\)
0.199927 + 0.979811i \(0.435929\pi\)
\(32\) 255.190 1.40974
\(33\) 0 0
\(34\) −287.319 −1.44926
\(35\) −307.159 −1.48341
\(36\) −152.931 −0.708016
\(37\) −146.741 −0.652001 −0.326001 0.945370i \(-0.605701\pi\)
−0.326001 + 0.945370i \(0.605701\pi\)
\(38\) −350.868 −1.49785
\(39\) 35.9566 0.147632
\(40\) −5.39063 −0.0213083
\(41\) 465.434 1.77289 0.886446 0.462832i \(-0.153167\pi\)
0.886446 + 0.462832i \(0.153167\pi\)
\(42\) 241.894 0.888692
\(43\) 156.756 0.555933 0.277966 0.960591i \(-0.410340\pi\)
0.277966 + 0.960591i \(0.410340\pi\)
\(44\) 0 0
\(45\) 271.017 0.897796
\(46\) 31.0451 0.0995075
\(47\) 89.3598 0.277329 0.138665 0.990339i \(-0.455719\pi\)
0.138665 + 0.990339i \(0.455719\pi\)
\(48\) 179.127 0.538640
\(49\) 137.937 0.402150
\(50\) −283.830 −0.802791
\(51\) −199.275 −0.547139
\(52\) −102.745 −0.274004
\(53\) 237.991 0.616803 0.308402 0.951256i \(-0.400206\pi\)
0.308402 + 0.951256i \(0.400206\pi\)
\(54\) −511.245 −1.28836
\(55\) 0 0
\(56\) 8.44044 0.0201411
\(57\) −243.350 −0.565483
\(58\) 236.760 0.536002
\(59\) 756.132 1.66847 0.834237 0.551406i \(-0.185908\pi\)
0.834237 + 0.551406i \(0.185908\pi\)
\(60\) 306.177 0.658788
\(61\) −665.147 −1.39612 −0.698061 0.716039i \(-0.745953\pi\)
−0.698061 + 0.716039i \(0.745953\pi\)
\(62\) −275.227 −0.563771
\(63\) −424.348 −0.848616
\(64\) −499.573 −0.975729
\(65\) 182.080 0.347450
\(66\) 0 0
\(67\) −706.040 −1.28741 −0.643705 0.765274i \(-0.722604\pi\)
−0.643705 + 0.765274i \(0.722604\pi\)
\(68\) 569.425 1.01548
\(69\) 21.5318 0.0375671
\(70\) 1224.92 2.09152
\(71\) −93.1411 −0.155688 −0.0778438 0.996966i \(-0.524804\pi\)
−0.0778438 + 0.996966i \(0.524804\pi\)
\(72\) −7.44730 −0.0121899
\(73\) −790.781 −1.26786 −0.633931 0.773390i \(-0.718560\pi\)
−0.633931 + 0.773390i \(0.718560\pi\)
\(74\) 585.191 0.919284
\(75\) −196.855 −0.303078
\(76\) 695.370 1.04953
\(77\) 0 0
\(78\) −143.392 −0.208153
\(79\) −226.942 −0.323203 −0.161601 0.986856i \(-0.551666\pi\)
−0.161601 + 0.986856i \(0.551666\pi\)
\(80\) 907.077 1.26768
\(81\) 167.863 0.230265
\(82\) −1856.11 −2.49968
\(83\) 911.939 1.20600 0.603002 0.797740i \(-0.293971\pi\)
0.603002 + 0.797740i \(0.293971\pi\)
\(84\) −479.400 −0.622700
\(85\) −1009.11 −1.28768
\(86\) −625.131 −0.783833
\(87\) 164.209 0.202357
\(88\) 0 0
\(89\) −936.077 −1.11488 −0.557438 0.830219i \(-0.688215\pi\)
−0.557438 + 0.830219i \(0.688215\pi\)
\(90\) −1080.79 −1.26584
\(91\) −285.094 −0.328417
\(92\) −61.5269 −0.0697242
\(93\) −190.888 −0.212841
\(94\) −356.360 −0.391018
\(95\) −1232.30 −1.33085
\(96\) −705.826 −0.750397
\(97\) 1063.80 1.11353 0.556765 0.830670i \(-0.312042\pi\)
0.556765 + 0.830670i \(0.312042\pi\)
\(98\) −550.083 −0.567008
\(99\) 0 0
\(100\) 562.510 0.562510
\(101\) 60.8741 0.0599722 0.0299861 0.999550i \(-0.490454\pi\)
0.0299861 + 0.999550i \(0.490454\pi\)
\(102\) 794.692 0.771434
\(103\) −2012.17 −1.92491 −0.962453 0.271449i \(-0.912497\pi\)
−0.962453 + 0.271449i \(0.912497\pi\)
\(104\) −5.00339 −0.00471753
\(105\) 849.568 0.789613
\(106\) −949.088 −0.869656
\(107\) −1717.68 −1.55191 −0.775955 0.630788i \(-0.782732\pi\)
−0.775955 + 0.630788i \(0.782732\pi\)
\(108\) 1013.22 0.902748
\(109\) −188.442 −0.165592 −0.0827959 0.996567i \(-0.526385\pi\)
−0.0827959 + 0.996567i \(0.526385\pi\)
\(110\) 0 0
\(111\) 405.869 0.347058
\(112\) −1420.27 −1.19824
\(113\) −963.767 −0.802332 −0.401166 0.916005i \(-0.631395\pi\)
−0.401166 + 0.916005i \(0.631395\pi\)
\(114\) 970.461 0.797298
\(115\) 109.035 0.0884135
\(116\) −469.225 −0.375573
\(117\) 251.548 0.198766
\(118\) −3015.39 −2.35245
\(119\) 1580.02 1.21714
\(120\) 14.9099 0.0113423
\(121\) 0 0
\(122\) 2652.55 1.96845
\(123\) −1287.34 −0.943703
\(124\) 545.460 0.395030
\(125\) 753.918 0.539460
\(126\) 1692.26 1.19650
\(127\) −401.758 −0.280710 −0.140355 0.990101i \(-0.544824\pi\)
−0.140355 + 0.990101i \(0.544824\pi\)
\(128\) −49.2606 −0.0340161
\(129\) −433.571 −0.295921
\(130\) −726.120 −0.489884
\(131\) 1887.43 1.25882 0.629411 0.777072i \(-0.283296\pi\)
0.629411 + 0.777072i \(0.283296\pi\)
\(132\) 0 0
\(133\) 1929.48 1.25795
\(134\) 2815.63 1.81517
\(135\) −1795.57 −1.14473
\(136\) 27.7293 0.0174836
\(137\) 1099.53 0.685687 0.342844 0.939392i \(-0.388610\pi\)
0.342844 + 0.939392i \(0.388610\pi\)
\(138\) −85.8672 −0.0529674
\(139\) 3249.44 1.98284 0.991418 0.130730i \(-0.0417320\pi\)
0.991418 + 0.130730i \(0.0417320\pi\)
\(140\) −2427.63 −1.46551
\(141\) −247.159 −0.147621
\(142\) 371.439 0.219510
\(143\) 0 0
\(144\) 1253.15 0.725203
\(145\) 831.536 0.476244
