Properties

Label 1573.2.a.o.1.8
Level $1573$
Weight $2$
Character 1573.1
Self dual yes
Analytic conductor $12.560$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1573,2,Mod(1,1573)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1573.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1573, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1573 = 11^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1573.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,1,-5,1,-5,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.5604682379\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.661518125.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 7x^{6} + 5x^{5} + 15x^{4} - 7x^{3} - 10x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 143)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-1.50656\) of defining polynomial
Character \(\chi\) \(=\) 1573.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.46083 q^{2} -0.833297 q^{3} +4.05570 q^{4} -0.985684 q^{5} -2.05061 q^{6} -3.88617 q^{7} +5.05874 q^{8} -2.30562 q^{9} -2.42560 q^{10} -3.37961 q^{12} -1.00000 q^{13} -9.56322 q^{14} +0.821367 q^{15} +4.33732 q^{16} +2.18287 q^{17} -5.67374 q^{18} -5.28179 q^{19} -3.99764 q^{20} +3.23833 q^{21} -2.41996 q^{23} -4.21544 q^{24} -4.02843 q^{25} -2.46083 q^{26} +4.42115 q^{27} -15.7611 q^{28} +6.81225 q^{29} +2.02125 q^{30} -3.29134 q^{31} +0.555943 q^{32} +5.37168 q^{34} +3.83053 q^{35} -9.35089 q^{36} -9.55991 q^{37} -12.9976 q^{38} +0.833297 q^{39} -4.98632 q^{40} +3.43173 q^{41} +7.96900 q^{42} -7.11470 q^{43} +2.27261 q^{45} -5.95513 q^{46} +1.92804 q^{47} -3.61428 q^{48} +8.10231 q^{49} -9.91329 q^{50} -1.81898 q^{51} -4.05570 q^{52} +4.61767 q^{53} +10.8797 q^{54} -19.6591 q^{56} +4.40130 q^{57} +16.7638 q^{58} +0.0436376 q^{59} +3.33122 q^{60} -10.6196 q^{61} -8.09944 q^{62} +8.96001 q^{63} -7.30656 q^{64} +0.985684 q^{65} -2.77390 q^{67} +8.85307 q^{68} +2.01655 q^{69} +9.42631 q^{70} +10.5199 q^{71} -11.6635 q^{72} +16.0318 q^{73} -23.5253 q^{74} +3.35688 q^{75} -21.4214 q^{76} +2.05061 q^{78} -9.29309 q^{79} -4.27523 q^{80} +3.23271 q^{81} +8.44492 q^{82} +12.2782 q^{83} +13.1337 q^{84} -2.15162 q^{85} -17.5081 q^{86} -5.67663 q^{87} +2.97373 q^{89} +5.59251 q^{90} +3.88617 q^{91} -9.81465 q^{92} +2.74266 q^{93} +4.74458 q^{94} +5.20618 q^{95} -0.463266 q^{96} -5.60356 q^{97} +19.9384 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{2} - 5 q^{3} + q^{4} - 5 q^{5} + 3 q^{6} + 2 q^{7} + 3 q^{8} - q^{9} - 6 q^{10} - 7 q^{12} - 8 q^{13} + 2 q^{14} + 5 q^{15} - 5 q^{16} - 13 q^{17} - 5 q^{18} + 6 q^{19} - 3 q^{20} - 4 q^{21}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.46083 1.74007 0.870036 0.492988i \(-0.164095\pi\)
0.870036 + 0.492988i \(0.164095\pi\)
\(3\) −0.833297 −0.481104 −0.240552 0.970636i \(-0.577329\pi\)
−0.240552 + 0.970636i \(0.577329\pi\)
\(4\) 4.05570 2.02785
\(5\) −0.985684 −0.440811 −0.220406 0.975408i \(-0.570738\pi\)
−0.220406 + 0.975408i \(0.570738\pi\)
\(6\) −2.05061 −0.837156
\(7\) −3.88617 −1.46883 −0.734417 0.678699i \(-0.762544\pi\)
−0.734417 + 0.678699i \(0.762544\pi\)
\(8\) 5.05874 1.78854
\(9\) −2.30562 −0.768539
\(10\) −2.42560 −0.767043
\(11\) 0 0
\(12\) −3.37961 −0.975608
\(13\) −1.00000 −0.277350
\(14\) −9.56322 −2.55588
\(15\) 0.821367 0.212076
\(16\) 4.33732 1.08433
\(17\) 2.18287 0.529424 0.264712 0.964328i \(-0.414723\pi\)
0.264712 + 0.964328i \(0.414723\pi\)
\(18\) −5.67374 −1.33731
