Properties

Label 2-1573-1.1-c3-0-69
Degree $2$
Conductor $1573$
Sign $1$
Analytic cond. $92.8100$
Root an. cond. $9.63379$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.98·2-s − 2.76·3-s + 7.90·4-s − 14.0·5-s + 11.0·6-s + 21.9·7-s + 0.384·8-s − 19.3·9-s + 55.8·10-s − 21.8·12-s − 13·13-s − 87.4·14-s + 38.7·15-s − 64.7·16-s + 72.0·17-s + 77.1·18-s + 87.9·19-s − 110.·20-s − 60.6·21-s − 7.78·23-s − 1.06·24-s + 71.1·25-s + 51.8·26-s + 128.·27-s + 173.·28-s − 59.3·29-s − 154.·30-s + ⋯
L(s)  = 1  − 1.40·2-s − 0.532·3-s + 0.987·4-s − 1.25·5-s + 0.750·6-s + 1.18·7-s + 0.0170·8-s − 0.716·9-s + 1.76·10-s − 0.525·12-s − 0.277·13-s − 1.66·14-s + 0.666·15-s − 1.01·16-s + 1.02·17-s + 1.01·18-s + 1.06·19-s − 1.23·20-s − 0.630·21-s − 0.0705·23-s − 0.00905·24-s + 0.569·25-s + 0.391·26-s + 0.913·27-s + 1.16·28-s − 0.380·29-s − 0.940·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1573 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1573 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1573\)    =    \(11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(92.8100\)
Root analytic conductor: \(9.63379\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1573,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.5556803293\)
\(L(\frac12)\) \(\approx\) \(0.5556803293\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 \)
13 \( 1 + 13T \)
good2 \( 1 + 3.98T + 8T^{2} \)
3 \( 1 + 2.76T + 27T^{2} \)
5 \( 1 + 14.0T + 125T^{2} \)
7 \( 1 - 21.9T + 343T^{2} \)
17 \( 1 - 72.0T + 4.91e3T^{2} \)
19 \( 1 - 87.9T + 6.85e3T^{2} \)
23 \( 1 + 7.78T + 1.21e4T^{2} \)
29 \( 1 + 59.3T + 2.43e4T^{2} \)
31 \( 1 - 69.0T + 2.97e4T^{2} \)
37 \( 1 + 146.T + 5.06e4T^{2} \)
41 \( 1 - 465.T + 6.89e4T^{2} \)
43 \( 1 - 156.T + 7.95e4T^{2} \)
47 \( 1 - 89.3T + 1.03e5T^{2} \)
53 \( 1 - 237.T + 1.48e5T^{2} \)
59 \( 1 - 756.T + 2.05e5T^{2} \)
61 \( 1 + 665.T + 2.26e5T^{2} \)
67 \( 1 + 706.T + 3.00e5T^{2} \)
71 \( 1 + 93.1T + 3.57e5T^{2} \)
73 \( 1 + 790.T + 3.89e5T^{2} \)
79 \( 1 + 226.T + 4.93e5T^{2} \)
83 \( 1 - 911.T + 5.71e5T^{2} \)
89 \( 1 + 936.T + 7.04e5T^{2} \)
97 \( 1 - 1.06e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.900698936300370084666324585902, −8.213476952239757656667309217261, −7.65207510988374146319778993358, −7.22305397552755769830107876147, −5.82174455158705139914912776322, −4.97710010708460888186238106257, −4.05726611396721839379696327674, −2.76740074360870661361022849274, −1.34622981844017857515071744170, −0.51638931012055450747624000364, 0.51638931012055450747624000364, 1.34622981844017857515071744170, 2.76740074360870661361022849274, 4.05726611396721839379696327674, 4.97710010708460888186238106257, 5.82174455158705139914912776322, 7.22305397552755769830107876147, 7.65207510988374146319778993358, 8.213476952239757656667309217261, 8.900698936300370084666324585902

Graph of the $Z$-function along the critical line