\(146\) 3153.57 1.78761
\(147\) −381.520 −0.214063
\(148\) −1159.77 −0.644136
\(149\) −1025.14 −0.563642 −0.281821 0.959467i \(-0.590939\pi\)
−0.281821 + 0.959467i \(0.590939\pi\)
\(150\) 785.041 0.427322
\(151\) −2449.66 −1.32020 −0.660102 0.751176i \(-0.729487\pi\)
−0.660102 + 0.751176i \(0.729487\pi\)
\(152\) 33.8624 0.0180698
\(153\) −1394.11 −0.736645
\(154\) 0 0
\(155\) −966.636 −0.500917
\(156\) 284.182 0.145851
\(157\) −2794.24 −1.42041 −0.710207 0.703993i \(-0.751399\pi\)
−0.710207 + 0.703993i \(0.751399\pi\)
\(158\) 905.027 0.455697
\(159\) −658.256 −0.328322
\(160\) −3574.22 −1.76605
\(161\) −170.722 −0.0835703
\(162\) −669.424 −0.324660
\(163\) 340.459 0.163600 0.0818001 0.996649i \(-0.473933\pi\)
0.0818001 + 0.996649i \(0.473933\pi\)
\(164\) 3678.55 1.75150
\(165\) 0 0
\(166\) −3636.74 −1.70040
\(167\) −1918.62 −0.889024 −0.444512 0.895773i \(-0.646623\pi\)
−0.444512 + 0.895773i \(0.646623\pi\)
\(168\) −23.3453 −0.0107210
\(169\) 169.000 0.0769231
\(170\) 4024.23 1.81556
\(171\) −1702.45 −0.761343
\(172\) 1238.92 0.549226
\(173\) 14.9325 0.00656242 0.00328121 0.999995i \(-0.498956\pi\)
0.00328121 + 0.999995i \(0.498956\pi\)
\(174\) −654.852 −0.285312
\(175\) 1560.83 0.674215
\(176\) 0 0
\(177\) −2091.38 −0.888122
\(178\) 3733.00 1.57191
\(179\) −3290.52 −1.37399 −0.686997 0.726661i \(-0.741071\pi\)
−0.686997 + 0.726661i \(0.741071\pi\)
\(180\) 2141.98 0.886966
\(181\) −491.416 −0.201805 −0.100902 0.994896i \(-0.532173\pi\)
−0.100902 + 0.994896i \(0.532173\pi\)
\(182\) 1136.93 0.463049
\(183\) 1839.72 0.743149
\(184\) −2.99617 −0.00120044
\(185\) 2055.28 0.816794
\(186\) 761.246 0.300093
\(187\) 0 0
\(188\) 706.254 0.273983
\(189\) 2811.43 1.08202
\(190\) 4914.30 1.87643
\(191\) −3298.60 −1.24962 −0.624811 0.780776i \(-0.714824\pi\)
−0.624811 + 0.780776i \(0.714824\pi\)
\(192\) 1381.76 0.519376
\(193\) −2058.66 −0.767800 −0.383900 0.923375i \(-0.625419\pi\)
−0.383900 + 0.923375i \(0.625419\pi\)
\(194\) −4242.34 −1.57001
\(195\) −503.613 −0.184946
\(196\) 1090.19 0.397299
\(197\) 3612.04 1.30633 0.653165 0.757215i \(-0.273441\pi\)
0.653165 + 0.757215i \(0.273441\pi\)
\(198\) 0 0
\(199\) 4744.84 1.69021 0.845107 0.534598i \(-0.179537\pi\)
0.845107 + 0.534598i \(0.179537\pi\)
\(200\) 27.3925 0.00968472
\(201\) 1952.83 0.685283
\(202\) −242.761 −0.0845574
\(203\) −1301.99 −0.450156
\(204\) −1574.97 −0.540538
\(205\) −6518.94 −2.22099
\(206\) 8024.38 2.71400
\(207\) 150.634 0.0505788
\(208\) 841.916 0.280656
\(209\) 0 0
\(210\) −3388.01 −1.11331
\(211\) 2045.95 0.667530 0.333765 0.942656i \(-0.391681\pi\)
0.333765 + 0.942656i \(0.391681\pi\)
\(212\) 1880.96 0.609362
\(213\) 257.618 0.0828718
\(214\) 6849.97 2.18810
\(215\) −2195.55 −0.696444
\(216\) 49.3406 0.0155426
\(217\) 1513.52 0.473477
\(218\) 751.492 0.233475
\(219\) 2187.21 0.674878
\(220\) 0 0
\(221\) −936.615 −0.285084
\(222\) −1618.57 −0.489331
\(223\) −1193.57 −0.358419 −0.179210 0.983811i \(-0.557354\pi\)
−0.179210 + 0.983811i \(0.557354\pi\)
\(224\) 5596.38 1.66930
\(225\) −1377.17 −0.408052
\(226\) 3843.42 1.13124
\(227\) −163.172 −0.0477096 −0.0238548 0.999715i \(-0.507594\pi\)
−0.0238548 + 0.999715i \(0.507594\pi\)
\(228\) −1923.32 −0.558661
\(229\) −1012.59 −0.292200 −0.146100 0.989270i \(-0.546672\pi\)
−0.146100 + 0.989270i \(0.546672\pi\)
\(230\) −434.822 −0.124658
\(231\) 0 0
\(232\) −22.8498 −0.00646623
\(233\) 5696.86 1.60178 0.800888 0.598814i \(-0.204361\pi\)
0.800888 + 0.598814i \(0.204361\pi\)
\(234\) −1003.15 −0.280249
\(235\) −1251.59 −0.347424
\(236\) 5976.08 1.64835
\(237\) 627.697 0.172039
\(238\) −6300.99 −1.71610
\(239\) 1013.13 0.274202 0.137101 0.990557i \(-0.456222\pi\)
0.137101 + 0.990557i \(0.456222\pi\)
\(240\) −2508.88 −0.674780
\(241\) 6252.27 1.67114 0.835569 0.549386i \(-0.185138\pi\)
0.835569 + 0.549386i \(0.185138\pi\)
\(242\) 0 0
\(243\) −3925.65 −1.03634
\(244\) −5256.98 −1.37928
\(245\) −1931.97 −0.503793
\(246\) 5133.80 1.33057
\(247\) −1143.77 −0.294642
\(248\) 26.5623 0.00680123
\(249\) −2522.32 −0.641951
\(250\) −3006.56 −0.760607
\(251\) 954.792 0.240103 0.120052 0.992768i \(-0.461694\pi\)
0.120052 + 0.992768i \(0.461694\pi\)
\(252\) −3353.83 −0.838378
\(253\) 0 0
\(254\) 1602.18 0.395785
\(255\) 2791.08 0.685427
\(256\) 4193.03 1.02369
\(257\) 8101.41 1.96635 0.983175 0.182667i \(-0.0584729\pi\)
0.983175 + 0.182667i \(0.0584729\pi\)
\(258\) 1729.04 0.417231
\(259\) −3218.07 −0.772051
\(260\) 1439.07 0.343258
\(261\) 1148.79 0.272445
\(262\) −7526.92 −1.77487
\(263\) −4836.19 −1.13389 −0.566944 0.823756i \(-0.691874\pi\)