\(19\) −5.28179 −1.21173 −0.605863 0.795569i \(-0.707172\pi\)
−0.605863 + 0.795569i \(0.707172\pi\)
\(20\) −3.99764 −0.893900
\(21\) 3.23833 0.706662
\(22\) 0 0
\(23\) −2.41996 −0.504597 −0.252299 0.967649i \(-0.581186\pi\)
−0.252299 + 0.967649i \(0.581186\pi\)
\(24\) −4.21544 −0.860473
\(25\) −4.02843 −0.805686
\(26\) −2.46083 −0.482609
\(27\) 4.42115 0.850852
\(28\) −15.7611 −2.97858
\(29\) 6.81225 1.26500 0.632501 0.774559i \(-0.282028\pi\)
0.632501 + 0.774559i \(0.282028\pi\)
\(30\) 2.02125 0.369028
\(31\) −3.29134 −0.591142 −0.295571 0.955321i \(-0.595510\pi\)
−0.295571 + 0.955321i \(0.595510\pi\)
\(32\) 0.555943 0.0982778
\(33\) 0 0
\(34\) 5.37168 0.921235
\(35\) 3.83053 0.647478
\(36\) −9.35089 −1.55848
\(37\) −9.55991 −1.57164 −0.785819 0.618456i \(-0.787758\pi\)
−0.785819 + 0.618456i \(0.787758\pi\)
\(38\) −12.9976 −2.10849
\(39\) 0.833297 0.133434
\(40\) −4.98632 −0.788407
\(41\) 3.43173 0.535946 0.267973 0.963426i \(-0.413646\pi\)
0.267973 + 0.963426i \(0.413646\pi\)
\(42\) 7.96900 1.22964
\(43\) −7.11470 −1.08498 −0.542491 0.840062i \(-0.682519\pi\)
−0.542491 + 0.840062i \(0.682519\pi\)
\(44\) 0 0
\(45\) 2.27261 0.338780
\(46\) −5.95513 −0.878035
\(47\) 1.92804 0.281233 0.140616 0.990064i \(-0.455092\pi\)
0.140616 + 0.990064i \(0.455092\pi\)
\(48\) −3.61428 −0.521676
\(49\) 8.10231 1.15747
\(50\) −9.91329 −1.40195
\(51\) −1.81898 −0.254708
\(52\) −4.05570 −0.562425
\(53\) 4.61767 0.634285 0.317143 0.948378i \(-0.397277\pi\)
0.317143 + 0.948378i \(0.397277\pi\)
\(54\) 10.8797 1.48054
\(55\) 0 0
\(56\) −19.6591 −2.62706
\(57\) 4.40130 0.582967
\(58\) 16.7638 2.20120
\(59\) 0.0436376 0.00568113 0.00284056 0.999996i \(-0.499096\pi\)
0.00284056 + 0.999996i \(0.499096\pi\)
\(60\) 3.33122 0.430059
\(61\) −10.6196 −1.35970 −0.679852 0.733349i \(-0.737956\pi\)
−0.679852 + 0.733349i \(0.737956\pi\)
\(62\) −8.09944 −1.02863
\(63\) 8.96001 1.12886
\(64\) −7.30656 −0.913320
\(65\) 0.985684 0.122259
\(66\) 0 0
\(67\) −2.77390 −0.338885 −0.169443 0.985540i \(-0.554197\pi\)
−0.169443 + 0.985540i \(0.554197\pi\)
\(68\) 8.85307 1.07359
\(69\) 2.01655 0.242764
\(70\) 9.42631 1.12666
\(71\) 10.5199 1.24848 0.624241 0.781232i \(-0.285408\pi\)
0.624241 + 0.781232i \(0.285408\pi\)
\(72\) −11.6635 −1.37456
\(73\) 16.0318 1.87638 0.938189 0.346123i \(-0.112502\pi\)
0.938189 + 0.346123i \(0.112502\pi\)
\(74\) −23.5253 −2.73477
\(75\) 3.35688 0.387619
\(76\) −21.4214 −2.45720
\(77\) 0 0
\(78\) 2.05061 0.232185
\(79\) −9.29309 −1.04555 −0.522777 0.852469i \(-0.675104\pi\)
−0.522777 + 0.852469i \(0.675104\pi\)
\(80\) −4.27523 −0.477985
\(81\) 3.23271 0.359190
\(82\) 8.44492 0.932585
\(83\) 12.2782 1.34771 0.673853 0.738865i \(-0.264638\pi\)
0.673853 + 0.738865i \(0.264638\pi\)
\(84\) 13.1337 1.43301
\(85\) −2.15162 −0.233376
\(86\) −17.5081 −1.88795
\(87\) −5.67663 −0.608598
\(88\) 0 0
\(89\) 2.97373 0.315215 0.157607 0.987502i \(-0.449622\pi\)
0.157607 + 0.987502i \(0.449622\pi\)
\(90\) 5.59251 0.589502
\(91\) 3.88617 0.407381
\(92\) −9.81465 −1.02325
\(93\) 2.74266 0.284401
\(94\) 4.74458 0.489366
\(95\) 5.20618 0.534143
\(96\) −0.463266 −0.0472819
\(97\) −5.60356 −0.568955 −0.284478 0.958683i \(-0.591820\pi\)
−0.284478 + 0.958683i \(0.591820\pi\)
\(98\) 19.9384 2.01409
\(99\) 0 0
\(100\) −16.3381 −1.63381
\(101\) 13.5577 1.34905 0.674523 0.738254i \(-0.264350\pi\)
0.674523 + 0.738254i \(0.264350\pi\)
\(102\) −4.47620 −0.443210
\(103\) 1.93196 0.190362 0.0951809 0.995460i \(-0.469657\pi\)
0.0951809 + 0.995460i \(0.469657\pi\)