−0.566944 + 0.823756i \(0.691874\pi\)
\(264\) 0 0
\(265\) −3333.34 −0.772699
\(266\) −7694.63 −1.77364
\(267\) 2589.08 0.593443
\(268\) −5580.18 −1.27188
\(269\) 630.562 0.142922 0.0714611 0.997443i \(-0.477234\pi\)
0.0714611 + 0.997443i \(0.477234\pi\)
\(270\) 7160.58 1.61400
\(271\) −2035.41 −0.456244 −0.228122 0.973633i \(-0.573259\pi\)
−0.228122 + 0.973633i \(0.573259\pi\)
\(272\) −4665.99 −1.04014
\(273\) 788.538 0.174815
\(274\) −4384.83 −0.966779
\(275\) 0 0
\(276\) 170.177 0.0371139
\(277\) 2761.67 0.599034 0.299517 0.954091i \(-0.403174\pi\)
0.299517 + 0.954091i \(0.403174\pi\)
\(278\) −12958.5 −2.79568
\(279\) −1335.43 −0.286560
\(280\) −118.218 −0.0252317
\(281\) 2663.84 0.565522 0.282761 0.959190i \(-0.408750\pi\)
0.282761 + 0.959190i \(0.408750\pi\)
\(282\) 985.651 0.208137
\(283\) 3276.34 0.688191 0.344096 0.938935i \(-0.388186\pi\)
0.344096 + 0.938935i \(0.388186\pi\)
\(284\) −736.140 −0.153809
\(285\) 3408.40 0.708408
\(286\) 0 0
\(287\) 10207.1 2.09932
\(288\) −4937.88 −1.01030
\(289\) 277.819 0.0565477
\(290\) −3316.10 −0.671476
\(291\) −2942.35 −0.592727
\(292\) −6249.93 −1.25257
\(293\) 9125.53 1.81952 0.909760 0.415134i \(-0.136265\pi\)
0.909760 + 0.415134i \(0.136265\pi\)
\(294\) 1521.47 0.301816
\(295\) −10590.5 −2.09018
\(296\) −56.4771 −0.0110901
\(297\) 0 0
\(298\) 4088.17 0.794703
\(299\) 101.202 0.0195741
\(300\) −1555.84 −0.299422
\(301\) 3437.71 0.658294
\(302\) 9769.05 1.86141
\(303\) −168.371 −0.0319230
\(304\) −5698.00 −1.07501
\(305\) 9316.16 1.74899
\(306\) 5559.58 1.03863
\(307\) 704.496 0.130970 0.0654849 0.997854i \(-0.479141\pi\)
0.0654849 + 0.997854i \(0.479141\pi\)
\(308\) 0 0
\(309\) 5565.45 1.02462
\(310\) 3854.87 0.706264
\(311\) −5288.36 −0.964230 −0.482115 0.876108i \(-0.660131\pi\)
−0.482115 + 0.876108i \(0.660131\pi\)
\(312\) 13.8388 0.00251112
\(313\) 3054.95 0.551681 0.275840 0.961203i \(-0.411044\pi\)
0.275840 + 0.961203i \(0.411044\pi\)
\(314\) 11143.2 2.00270
\(315\) 5943.48 1.06310
\(316\) −1793.64 −0.319304
\(317\) 2867.34 0.508031 0.254016 0.967200i \(-0.418249\pi\)
0.254016 + 0.967200i \(0.418249\pi\)
\(318\) 2625.07 0.462914
\(319\) 0 0
\(320\) 6997.10 1.22234
\(321\) 4750.92 0.826076
\(322\) 680.827 0.117829
\(323\) 6338.91 1.09197
\(324\) 1326.70 0.227487
\(325\) −925.241 −0.157917
\(326\) −1357.72 −0.230667
\(327\) 521.211 0.0881438
\(328\) 179.134 0.0301556
\(329\) 1959.69 0.328392
\(330\) 0 0
\(331\) −417.323 −0.0692996 −0.0346498 0.999400i \(-0.511032\pi\)
−0.0346498 + 0.999400i \(0.511032\pi\)
\(332\) 7207.50 1.19145
\(333\) 2839.41 0.467264
\(334\) 7651.28 1.25347
\(335\) 9888.90 1.61280
\(336\) 3928.30 0.637816
\(337\) 372.741 0.0602507 0.0301254 0.999546i \(-0.490409\pi\)
0.0301254 + 0.999546i \(0.490409\pi\)
\(338\) −673.958 −0.108457
\(339\) 2665.67 0.427078
\(340\) −7975.46 −1.27215
\(341\) 0 0
\(342\) 6789.24 1.07345
\(343\) −4497.08 −0.707929
\(344\) 60.3318 0.00945602
\(345\) −301.578 −0.0470621
\(346\) −59.5497 −0.00925264
\(347\) 10140.9 1.56886 0.784428 0.620220i \(-0.212957\pi\)
0.784428 + 0.620220i \(0.212957\pi\)
\(348\) 1297.82 0.199916
\(349\) 12457.3 1.91067 0.955334 0.295529i \(-0.0954960\pi\)
0.955334 + 0.295529i \(0.0954960\pi\)
\(350\) −6224.46 −0.950604
\(351\) −1666.58 −0.253435
\(352\) 0 0
\(353\) −6489.19 −0.978427 −0.489213 0.872164i \(-0.662716\pi\)
−0.489213 + 0.872164i \(0.662716\pi\)
\(354\) 8340.24 1.25220
\(355\) 1304.55 0.195037
\(356\) −7398.27 −1.10143
\(357\) −4370.16 −0.647880
\(358\) 13122.3 1.93725
\(359\) −9703.27 −1.42652 −0.713258 0.700902i \(-0.752781\pi\)
−0.713258 + 0.700902i \(0.752781\pi\)
\(360\) 104.308 0.0152709
\(361\) 881.943 0.128582
\(362\) 1959.73 0.284533
\(363\) 0 0
\(364\) −2253.24 −0.324455
\(365\) 11075.8 1.58831
\(366\) −7336.67 −1.04780
\(367\) 3648.50 0.518938 0.259469 0.965751i \(-0.416452\pi\)
0.259469 + 0.965751i \(0.416452\pi\)
\(368\) 504.164 0.0714167
\(369\) −9006.08 −1.27056
\(370\) −8196.27 −1.15163
\(371\) 5219.21 0.730371
\(372\) −1508.68 −0.210273
\(373\) −10383.5 −1.44139 −0.720695 0.693252i \(-0.756177\pi\)
−0.720695 + 0.693252i \(0.756177\pi\)
\(374\) 0 0
\(375\) −2085.25 −0.287152
\(376\) 34.3924 0.00471717
\(377\) 771.802 0.105437
\(378\) −11211.8 −1.52558
\(379\) 5982.07 0.810761 0.405380 0.914148i \(-0.367139\pi\)
0.405380 + 0.914148i \(0.367139\pi\)
\(380\) −9739.46 −1.31480
\(381\) 1111.22 0.149421
\(382\) 13154.5 1.76190
\(383\) 5961.49 0.795346 0.397673 0.917527i \(-0.369818\pi\)
0.397673 + 0.917527i \(0.369818\pi\)
\(384\) 136.249 0.0181066
\(385\) 0 0
\(386\) 8209.76 1.08255
\(387\) −3033.21 −0.398416
\(388\) 8407.73 1.10010
\(389\) 1644.85 0.214389 0.107195 0.994238i \(-0.465813\pi\)
0.107195 + 0.994238i \(0.465813\pi\)
\(390\) 2008.37 0.260763
\(391\) −560.873 −0.0725436
\(392\) 53.0888 0.00684028
\(393\) −5220.43 −0.670066
\(394\) −14404.5 −1.84185
\(395\) 3178.59 0.404892
\(396\) 0 0
\(397\) 11314.3 1.43035 0.715177 0.698943i \(-0.246346\pi\)
0.715177 + 0.698943i \(0.246346\pi\)
\(398\) −18922.0 −2.38310
\(399\) −5336.74 −0.669602
\(400\) −4609.32 −0.576165
\(401\) 6274.46 0.781375 0.390688 0.920523i \(-0.372237\pi\)
0.390688 + 0.920523i \(0.372237\pi\)
\(402\) −7787.72 −0.966209
\(403\) −897.197 −0.110900
\(404\) 481.118 0.0592488
\(405\) −2351.11 −0.288464
\(406\) 5192.22 0.634693
\(407\) 0 0
\(408\) −76.6962 −0.00930644
\(409\) 3817.55 0.461530 0.230765 0.973009i \(-0.425877\pi\)
0.230765 + 0.973009i \(0.425877\pi\)
\(410\) 25997.0 3.13146
\(411\) −3041.18 −0.364988
\(412\) −15903.2 −1.90168
\(413\) 16582.2 1.97568
\(414\) −600.717 −0.0713132
\(415\) −12772.8 −1.51082
\(416\) −3317.46 −0.390991
\(417\) −8987.60 −1.05546
\(418\) 0 0
\(419\) 8909.28 1.03878 0.519388 0.854539i \(-0.326160\pi\)
0.519388 + 0.854539i \(0.326160\pi\)
\(420\) 6714.55 0.780087
\(421\) 6642.54 0.768973 0.384486 0.923131i \(-0.374379\pi\)
0.384486 + 0.923131i \(0.374379\pi\)
\(422\) −8159.07 −0.941178
\(423\) −1729.10 −0.198751
\(424\) 91.5970 0.0104914
\(425\) 5127.78 0.585256
\(426\) −1027.36 −0.116844
\(427\) −14586.9 −1.65318
\(428\) −13575.7 −1.53319
\(429\) 0 0
\(430\) 8755.69 0.981946
\(431\) −3196.51 −0.357240 −0.178620 0.983918i \(-0.557163\pi\)
−0.178620 + 0.983918i \(0.557163\pi\)
\(432\) −8302.50 −0.924662
\(433\) 14183.1 1.57413 0.787064 0.616871i \(-0.211600\pi\)
0.787064 + 0.616871i \(0.211600\pi\)
\(434\) −6035.80 −0.667575
\(435\) −2299.94 −0.253502
\(436\) −1489.35 −0.163594
\(437\) −684.925 −0.0749758
\(438\) −8722.43 −0.951538
\(439\) 12267.1 1.33366 0.666830 0.745210i \(-0.267651\pi\)
0.666830 + 0.745210i \(0.267651\pi\)
\(440\) 0 0
\(441\) −2669.07 −0.288205
\(442\) 3735.15 0.401952
\(443\) 5691.71 0.610432 0.305216 0.952283i \(-0.401271\pi\)
0.305216 + 0.952283i \(0.401271\pi\)
\(444\) 3207.78 0.342871
\(445\) 13110.8 1.39666
\(446\) 4759.87 0.505351
\(447\) 2835.42 0.300024
\(448\) −10955.8 −1.15538
\(449\) 9363.89 0.984207 0.492104 0.870537i \(-0.336228\pi\)
0.492104 + 0.870537i \(0.336228\pi\)
\(450\) 5492.06 0.575329
\(451\) 0 0
\(452\) −7617.12 −0.792653
\(453\) 6775.50 0.702738
\(454\) 650.715 0.0672678
\(455\) 3993.07 0.411424
\(456\) −93.6597 −0.00961846
\(457\) −15970.1 −1.63468 −0.817342 0.576153i \(-0.804553\pi\)
−0.817342 + 0.576153i \(0.804553\pi\)
\(458\) 4038.12 0.411985
\(459\) 9236.37 0.939252
\(460\) 861.756 0.0873469
\(461\) −3190.62 −0.322347 −0.161174 0.986926i \(-0.551528\pi\)
−0.161174 + 0.986926i \(0.551528\pi\)
\(462\) 0 0
\(463\) −7312.92 −0.734040 −0.367020 0.930213i \(-0.619622\pi\)
−0.367020 + 0.930213i \(0.619622\pi\)
\(464\) 3844.92 0.384690
\(465\) 2673.61 0.266636
\(466\) −22718.6 −2.25841
\(467\) 4148.42 0.411062 0.205531 0.978651i \(-0.434108\pi\)
0.205531 + 0.978651i \(0.434108\pi\)
\(468\) 1988.11 0.196368
\(469\) −15483.7 −1.52445
\(470\) 4991.23 0.489847
\(471\) 7728.57 0.756080
\(472\) 291.017 0.0283795
\(473\) 0 0
\(474\) −2503.21 −0.242565
\(475\) 6261.93 0.604878
\(476\) 12487.7 1.20246
\(477\) −4605.09 −0.442039
\(478\) −4040.30 −0.386609
\(479\) −11439.8 −1.09122 −0.545612 0.838038i \(-0.683703\pi\)
−0.545612 + 0.838038i \(0.683703\pi\)
\(480\) 9885.91 0.940058
\(481\) 1907.63 0.180833
\(482\) −24933.5 −2.35621
\(483\) 472.199 0.0444841
\(484\) 0 0
\(485\) −14899.7 −1.39497
\(486\) 15655.2 1.46118
\(487\) −15956.5 −1.48472 −0.742358 0.670003i \(-0.766293\pi\)
−0.742358 + 0.670003i \(0.766293\pi\)
\(488\) −255.999 −0.0237470
\(489\) −941.673 −0.0870836
\(490\) 7704.55 0.710319
\(491\) 1092.59 0.100423 0.0502116 0.998739i \(-0.484010\pi\)
0.0502116 + 0.998739i \(0.484010\pi\)
\(492\) −10174.5 −0.932318
\(493\) −4277.40 −0.390760
\(494\) 4561.28 0.415428
\(495\) 0 0
\(496\) −4469.61 −0.404620
\(497\) −2042.61 −0.184353
\(498\) 10058.8 0.905113
\(499\) 13033.5 1.16926 0.584630 0.811300i \(-0.301240\pi\)
0.584630 + 0.811300i \(0.301240\pi\)
\(500\) 5958.58 0.532952
\(501\) 5306.68 0.473223
\(502\) −3807.63 −0.338532
\(503\) 10099.2 0.895227 0.447613 0.894227i \(-0.352274\pi\)
0.447613 + 0.894227i \(0.352274\pi\)
\(504\) −163.321 −0.0144343
\(505\) −852.612 −0.0751301