\(104\) −5.05874 −0.496051
\(105\) −3.19197 −0.311505
\(106\) 11.3633 1.10370
\(107\) −14.4878 −1.40059 −0.700293 0.713856i \(-0.746947\pi\)
−0.700293 + 0.713856i \(0.746947\pi\)
\(108\) 17.9309 1.72540
\(109\) 11.8121 1.13139 0.565697 0.824613i \(-0.308607\pi\)
0.565697 + 0.824613i \(0.308607\pi\)
\(110\) 0 0
\(111\) 7.96624 0.756122
\(112\) −16.8556 −1.59270
\(113\) −17.0164 −1.60077 −0.800384 0.599487i \(-0.795371\pi\)
−0.800384 + 0.599487i \(0.795371\pi\)
\(114\) 10.8309 1.01440
\(115\) 2.38532 0.222432
\(116\) 27.6285 2.56524
\(117\) 2.30562 0.213154
\(118\) 0.107385 0.00988557
\(119\) −8.48300 −0.777635
\(120\) 4.15509 0.379306
\(121\) 0 0
\(122\) −26.1331 −2.36598
\(123\) −2.85965 −0.257846
\(124\) −13.3487 −1.19875
\(125\) 8.89917 0.795966
\(126\) 22.0491 1.96429
\(127\) −2.96884 −0.263442 −0.131721 0.991287i \(-0.542050\pi\)
−0.131721 + 0.991287i \(0.542050\pi\)
\(128\) −19.0921 −1.68752
\(129\) 5.92866 0.521989
\(130\) 2.42560 0.212740
\(131\) −15.8031 −1.38073 −0.690363 0.723463i \(-0.742549\pi\)
−0.690363 + 0.723463i \(0.742549\pi\)
\(132\) 0 0
\(133\) 20.5259 1.77983
\(134\) −6.82610 −0.589685
\(135\) −4.35786 −0.375065
\(136\) 11.0426 0.946893
\(137\) −10.4105 −0.889428 −0.444714 0.895673i \(-0.646695\pi\)
−0.444714 + 0.895673i \(0.646695\pi\)
\(138\) 4.96239 0.422427
\(139\) 17.4174 1.47733 0.738663 0.674075i \(-0.235457\pi\)
0.738663 + 0.674075i \(0.235457\pi\)
\(140\) 15.5355 1.31299
\(141\) −1.60663 −0.135302
\(142\) 25.8877 2.17245
\(143\) 0 0
\(144\) −10.0002 −0.833350
\(145\) −6.71472 −0.557627
\(146\) 39.4516 3.26503
\(147\) −6.75163 −0.556865
\(148\) −38.7721 −3.18705
\(149\) 7.45391 0.610648 0.305324 0.952248i \(-0.401235\pi\)
0.305324 + 0.952248i \(0.401235\pi\)
\(150\) 8.26072 0.674485
\(151\) −2.62280 −0.213440 −0.106720 0.994289i \(-0.534035\pi\)
−0.106720 + 0.994289i \(0.534035\pi\)
\(152\) −26.7193 −2.16722
\(153\) −5.03286 −0.406882
\(154\) 0 0
\(155\) 3.24422 0.260582
\(156\) 3.37961 0.270585
\(157\) −14.1508 −1.12936 −0.564679 0.825310i \(-0.691000\pi\)
−0.564679 + 0.825310i \(0.691000\pi\)
\(158\) −22.8688 −1.81934
\(159\) −3.84789 −0.305157
\(160\) −0.547984 −0.0433220
\(161\) 9.40438 0.741169
\(162\) 7.95517 0.625017
\(163\) −17.8224 −1.39596 −0.697979 0.716119i \(-0.745917\pi\)
−0.697979 + 0.716119i \(0.745917\pi\)
\(164\) 13.9181 1.08682
\(165\) 0 0
\(166\) 30.2146 2.34511
\(167\) 19.9057 1.54035 0.770173 0.637834i \(-0.220170\pi\)
0.770173 + 0.637834i \(0.220170\pi\)
\(168\) 16.3819 1.26389
\(169\) 1.00000 0.0769231
\(170\) −5.29478 −0.406091
\(171\) 12.1778 0.931259
\(172\) −28.8551 −2.20018
\(173\) 2.06598 0.157073 0.0785366 0.996911i \(-0.474975\pi\)
0.0785366 + 0.996911i \(0.474975\pi\)
\(174\) −13.9692 −1.05901
\(175\) 15.6552 1.18342
\(176\) 0 0
\(177\) −0.0363631 −0.00273322
\(178\) 7.31786 0.548497
\(179\) 5.92882 0.443141 0.221570 0.975144i \(-0.428882\pi\)
0.221570 + 0.975144i \(0.428882\pi\)
\(180\) 9.21702 0.686996
\(181\) −21.0596 −1.56535 −0.782674 0.622432i \(-0.786145\pi\)
−0.782674 + 0.622432i \(0.786145\pi\)
\(182\) 9.56322 0.708873
\(183\) 8.84931 0.654160
\(184\) −12.2420 −0.902490
\(185\) 9.42304 0.692796
\(186\) 6.74924 0.494878
\(187\) 0 0
\(188\) 7.81954 0.570299
\(189\) −17.1814 −1.24976
\(190\) 12.8115 0.929447
\(191\) −9.68456 −0.700750 −0.350375 0.936610i \(-0.613946\pi\)
−0.350375 + 0.936610i \(0.613946\pi\)
\(192\) 6.08854 0.439402
\(193\) 1.73040 0.124557 0.0622786 0.998059i \(-0.480163\pi\)
0.0622786 + 0.998059i \(0.480163\pi\)