\(506\) 0 0
\(507\) −467.435 −0.0409458
\(508\) −3175.29 −0.277324
\(509\) −656.690 −0.0571852 −0.0285926 0.999591i \(-0.509103\pi\)
−0.0285926 + 0.999591i \(0.509103\pi\)
\(510\) −11130.6 −0.966413
\(511\) −17342.1 −1.50131
\(512\) −16327.4 −1.40933
\(513\) 11279.2 0.970743
\(514\) −32307.7 −2.77244
\(515\) 28182.8 2.41142
\(516\) −3426.72 −0.292351
\(517\) 0 0
\(518\) 12833.4 1.08855
\(519\) −41.3017 −0.00349315
\(520\) 70.0782 0.00590987
\(521\) −17612.0 −1.48099 −0.740493 0.672064i \(-0.765408\pi\)
−0.740493 + 0.672064i \(0.765408\pi\)
\(522\) −4581.27 −0.384132
\(523\) −4314.06 −0.360689 −0.180345 0.983603i \(-0.557721\pi\)
−0.180345 + 0.983603i \(0.557721\pi\)
\(524\) 14917.3 1.24364
\(525\) −4317.08 −0.358882
\(526\) 19286.3 1.59872
\(527\) 4972.36 0.411004
\(528\) 0 0
\(529\) −12106.4 −0.995019
\(530\) 13293.1 1.08946
\(531\) −14631.0 −1.19573
\(532\) 15249.7 1.24278
\(533\) −6050.64 −0.491712
\(534\) −10325.1 −0.836721
\(535\) 24058.1 1.94415
\(536\) −271.738 −0.0218979
\(537\) 9101.21 0.731371
\(538\) −2514.63 −0.201512
\(539\) 0 0
\(540\) −14191.3 −1.13092
\(541\) −12190.4 −0.968773 −0.484386 0.874854i \(-0.660957\pi\)
−0.484386 + 0.874854i \(0.660957\pi\)
\(542\) 8117.04 0.643278
\(543\) 1359.20 0.107420
\(544\) 18385.7 1.44905
\(545\) 2639.35 0.207445
\(546\) −3144.62 −0.246479
\(547\) 25117.8 1.96336 0.981680 0.190536i \(-0.0610227\pi\)
0.981680 + 0.190536i \(0.0610227\pi\)
\(548\) 8690.12 0.677415
\(549\) 12870.5 1.00055
\(550\) 0 0
\(551\) −5223.47 −0.403861
\(552\) 8.28709 0.000638989 0
\(553\) −4976.91 −0.382712
\(554\) −11013.3 −0.844603
\(555\) −5684.67 −0.434776
\(556\) 25681.9 1.95892
\(557\) −13898.6 −1.05728 −0.528639 0.848847i \(-0.677297\pi\)
−0.528639 + 0.848847i \(0.677297\pi\)
\(558\) 5325.60 0.404033
\(559\) −2037.83 −0.154188
\(560\) 19892.5 1.50109
\(561\) 0 0
\(562\) −10623.2 −0.797353
\(563\) −7221.55 −0.540590 −0.270295 0.962778i \(-0.587121\pi\)
−0.270295 + 0.962778i \(0.587121\pi\)
\(564\) −1953.42 −0.145840
\(565\) 13498.7 1.00512
\(566\) −13065.8 −0.970310
\(567\) 3681.28 0.272662
\(568\) −35.8478 −0.00264813
\(569\) 177.828 0.0131018 0.00655091 0.999979i \(-0.497915\pi\)
0.00655091 + 0.999979i \(0.497915\pi\)
\(570\) −13592.4 −0.998814
\(571\) −9260.20 −0.678682 −0.339341 0.940663i \(-0.610204\pi\)
−0.339341 + 0.940663i \(0.610204\pi\)
\(572\) 0 0
\(573\) 9123.55 0.665169
\(574\) −40705.1 −2.95993
\(575\) −554.061 −0.0401843
\(576\) 9666.67 0.699267
\(577\) −831.744 −0.0600104 −0.0300052 0.999550i \(-0.509552\pi\)
−0.0300052 + 0.999550i \(0.509552\pi\)
\(578\) −1107.92 −0.0797290
\(579\) 5694.02 0.408697
\(580\) 6572.04 0.470498
\(581\) 19999.1 1.42806
\(582\) 11733.9 0.835711
\(583\) 0 0
\(584\) −304.353 −0.0215654
\(585\) −3523.22 −0.249004
\(586\) −36391.9 −2.56542
\(587\) −24833.1 −1.74612 −0.873061 0.487611i \(-0.837868\pi\)
−0.873061 + 0.487611i \(0.837868\pi\)
\(588\) −3015.34 −0.211480
\(589\) 6072.13 0.424784
\(590\) 42234.0 2.94703
\(591\) −9990.50 −0.695354
\(592\) 9503.35 0.659772
\(593\) 7993.15 0.553523 0.276762 0.960939i \(-0.410739\pi\)
0.276762 + 0.960939i \(0.410739\pi\)
\(594\) 0 0
\(595\) −22130.0 −1.52477
\(596\) −8102.18 −0.556843
\(597\) −13123.7 −0.899693
\(598\) −403.586 −0.0275984
\(599\) 13500.6 0.920902 0.460451 0.887685i \(-0.347688\pi\)
0.460451 + 0.887685i \(0.347688\pi\)
\(600\) −75.7647 −0.00515514
\(601\) −8880.38 −0.602726 −0.301363 0.953510i \(-0.597442\pi\)
−0.301363 + 0.953510i \(0.597442\pi\)
\(602\) −13709.3 −0.928156
\(603\) 13661.8 0.922637
\(604\) −19360.9 −1.30428
\(605\) 0 0
\(606\) 671.450 0.0450095
\(607\) −239.150 −0.0159914 −0.00799572 0.999968i \(-0.502545\pi\)
−0.00799572 + 0.999968i \(0.502545\pi\)
\(608\) 22452.3 1.49763
\(609\) 3601.15 0.239616
\(610\) −37152.1 −2.46597
\(611\) −1161.68 −0.0769172
\(612\) −11018.3 −0.727759
\(613\) −1699.06 −0.111949 −0.0559743 0.998432i \(-0.517826\pi\)
−0.0559743 + 0.998432i \(0.517826\pi\)
\(614\) −2809.47 −0.184660
\(615\) 18030.7 1.18222
\(616\) 0 0
\(617\) 29406.1 1.91871 0.959355 0.282201i \(-0.0910646\pi\)
0.959355 + 0.282201i \(0.0910646\pi\)
\(618\) −22194.5 −1.44465
\(619\) −15649.0 −1.01613 −0.508067 0.861317i \(-0.669640\pi\)
−0.508067 + 0.861317i \(0.669640\pi\)
\(620\) −7639.80 −0.494874
\(621\) −997.998 −0.0644900
\(622\) 21089.6 1.35951
\(623\) −20528.4 −1.32015
\(624\) −2328.65 −0.149392
\(625\) −19456.0 −1.24519
\(626\) −12182.9 −0.777838
\(627\) 0 0
\(628\) −22084.3 −1.40328
\(629\) −10572.3 −0.670183
\(630\) −23702.1 −1.49891
\(631\) −4387.50 −0.276804 −0.138402 0.990376i \(-0.544197\pi\)
−0.138402 + 0.990376i \(0.544197\pi\)
\(632\) −87.3447 −0.00549744
\(633\) −5658.86 −0.355323
\(634\) −11434.7 −0.716294
\(635\) 5627.08 0.351659
\(636\) −5202.52 −0.324361
\(637\) −1793.19 −0.111536
\(638\) 0 0
\(639\) 1802.27 0.111575
\(640\) 689.951 0.0426136
\(641\) −7916.94 −0.487832 −0.243916 0.969796i \(-0.578432\pi\)
−0.243916 + 0.969796i \(0.578432\pi\)
\(642\) −18946.3 −1.16472
\(643\) −15655.6 −0.960182 −0.480091 0.877219i \(-0.659396\pi\)
−0.480091 + 0.877219i \(0.659396\pi\)
\(644\) −1349.30 −0.0825621
\(645\) 6072.66 0.370714
\(646\) −25279.1 −1.53962
\(647\) 7568.09 0.459864 0.229932 0.973207i \(-0.426150\pi\)
0.229932 + 0.973207i \(0.426150\pi\)
\(648\) 64.6064 0.00391664
\(649\) 0 0
\(650\) 3689.78 0.222654
\(651\) −4186.23 −0.252030
\(652\) 2690.82 0.161626
\(653\) 7199.90 0.431476 0.215738 0.976451i \(-0.430784\pi\)
0.215738 + 0.976451i \(0.430784\pi\)
\(654\) −2078.55 −0.124278
\(655\) −26435.7 −1.57699
\(656\) −30142.8 −1.79402
\(657\) 15301.5 0.908628
\(658\) −7815.07 −0.463014
\(659\) −14818.4 −0.875937 −0.437969 0.898990i \(-0.644302\pi\)
−0.437969 + 0.898990i \(0.644302\pi\)
\(660\) 0 0
\(661\) 7810.40 0.459591 0.229795 0.973239i \(-0.426194\pi\)
0.229795 + 0.973239i \(0.426194\pi\)
\(662\) 1664.25 0.0977084
\(663\) 2590.57 0.151749
\(664\) 350.983 0.0205133
\(665\) −27024.7 −1.57590
\(666\) −11323.4 −0.658815
\(667\) 462.177 0.0268300
\(668\) −15163.8 −0.878299
\(669\) 3301.29 0.190785
\(670\) −39436.1 −2.27396
\(671\) 0 0
\(672\) −15479.0 −0.888563
\(673\) 25053.8 1.43500 0.717498 0.696560i \(-0.245287\pi\)
0.717498 + 0.696560i \(0.245287\pi\)
\(674\) −1486.46 −0.0849500
\(675\) 9124.20 0.520282
\(676\) 1335.69 0.0759951
\(677\) 28543.2 1.62039 0.810196 0.586159i \(-0.199361\pi\)
0.810196 + 0.586159i \(0.199361\pi\)
\(678\) −10630.5 −0.602155
\(679\) 23329.4 1.31856
\(680\) −388.381 −0.0219025
\(681\) 451.315 0.0253956
\(682\) 0 0
\(683\) −328.421 −0.0183993 −0.00919963 0.999958i \(-0.502928\pi\)
−0.00919963 + 0.999958i \(0.502928\pi\)
\(684\) −13455.3 −0.752159
\(685\) −15400.2 −0.858994
\(686\) 17934.0 0.998138
\(687\) 2800.71 0.155537
\(688\) −10152.0 −0.562559
\(689\) −3093.88 −0.171070
\(690\) 1202.67 0.0663548
\(691\) 12861.1 0.708046 0.354023 0.935237i \(-0.384813\pi\)
0.354023 + 0.935237i \(0.384813\pi\)
\(692\) 118.019 0.00648326
\(693\) 0 0
\(694\) −40441.1 −2.21200
\(695\) −45512.2 −2.48399
\(696\) 63.2001 0.00344195
\(697\) 33533.3 1.82233
\(698\) −49678.6 −2.69393
\(699\) −15756.9 −0.852618
\(700\) 12336.0 0.666082
\(701\) −27498.4 −1.48160 −0.740800 0.671725i \(-0.765554\pi\)
−0.740800 + 0.671725i \(0.765554\pi\)
\(702\) 6646.19 0.357328
\(703\) −12910.6 −0.692652
\(704\) 0 0
\(705\) 3461.75 0.184932
\(706\) 25878.3 1.37952
\(707\) 1334.99 0.0710146
\(708\) −16529.2 −0.877408
\(709\) −17149.3 −0.908401 −0.454201 0.890899i \(-0.650075\pi\)
−0.454201 + 0.890899i \(0.650075\pi\)
\(710\) −5202.43 −0.274991
\(711\) 4391.30 0.231627
\(712\) −360.273 −0.0189632
\(713\) −537.267 −0.0282199
\(714\) 17427.8 0.913474
\(715\) 0 0
\(716\) −26006.6 −1.35742
\(717\) −2802.22 −0.145956
\(718\) 38695.8 2.01130
\(719\) −22358.8 −1.15973 −0.579863 0.814714i \(-0.696894\pi\)
−0.579863 + 0.814714i \(0.696894\pi\)
\(720\) −17551.8 −0.908497
\(721\) −44127.5 −2.27933
\(722\) −3517.12 −0.181293
\(723\) −17293.1 −0.889539
\(724\) −3883.90 −0.199370
\(725\) −4225.46 −0.216455
\(726\) 0 0
\(727\) 2092.48 0.106748 0.0533740 0.998575i \(-0.483002\pi\)
0.0533740 + 0.998575i \(0.483002\pi\)
\(728\) −109.726 −0.00558614
\(729\) 6325.62 0.321375
\(730\) −44169.4 −2.23943
\(731\) 11293.9 0.571435
\(732\) 14540.2 0.734184
\(733\) 30294.7 1.52655 0.763274 0.646075i \(-0.223591\pi\)
0.763274 + 0.646075i \(0.223591\pi\)
\(734\) −14549.9 −0.731672
\(735\) 5343.63 0.268167
\(736\) −1986.59 −0.0994930
\(737\) 0 0
\(738\) 35915.5 1.79142
\(739\) 25035.7 1.24622 0.623109 0.782135i \(-0.285869\pi\)
0.623109 + 0.782135i \(0.285869\pi\)
\(740\) 16243.8 0.806940
\(741\) 3163.55 0.156837
\(742\) −20813.8 −1.02978
\(743\) −30841.6 −1.52284 −0.761418 0.648261i \(-0.775497\pi\)
−0.761418 + 0.648261i \(0.775497\pi\)
\(744\) −73.4683 −0.00362027
\(745\) 14358.3 0.706102
\(746\) 41408.6 2.03228
\(747\) −17645.9 −0.864296
\(748\) 0 0
\(749\) −37669.2 −1.83766
\(750\) 8315.82 0.404868
\(751\) 29409.4 1.42898 0.714491 0.699645i \(-0.246658\pi\)
0.714491 + 0.699645i \(0.246658\pi\)
\(752\) −5787.19 −0.280634
\(753\) −2640.85 −0.127806
\(754\) −3077.88 −0.148660
\(755\) 34310.3 1.65388