\(194\) −13.7894 −0.990023
\(195\) −0.821367 −0.0588193
\(196\) 32.8606 2.34718
\(197\) 24.7399 1.76265 0.881323 0.472514i \(-0.156653\pi\)
0.881323 + 0.472514i \(0.156653\pi\)
\(198\) 0 0
\(199\) −2.12759 −0.150821 −0.0754103 0.997153i \(-0.524027\pi\)
−0.0754103 + 0.997153i \(0.524027\pi\)
\(200\) −20.3788 −1.44100
\(201\) 2.31148 0.163039
\(202\) 33.3633 2.34744
\(203\) −26.4735 −1.85808
\(204\) −7.37724 −0.516510
\(205\) −3.38260 −0.236251
\(206\) 4.75423 0.331243
\(207\) 5.57950 0.387802
\(208\) −4.33732 −0.300739
\(209\) 0 0
\(210\) −7.85491 −0.542041
\(211\) −3.55487 −0.244727 −0.122364 0.992485i \(-0.539047\pi\)
−0.122364 + 0.992485i \(0.539047\pi\)
\(212\) 18.7279 1.28624
\(213\) −8.76620 −0.600650
\(214\) −35.6520 −2.43712
\(215\) 7.01284 0.478272
\(216\) 22.3655 1.52178
\(217\) 12.7907 0.868289
\(218\) 29.0676 1.96871
\(219\) −13.3592 −0.902734
\(220\) 0 0
\(221\) −2.18287 −0.146836
\(222\) 19.6036 1.31571
\(223\) −18.6891 −1.25152 −0.625758 0.780017i \(-0.715210\pi\)
−0.625758 + 0.780017i \(0.715210\pi\)
\(224\) −2.16049 −0.144354
\(225\) 9.28801 0.619200
\(226\) −41.8746 −2.78545
\(227\) 11.7004 0.776580 0.388290 0.921537i \(-0.373066\pi\)
0.388290 + 0.921537i \(0.373066\pi\)
\(228\) 17.8504 1.18217
\(229\) 5.43048 0.358856 0.179428 0.983771i \(-0.442575\pi\)
0.179428 + 0.983771i \(0.442575\pi\)
\(230\) 5.86987 0.387048
\(231\) 0 0
\(232\) 34.4614 2.26250
\(233\) −13.1355 −0.860536 −0.430268 0.902701i \(-0.641581\pi\)
−0.430268 + 0.902701i \(0.641581\pi\)
\(234\) 5.67374 0.370904
\(235\) −1.90043 −0.123971
\(236\) 0.176981 0.0115205
\(237\) 7.74391 0.503021
\(238\) −20.8753 −1.35314
\(239\) −8.86074 −0.573154 −0.286577 0.958057i \(-0.592517\pi\)
−0.286577 + 0.958057i \(0.592517\pi\)
\(240\) 3.56254 0.229961
\(241\) −19.9825 −1.28719 −0.643593 0.765368i \(-0.722557\pi\)
−0.643593 + 0.765368i \(0.722557\pi\)
\(242\) 0 0
\(243\) −15.9573 −1.02366
\(244\) −43.0701 −2.75728
\(245\) −7.98631 −0.510227
\(246\) −7.03713 −0.448671
\(247\) 5.28179 0.336073
\(248\) −16.6500 −1.05728
\(249\) −10.2314 −0.648388
\(250\) 21.8994 1.38504
\(251\) −29.5375 −1.86439 −0.932195 0.361956i \(-0.882109\pi\)
−0.932195 + 0.361956i \(0.882109\pi\)
\(252\) 36.3392 2.28915
\(253\) 0 0
\(254\) −7.30583 −0.458409
\(255\) 1.79294 0.112278
\(256\) −32.3694 −2.02309
\(257\) −8.58239 −0.535355 −0.267677 0.963509i \(-0.586256\pi\)
−0.267677 + 0.963509i \(0.586256\pi\)
\(258\) 14.5894 0.908299
\(259\) 37.1514 2.30848
\(260\) 3.99764 0.247923
\(261\) −15.7064 −0.972204
\(262\) −38.8889 −2.40256
\(263\) −16.7442 −1.03249 −0.516245 0.856441i \(-0.672671\pi\)
−0.516245 + 0.856441i \(0.672671\pi\)
\(264\) 0 0
\(265\) −4.55156 −0.279600
\(266\) 50.5109 3.09702
\(267\) −2.47800 −0.151651
\(268\) −11.2501 −0.687209
\(269\) 7.33341 0.447126 0.223563 0.974689i \(-0.428231\pi\)
0.223563 + 0.974689i \(0.428231\pi\)
\(270\) −10.7240 −0.652640
\(271\) −21.9098 −1.33093 −0.665463 0.746431i \(-0.731766\pi\)
−0.665463 + 0.746431i \(0.731766\pi\)
\(272\) 9.46781 0.574070
\(273\) −3.23833 −0.195993
\(274\) −25.6185 −1.54767
\(275\) 0 0
\(276\) 8.17852 0.492289
\(277\) −9.61513 −0.577717 −0.288859 0.957372i \(-0.593276\pi\)
−0.288859 + 0.957372i \(0.593276\pi\)
\(278\) 42.8614 2.57066
\(279\) 7.58857 0.454316
\(280\) 19.3777 1.15804
\(281\) 1.65128 0.0985071 0.0492535 0.998786i \(-0.484316\pi\)
0.0492535 + 0.998786i \(0.484316\pi\)
\(282\) −3.95364 −0.235436
\(283\) 14.6389 0.870189 0.435095 0.900385i \(-0.356715\pi\)
0.435095 + 0.900385i \(0.356715\pi\)
\(284\) 42.6656 2.53174
\(285\) −4.33829 −0.256978
\(286\) 0 0
\(287\) −13.3363 −0.787216
\(288\) −1.28179 −0.0755303
\(289\) −12.2351 −0.719711
\(290\) −16.5238 −0.970312
\(291\) 4.66943 0.273727
\(292\) 65.0202 3.80502
\(293\) −0.405770 −0.0237054 −0.0118527 0.999930i \(-0.503773\pi\)
−0.0118527 + 0.999930i \(0.503773\pi\)
\(294\) −16.6146 −0.968986
\(295\) −0.0430128 −0.00250430
\(296\) −48.3611 −2.81093
\(297\) 0 0
\(298\) 18.3428 1.06257
\(299\) 2.41996 0.139950
\(300\) 13.6145 0.786034
\(301\) 27.6489 1.59366
\(302\) −6.45427 −0.371402
\(303\) −11.2976 −0.649031
\(304\) −22.9089 −1.31391
\(305\) 10.4676 0.599373
\(306\) −12.3850 −0.708005
\(307\) 9.00182 0.513761 0.256880 0.966443i \(-0.417305\pi\)
0.256880 + 0.966443i \(0.417305\pi\)
\(308\) 0 0
\(309\) −1.60990 −0.0915839
\(310\) 7.98349 0.453432
\(311\) 6.37201 0.361324 0.180662 0.983545i \(-0.442176\pi\)
0.180662 + 0.983545i \(0.442176\pi\)
\(312\) 4.21544 0.238652
\(313\) 18.3812 1.03897 0.519484 0.854480i \(-0.326124\pi\)
0.519484 + 0.854480i \(0.326124\pi\)
\(314\) −34.8228 −1.96517
\(315\) −8.83174 −0.497612
\(316\) −37.6900 −2.12023
\(317\) −6.18506 −0.347387 −0.173694 0.984800i \(-0.555570\pi\)
−0.173694 + 0.984800i \(0.555570\pi\)
\(318\) −9.46902 −0.530996
\(319\) 0 0
\(320\) 7.20196 0.402602
\(321\) 12.0726 0.673828
\(322\) 23.1426 1.28969
\(323\) −11.5295 −0.641517
\(324\) 13.1109 0.728384
\(325\) 4.02843 0.223457
\(326\) −43.8579 −2.42907
\(327\) −9.84298 −0.544318
\(328\) 17.3603 0.958559
\(329\) −7.49267 −0.413084
\(330\) 0 0
\(331\) 7.43488 0.408658 0.204329 0.978902i \(-0.434499\pi\)
0.204329 + 0.978902i \(0.434499\pi\)
\(332\) 49.7967 2.73295
\(333\) 22.0415 1.20787
\(334\) 48.9845 2.68032
\(335\) 2.73418 0.149384
\(336\) 14.0457 0.766256
\(337\) 36.0293 1.96264 0.981321 0.192380i \(-0.0616206\pi\)
0.981321 + 0.192380i \(0.0616206\pi\)
\(338\) 2.46083 0.133852
\(339\) 14.1797 0.770137
\(340\) −8.72633 −0.473251
\(341\) 0 0
\(342\) 29.9675 1.62046
\(343\) −4.28376 −0.231301
\(344\) −35.9914 −1.94053
\(345\) −1.98768 −0.107013
\(346\) 5.08402 0.273319
\(347\) −22.6272 −1.21469 −0.607346 0.794437i \(-0.707766\pi\)
−0.607346 + 0.794437i \(0.707766\pi\)
\(348\) −23.0227 −1.23415
\(349\) −3.92582 −0.210145 −0.105072 0.994465i \(-0.533507\pi\)
−0.105072 + 0.994465i \(0.533507\pi\)
\(350\) 38.5247 2.05923
\(351\) −4.42115 −0.235984
\(352\) 0 0
\(353\) −15.8328 −0.842694 −0.421347 0.906900i \(-0.638443\pi\)
−0.421347 + 0.906900i \(0.638443\pi\)
\(354\) −0.0894835 −0.00475599
\(355\) −10.3693 −0.550345
\(356\) 12.0606 0.639209
\(357\) 7.06886 0.374124
\(358\) 14.5898 0.771097
\(359\) −2.39931 −0.126631 −0.0633154 0.997994i \(-0.520167\pi\)
−0.0633154 + 0.997994i \(0.520167\pi\)
\(360\) 11.4965 0.605921
\(361\) 8.89735 0.468282
\(362\) −51.8242 −2.72382
\(363\) 0 0
\(364\) 15.7611 0.826109
\(365\) −15.8023 −0.827128
\(366\) 21.7767 1.13829
\(367\) −18.2688 −0.953624 −0.476812 0.879005i \(-0.658208\pi\)
−0.476812 + 0.879005i \(0.658208\pi\)
\(368\) −10.4962 −0.547150
\(369\) −7.91225 −0.411895
\(370\) 23.1885 1.20551
\(371\) −17.9450 −0.931660
\(372\) 11.1234 0.576723
\(373\) 9.31655 0.482393 0.241196 0.970476i \(-0.422460\pi\)
0.241196 + 0.970476i \(0.422460\pi\)
\(374\) 0 0
\(375\) −7.41566 −0.382943
\(376\) 9.75344 0.502995
\(377\) −6.81225 −0.350849
\(378\) −42.2805 −2.17467
\(379\) 19.6966 1.01175 0.505874 0.862607i \(-0.331170\pi\)
0.505874 + 0.862607i \(0.331170\pi\)