\(756\) 22220.1 1.06897
\(757\) 335.724 0.0161190 0.00805951 0.999968i \(-0.497435\pi\)
0.00805951 + 0.999968i \(0.497435\pi\)
\(758\) −23856.0 −1.14313
\(759\) 0 0
\(760\) −474.282 −0.0226369
\(761\) −17446.5 −0.831058 −0.415529 0.909580i \(-0.636404\pi\)
−0.415529 + 0.909580i \(0.636404\pi\)
\(762\) −4431.44 −0.210675
\(763\) −4132.59 −0.196081
\(764\) −26070.4 −1.23455
\(765\) 19526.1 0.922831
\(766\) −23773.9 −1.12139
\(767\) −9829.71 −0.462752
\(768\) −11597.5 −0.544905
\(769\) −3547.25 −0.166342 −0.0831712 0.996535i \(-0.526505\pi\)
−0.0831712 + 0.996535i \(0.526505\pi\)
\(770\) 0 0
\(771\) −22407.6 −1.04668
\(772\) −16270.6 −0.758537
\(773\) 16503.0 0.767879 0.383940 0.923358i \(-0.374567\pi\)
0.383940 + 0.923358i \(0.374567\pi\)
\(774\) 12096.2 0.561743
\(775\) 4911.97 0.227669
\(776\) 409.431 0.0189403
\(777\) 8900.83 0.410959
\(778\) −6559.55 −0.302276
\(779\) 40950.1 1.88343
\(780\) −3980.30 −0.182715
\(781\) 0 0
\(782\) 2236.71 0.102282
\(783\) −7611.07 −0.347379
\(784\) −8933.21 −0.406943
\(785\) 39136.6 1.77942
\(786\) 20818.6 0.944754
\(787\) 12301.4 0.557174 0.278587 0.960411i \(-0.410134\pi\)
0.278587 + 0.960411i \(0.410134\pi\)
\(788\) 28547.7 1.29057
\(789\) 13376.4 0.603563
\(790\) −12676.0 −0.570874
\(791\) −21135.7 −0.950061
\(792\) 0 0
\(793\) 8646.91 0.387214
\(794\) −45120.7 −2.01672
\(795\) 9219.64 0.411304
\(796\) 37500.8 1.66982
\(797\) 29385.4 1.30600 0.653002 0.757356i \(-0.273509\pi\)
0.653002 + 0.757356i \(0.273509\pi\)
\(798\) 21282.5 0.944100
\(799\) 6438.14 0.285062
\(800\) 18162.4 0.802674
\(801\) 18112.9 0.798988
\(802\) −25022.0 −1.10169
\(803\) 0 0
\(804\) 15434.2 0.677016
\(805\) 2391.16 0.104693
\(806\) 3577.95 0.156362
\(807\) −1744.07 −0.0760768
\(808\) 23.4290 0.00102008
\(809\) 17689.0 0.768742 0.384371 0.923179i \(-0.374418\pi\)
0.384371 + 0.923179i \(0.374418\pi\)
\(810\) 9376.05 0.406717
\(811\) 14454.9 0.625870 0.312935 0.949775i \(-0.398688\pi\)
0.312935 + 0.949775i \(0.398688\pi\)
\(812\) −10290.2 −0.444725
\(813\) 5629.71 0.242857
\(814\) 0 0
\(815\) −4768.52 −0.204950
\(816\) 12905.6 0.553660
\(817\) 13791.8 0.590594
\(818\) −15224.1 −0.650731
\(819\) 5516.52 0.235364
\(820\) −51522.4 −2.19419
\(821\) −20081.4 −0.853648 −0.426824 0.904335i \(-0.640368\pi\)
−0.426824 + 0.904335i \(0.640368\pi\)
\(822\) 12128.0 0.514612
\(823\) −11680.6 −0.494728 −0.247364 0.968923i \(-0.579564\pi\)
−0.247364 + 0.968923i \(0.579564\pi\)
\(824\) −774.437 −0.0327413
\(825\) 0 0
\(826\) −66128.4 −2.78560
\(827\) −17617.3 −0.740764 −0.370382 0.928880i \(-0.620773\pi\)
−0.370382 + 0.928880i \(0.620773\pi\)
\(828\) 1190.54 0.0499686
\(829\) 19029.6 0.797256 0.398628 0.917113i \(-0.369486\pi\)
0.398628 + 0.917113i \(0.369486\pi\)
\(830\) 50936.7 2.13017
\(831\) −7638.46 −0.318863
\(832\) 6494.45 0.270618
\(833\) 9938.03 0.413364
\(834\) 35841.8 1.48813
\(835\) 26872.4 1.11372
\(836\) 0 0
\(837\) 8847.64 0.365375
\(838\) −35529.5 −1.46461
\(839\) −26848.2 −1.10477 −0.552386 0.833588i \(-0.686283\pi\)
−0.552386 + 0.833588i \(0.686283\pi\)
\(840\) 326.978 0.0134307
\(841\) −20864.3 −0.855479
\(842\) −26489.9 −1.08421
\(843\) −7367.90 −0.301025
\(844\) 16170.1 0.659477
\(845\) −2367.04 −0.0963653
\(846\) 6895.51 0.280227
\(847\) 0 0
\(848\) −15412.9 −0.624154
\(849\) −9061.99 −0.366321
\(850\) −20449.2 −0.825177
\(851\) 1142.35 0.0460154
\(852\) 2036.08 0.0818721
\(853\) −7605.31 −0.305276 −0.152638 0.988282i \(-0.548777\pi\)
−0.152638 + 0.988282i \(0.548777\pi\)
\(854\) 58171.2 2.33089
\(855\) 23844.8 0.953772
\(856\) −661.094 −0.0263969
\(857\) 48579.1 1.93632 0.968162 0.250324i \(-0.0805370\pi\)
0.968162 + 0.250324i \(0.0805370\pi\)
\(858\) 0 0
\(859\) 23198.7 0.921453 0.460727 0.887542i \(-0.347589\pi\)
0.460727 + 0.887542i \(0.347589\pi\)
\(860\) −17352.5 −0.688042
\(861\) −28231.7 −1.11746
\(862\) 12747.4 0.503688
\(863\) −28873.7 −1.13890 −0.569450 0.822026i \(-0.692844\pi\)
−0.569450 + 0.822026i \(0.692844\pi\)
\(864\) 32714.9 1.28818
\(865\) −209.147 −0.00822107
\(866\) −56561.1 −2.21943
\(867\) −768.417 −0.0301001
\(868\) 11962.1 0.467765
\(869\) 0 0
\(870\) 9171.96 0.357424
\(871\) 9178.52 0.357063
\(872\) −72.5269 −0.00281660
\(873\) −20584.4 −0.798024
\(874\) 2731.43 0.105712
\(875\) 16533.6 0.638788
\(876\) 17286.6 0.666736
\(877\) −45146.2 −1.73829 −0.869144 0.494559i \(-0.835329\pi\)
−0.869144 + 0.494559i \(0.835329\pi\)
\(878\) −48920.2 −1.88038
\(879\) −25240.2 −0.968523
\(880\) 0 0
\(881\) 46983.1 1.79671 0.898354 0.439273i \(-0.144764\pi\)