\(380\) 21.1147 1.08316
\(381\) 2.47393 0.126743
\(382\) −23.8321 −1.21936
\(383\) 4.90797 0.250786 0.125393 0.992107i \(-0.459981\pi\)
0.125393 + 0.992107i \(0.459981\pi\)
\(384\) 15.9094 0.811874
\(385\) 0 0
\(386\) 4.25823 0.216738
\(387\) 16.4038 0.833850
\(388\) −22.7264 −1.15376
\(389\) −16.9903 −0.861441 −0.430721 0.902485i \(-0.641741\pi\)
−0.430721 + 0.902485i \(0.641741\pi\)
\(390\) −2.02125 −0.102350
\(391\) −5.28246 −0.267146
\(392\) 40.9875 2.07018
\(393\) 13.1687 0.664273
\(394\) 60.8808 3.06713
\(395\) 9.16005 0.460892
\(396\) 0 0
\(397\) 16.8443 0.845391 0.422695 0.906272i \(-0.361084\pi\)
0.422695 + 0.906272i \(0.361084\pi\)
\(398\) −5.23563 −0.262439
\(399\) −17.1042 −0.856282
\(400\) −17.4726 −0.873630
\(401\) 35.1136 1.75349 0.876745 0.480956i \(-0.159710\pi\)
0.876745 + 0.480956i \(0.159710\pi\)
\(402\) 5.68817 0.283700
\(403\) 3.29134 0.163953
\(404\) 54.9862 2.73566
\(405\) −3.18643 −0.158335
\(406\) −65.1470 −3.23319
\(407\) 0 0
\(408\) −9.20175 −0.455554
\(409\) −15.3136 −0.757209 −0.378605 0.925559i \(-0.623596\pi\)
−0.378605 + 0.925559i \(0.623596\pi\)
\(410\) −8.32402 −0.411094
\(411\) 8.67503 0.427908
\(412\) 7.83546 0.386025
\(413\) −0.169583 −0.00834463
\(414\) 13.7302 0.674804
\(415\) −12.1024 −0.594084
\(416\) −0.555943 −0.0272574
\(417\) −14.5139 −0.710748
\(418\) 0 0
\(419\) 14.5369 0.710173 0.355086 0.934833i \(-0.384451\pi\)
0.355086 + 0.934833i \(0.384451\pi\)
\(420\) −12.9457 −0.631685
\(421\) −6.03720 −0.294235 −0.147118 0.989119i \(-0.547000\pi\)
−0.147118 + 0.989119i \(0.547000\pi\)
\(422\) −8.74794 −0.425843
\(423\) −4.44531 −0.216138
\(424\) 23.3596 1.13444
\(425\) −8.79353 −0.426549
\(426\) −21.5722 −1.04518
\(427\) 41.2697 1.99718
\(428\) −58.7581 −2.84018
\(429\) 0 0
\(430\) 17.2574 0.832227
\(431\) 4.93130 0.237532 0.118766 0.992922i \(-0.462106\pi\)
0.118766 + 0.992922i \(0.462106\pi\)
\(432\) 19.1760 0.922605
\(433\) −5.53167 −0.265835 −0.132918 0.991127i \(-0.542435\pi\)
−0.132918 + 0.991127i \(0.542435\pi\)
\(434\) 31.4758 1.51089
\(435\) 5.59536 0.268277
\(436\) 47.9063 2.29430
\(437\) 12.7817 0.611434
\(438\) −32.8749 −1.57082
\(439\) 16.1221 0.769468 0.384734 0.923028i \(-0.374293\pi\)
0.384734 + 0.923028i \(0.374293\pi\)
\(440\) 0 0
\(441\) −18.6808 −0.889562
\(442\) −5.37168 −0.255505
\(443\) 2.21666 0.105317 0.0526584 0.998613i \(-0.483231\pi\)
0.0526584 + 0.998613i \(0.483231\pi\)
\(444\) 32.3087 1.53330
\(445\) −2.93116 −0.138950
\(446\) −45.9908 −2.17773
\(447\) −6.21132 −0.293786
\(448\) 28.3945 1.34152
\(449\) 0.209393 0.00988186 0.00494093 0.999988i \(-0.498427\pi\)
0.00494093 + 0.999988i \(0.498427\pi\)
\(450\) 22.8562 1.07745
\(451\) 0 0
\(452\) −69.0135 −3.24612
\(453\) 2.18557 0.102687
\(454\) 28.7926 1.35131
\(455\) −3.83053 −0.179578
\(456\) 22.2651 1.04266
\(457\) −33.6647 −1.57477 −0.787383 0.616464i \(-0.788565\pi\)
−0.787383 + 0.616464i \(0.788565\pi\)
\(458\) 13.3635 0.624436
\(459\) 9.65080 0.450461
\(460\) 9.67414 0.451059
\(461\) 21.4300 0.998093 0.499046 0.866575i \(-0.333684\pi\)
0.499046 + 0.866575i \(0.333684\pi\)
\(462\) 0 0
\(463\) −14.4598 −0.672005 −0.336002 0.941861i \(-0.609075\pi\)
−0.336002 + 0.941861i \(0.609075\pi\)
\(464\) 29.5469 1.37168
\(465\) −2.70340 −0.125367
\(466\) −32.3243 −1.49739
\(467\) −11.7989 −0.545987 −0.272993 0.962016i \(-0.588014\pi\)
−0.272993 + 0.962016i \(0.588014\pi\)
\(468\) 9.35089 0.432245
\(469\) 10.7798 0.497766
\(470\) −4.67665 −0.215718
\(471\) 11.7918 0.543340
\(472\) 0.220751 0.0101609
\(473\) 0 0
\(474\) 19.0565 0.875293
\(475\) 21.2773 0.976271
\(476\) −34.4045 −1.57693
\(477\) −10.6466 −0.487473
\(478\) −21.8048 −0.997329
\(479\) 29.4009 1.34336 0.671681 0.740841i \(-0.265573\pi\)
0.671681 + 0.740841i \(0.265573\pi\)
\(480\) 0.456634 0.0208424
\(481\) 9.55991 0.435894
\(482\) −49.1736 −2.23980
\(483\) −7.83665 −0.356580
\(484\) 0 0
\(485\) 5.52334 0.250802
\(486\) −39.2682 −1.78124
\(487\) 0.0842815 0.00381916 0.00190958 0.999998i \(-0.499392\pi\)
0.00190958 + 0.999998i \(0.499392\pi\)
\(488\) −53.7220 −2.43188
\(489\) 14.8513 0.671601
\(490\) −19.6530 −0.887832
\(491\) −29.9386 −1.35111 −0.675555 0.737310i \(-0.736096\pi\)
−0.675555 + 0.737310i \(0.736096\pi\)
\(492\) −11.5979 −0.522874
\(493\) 14.8702 0.669722
\(494\) 12.9976 0.584791
\(495\) 0 0
\(496\) −14.2756 −0.640994
\(497\) −40.8821 −1.83381
\(498\) −25.1777 −1.12824
\(499\) −32.3127 −1.44652 −0.723258 0.690578i \(-0.757356\pi\)
−0.723258 + 0.690578i \(0.757356\pi\)
\(500\) 36.0924 1.61410
\(501\) −16.5873 −0.741068
\(502\) −72.6869 −3.24417
\(503\) −6.85971 −0.305859 −0.152930 0.988237i \(-0.548871\pi\)
−0.152930 + 0.988237i \(0.548871\pi\)
\(504\) 45.3264 2.01900
\(505\) −13.3636 −0.594674
\(506\) 0 0
\(507\) −0.833297 −0.0370080
\(508\) −12.0408 −0.534222
\(509\) 2.89107 0.128145 0.0640723 0.997945i \(-0.479591\pi\)
0.0640723 + 0.997945i \(0.479591\pi\)
\(510\) 4.41212 0.195372
\(511\) −62.3022 −2.75609
\(512\) −41.4715 −1.83280
\(513\) −23.3516 −1.03100
\(514\) −21.1198 −0.931556
\(515\) −1.90430 −0.0839136
\(516\) 24.0449 1.05852
\(517\) 0 0
\(518\) 91.4234 4.01692
\(519\) −1.72157 −0.0755686
\(520\) 4.98632 0.218665
\(521\) 22.5461 0.987763 0.493882 0.869529i \(-0.335578\pi\)
0.493882 + 0.869529i \(0.335578\pi\)
\(522\) −38.6509 −1.69170
\(523\) −24.3954 −1.06674 −0.533369 0.845883i \(-0.679074\pi\)
−0.533369 + 0.845883i \(0.679074\pi\)
\(524\) −64.0928 −2.79991
\(525\) −13.0454 −0.569348
\(526\) −41.2046 −1.79661
\(527\) −7.18456 −0.312965
\(528\) 0 0
\(529\) −17.1438 −0.745382
\(530\) −11.2006 −0.486524
\(531\) −0.100611 −0.00436617
\(532\) 83.2472 3.60922
\(533\) −3.43173 −0.148645
\(534\) −6.09795 −0.263884
\(535\) 14.2804 0.617394
\(536\) −14.0324 −0.606109
\(537\) −4.94047 −0.213197
\(538\) 18.0463 0.778032
\(539\) 0 0
\(540\) −17.6742 −0.760576
\(541\) 15.1928 0.653188 0.326594 0.945165i \(-0.394099\pi\)
0.326594 + 0.945165i \(0.394099\pi\)
\(542\) −53.9164 −2.31591
\(543\) 17.5489 0.753096
\(544\) 1.21355 0.0520306
\(545\) −11.6430 −0.498731
\(546\) −7.96900 −0.341042
\(547\) −4.55377 −0.194705 −0.0973525 0.995250i \(-0.531037\pi\)
−0.0973525 + 0.995250i \(0.531037\pi\)
\(548\) −42.2218 −1.80363
\(549\) 24.4848 1.04499
\(550\) 0 0
\(551\) −35.9809 −1.53284
\(552\) 10.2012 0.434192
\(553\) 36.1145 1.53575
\(554\) −23.6612 −1.00527
\(555\) −7.85219 −0.333307
\(556\) 70.6399 2.99580
\(557\) 11.8262 0.501091 0.250546 0.968105i \(-0.419390\pi\)
0.250546 + 0.968105i \(0.419390\pi\)
\(558\) 18.6742 0.790542
\(559\) 7.11470 0.300920
\(560\) 16.6143 0.702081
\(561\) 0 0
\(562\) 4.06352 0.171409
\(563\) 5.98613 0.252285 0.126143 0.992012i \(-0.459740\pi\)
0.126143 + 0.992012i \(0.459740\pi\)
\(564\) −6.51600 −0.274373
\(565\) 16.7728 0.705637
\(566\) 36.0238 1.51419
\(567\) −12.5629 −0.527591
\(568\) 53.2175 2.23296
\(569\) 17.1759 0.720051 0.360025 0.932942i \(-0.382768\pi\)
0.360025 + 0.932942i \(0.382768\pi\)
\(570\) −10.6758 −0.447161
\(571\) −17.1160 −0.716282 −0.358141 0.933668i \(-0.616589\pi\)