0.898354 + 0.439273i \(0.144764\pi\)
\(882\) 10644.0 0.406353
\(883\) 14096.0 0.537223 0.268611 0.963249i \(-0.413435\pi\)
0.268611 + 0.963249i \(0.413435\pi\)
\(884\) −7402.53 −0.281645
\(885\) 29292.2 1.11259
\(886\) −22698.1 −0.860674
\(887\) 29429.2 1.11402 0.557010 0.830506i \(-0.311948\pi\)
0.557010 + 0.830506i \(0.311948\pi\)
\(888\) 156.209 0.00590320
\(889\) −8810.66 −0.332396
\(890\) −52284.9 −1.96921
\(891\) 0 0
\(892\) −9433.39 −0.354096
\(893\) 7862.11 0.294620
\(894\) −11307.4 −0.423017
\(895\) 46087.5 1.72127
\(896\) −1080.30 −0.0402793
\(897\) −279.914 −0.0104192
\(898\) −37342.4 −1.38768
\(899\) −4097.38 −0.152008
\(900\) −10884.5 −0.403129
\(901\) 17146.6 0.634003
\(902\) 0 0
\(903\) −9508.33 −0.350407
\(904\) −370.931 −0.0136471
\(905\) 6882.85 0.252811
\(906\) −27020.1 −0.990820
\(907\) 4151.90 0.151997 0.0759986 0.997108i \(-0.475786\pi\)
0.0759986 + 0.997108i \(0.475786\pi\)
\(908\) −1289.63 −0.0471340
\(909\) −1177.90 −0.0429798
\(910\) −15924.0 −0.580084
\(911\) 43442.1 1.57991 0.789957 0.613163i \(-0.210103\pi\)
0.789957 + 0.613163i \(0.210103\pi\)
\(912\) 15760.0 0.572223
\(913\) 0 0
\(914\) 63687.5 2.30481
\(915\) −25767.5 −0.930979
\(916\) −8002.99 −0.288675
\(917\) 41391.9 1.49060
\(918\) −36833.9 −1.32429
\(919\) 45186.9 1.62196 0.810978 0.585076i \(-0.198936\pi\)
0.810978 + 0.585076i \(0.198936\pi\)
\(920\) 41.9649 0.00150385
\(921\) −1948.56 −0.0697147
\(922\) 12723.9 0.454491
\(923\) 1210.83 0.0431800
\(924\) 0 0
\(925\) −10443.9 −0.371236
\(926\) 29163.3 1.03495
\(927\) 38935.3 1.37951
\(928\) −15150.4 −0.535924
\(929\) −27366.8 −0.966496 −0.483248 0.875484i \(-0.660543\pi\)
−0.483248 + 0.875484i \(0.660543\pi\)
\(930\) −10662.1 −0.375941
\(931\) 12136.1 0.427223
\(932\) 45025.1 1.58245
\(933\) 14627.0 0.513256
\(934\) −16543.6 −0.579574
\(935\) 0 0
\(936\) 96.8148 0.00338087
\(937\) 12531.7 0.436917 0.218459 0.975846i \(-0.429897\pi\)
0.218459 + 0.975846i \(0.429897\pi\)
\(938\) 61747.5 2.14939
\(939\) −8449.66 −0.293657
\(940\) −9891.91 −0.343232
\(941\) 44374.1 1.53725 0.768626 0.639698i \(-0.220941\pi\)
0.768626 + 0.639698i \(0.220941\pi\)
\(942\) −30820.9 −1.06603
\(943\) −3623.30 −0.125123
\(944\) −48969.2 −1.68836
\(945\) −39377.3 −1.35550
\(946\) 0 0
\(947\) 53305.9 1.82915 0.914576 0.404413i \(-0.132524\pi\)
0.914576 + 0.404413i \(0.132524\pi\)
\(948\) 4961.00 0.169964
\(949\) 10280.2 0.351642
\(950\) −24972.1 −0.852843
\(951\) −7930.75 −0.270423
\(952\) 608.111 0.0207027
\(953\) 19033.3 0.646957 0.323478 0.946236i \(-0.395148\pi\)
0.323478 + 0.946236i \(0.395148\pi\)
\(954\) 18364.7 0.623249
\(955\) 46200.6 1.56546
\(956\) 8007.30 0.270894
\(957\) 0 0
\(958\) 45620.8 1.53856
\(959\) 24113.0 0.811939
\(960\) −19353.2 −0.650648
\(961\) −25027.9 −0.840117
\(962\) −7607.48 −0.254964
\(963\) 33236.9 1.11219
\(964\) 49414.7 1.65098
\(965\) 28833.9 0.961860
\(966\) −1883.09 −0.0627200
\(967\) −2711.27 −0.0901639 −0.0450819 0.998983i \(-0.514355\pi\)
−0.0450819 + 0.998983i \(0.514355\pi\)
\(968\) 0 0
\(969\) −17532.7 −0.581251
\(970\) 59418.9 1.96683
\(971\) 2443.70 0.0807641 0.0403821 0.999184i \(-0.487142\pi\)
0.0403821 + 0.999184i \(0.487142\pi\)
\(972\) −31026.3 −1.02384
\(973\) 71261.2 2.34792
\(974\) 63633.1 2.09336
\(975\) 2559.11 0.0840587
\(976\) 43076.8 1.41276
\(977\) 4846.21 0.158694 0.0793470 0.996847i \(-0.474716\pi\)
0.0793470 + 0.996847i \(0.474716\pi\)
\(978\) 3755.31 0.122783
\(979\) 0 0
\(980\) −15269.3 −0.497715
\(981\) 3646.33 0.118673
\(982\) −4357.15 −0.141591
\(983\) −37418.3 −1.21410 −0.607048 0.794665i \(-0.707647\pi\)
−0.607048 + 0.794665i \(0.707647\pi\)
\(984\) −495.466 −0.0160517
\(985\) −50590.8 −1.63650
\(986\) 17057.9 0.550949
\(987\) −5420.27 −0.174802
\(988\) −9039.81 −0.291088
\(989\) −1220.31 −0.0392353
\(990\) 0 0
\(991\) −2405.42 −0.0771048 −0.0385524 0.999257i \(-0.512275\pi\)
−0.0385524 + 0.999257i \(0.512275\pi\)
\(992\) 17611.9 0.563689
\(993\) 1154.27 0.0368879
\(994\) 8145.77 0.259928
\(995\) −66456.9 −2.11741
\(996\) −19935.1 −0.634206
\(997\) 12892.8 0.409549 0.204775 0.978809i \(-0.434354\pi\)
0.204775 + 0.978809i \(0.434354\pi\)
\(998\) −51976.6 −1.64859
\(999\) −18812.0 −0.595780
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1573.4.a.q.1.8 38
11.5 even 5 143.4.h.b.14.16 76
11.9 even 5 143.4.h.b.92.16 yes 76
11.10 odd 2 1573.4.a.r.1.31 38
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
143.4.h.b.14.16 76 11.5 even 5
143.4.h.b.92.16 yes 76 11.9 even 5
1573.4.a.q.1.8 38 1.1 even 1 trivial
1573.4.a.r.1.31 38 11.10 odd 2