−0.358141 + 0.933668i \(0.616589\pi\)
\(572\) 0 0
\(573\) 8.07011 0.337134
\(574\) −32.8184 −1.36981
\(575\) 9.74864 0.406547
\(576\) 16.8461 0.701922
\(577\) 16.0156 0.666738 0.333369 0.942796i \(-0.391814\pi\)
0.333369 + 0.942796i \(0.391814\pi\)
\(578\) −30.1085 −1.25235
\(579\) −1.44194 −0.0599250
\(580\) −27.2329 −1.13079
\(581\) −47.7151 −1.97956
\(582\) 11.4907 0.476304
\(583\) 0 0
\(584\) 81.1007 3.35597
\(585\) −2.27261 −0.0939608
\(586\) −0.998533 −0.0412490
\(587\) −18.6575 −0.770079 −0.385039 0.922900i \(-0.625812\pi\)
−0.385039 + 0.922900i \(0.625812\pi\)
\(588\) −27.3826 −1.12924
\(589\) 17.3842 0.716303
\(590\) −0.105847 −0.00435767
\(591\) −20.6157 −0.848017
\(592\) −41.4644 −1.70418
\(593\) −0.889024 −0.0365078 −0.0182539 0.999833i \(-0.505811\pi\)
−0.0182539 + 0.999833i \(0.505811\pi\)
\(594\) 0 0
\(595\) 8.36155 0.342790
\(596\) 30.2309 1.23830
\(597\) 1.77291 0.0725604
\(598\) 5.95513 0.243523
\(599\) −5.61187 −0.229295 −0.114647 0.993406i \(-0.536574\pi\)
−0.114647 + 0.993406i \(0.536574\pi\)
\(600\) 16.9816 0.693270
\(601\) −27.6110 −1.12628 −0.563138 0.826363i \(-0.690406\pi\)
−0.563138 + 0.826363i \(0.690406\pi\)
\(602\) 68.0394 2.77308
\(603\) 6.39554 0.260446
\(604\) −10.6373 −0.432825
\(605\) 0 0
\(606\) −27.8016 −1.12936
\(607\) −42.8599 −1.73963 −0.869814 0.493379i \(-0.835762\pi\)
−0.869814 + 0.493379i \(0.835762\pi\)
\(608\) −2.93638 −0.119086
\(609\) 22.0603 0.893930
\(610\) 25.7590 1.04295
\(611\) −1.92804 −0.0780000
\(612\) −20.4118 −0.825097
\(613\) 18.1307 0.732291 0.366145 0.930558i \(-0.380677\pi\)
0.366145 + 0.930558i \(0.380677\pi\)
\(614\) 22.1520 0.893981
\(615\) 2.81871 0.113661
\(616\) 0 0
\(617\) 17.6030 0.708671 0.354336 0.935118i \(-0.384707\pi\)
0.354336 + 0.935118i \(0.384707\pi\)
\(618\) −3.96169 −0.159363
\(619\) 13.2971 0.534454 0.267227 0.963634i \(-0.413893\pi\)
0.267227 + 0.963634i \(0.413893\pi\)
\(620\) 13.1576 0.528422
\(621\) −10.6990 −0.429337
\(622\) 15.6805 0.628730
\(623\) −11.5564 −0.462998
\(624\) 3.61428 0.144687
\(625\) 11.3704 0.454815
\(626\) 45.2331 1.80788
\(627\) 0 0
\(628\) −57.3916 −2.29017
\(629\) −20.8680 −0.832063
\(630\) −21.7334 −0.865881
\(631\) −39.1399 −1.55814 −0.779068 0.626939i \(-0.784307\pi\)
−0.779068 + 0.626939i \(0.784307\pi\)
\(632\) −47.0114 −1.87001
\(633\) 2.96226 0.117739
\(634\) −15.2204 −0.604479
\(635\) 2.92634 0.116128
\(636\) −15.6059 −0.618814
\(637\) −8.10231 −0.321025
\(638\) 0 0
\(639\) −24.2548 −0.959507
\(640\) 18.8188 0.743878
\(641\) 4.17668 0.164969 0.0824846 0.996592i \(-0.473714\pi\)
0.0824846 + 0.996592i \(0.473714\pi\)
\(642\) 29.7087 1.17251
\(643\) −43.8692 −1.73003 −0.865017 0.501743i \(-0.832692\pi\)
−0.865017 + 0.501743i \(0.832692\pi\)
\(644\) 38.1414 1.50298
\(645\) −5.84378 −0.230099
\(646\) −28.3721 −1.11629
\(647\) −3.38093 −0.132918 −0.0664590 0.997789i \(-0.521170\pi\)
−0.0664590 + 0.997789i \(0.521170\pi\)
\(648\) 16.3535 0.642425
\(649\) 0 0
\(650\) 9.91329 0.388831
\(651\) −10.6585 −0.417738
\(652\) −72.2823 −2.83079
\(653\) −19.0214 −0.744365 −0.372182 0.928160i \(-0.621390\pi\)
−0.372182 + 0.928160i \(0.621390\pi\)
\(654\) −24.2219 −0.947153
\(655\) 15.5769 0.608639
\(656\) 14.8845 0.581143
\(657\) −36.9631 −1.44207
\(658\) −18.4382 −0.718797
\(659\) 2.06130 0.0802970 0.0401485 0.999194i \(-0.487217\pi\)
0.0401485 + 0.999194i \(0.487217\pi\)
\(660\) 0 0
\(661\) −42.9729 −1.67145 −0.835725 0.549148i \(-0.814952\pi\)
−0.835725 + 0.549148i \(0.814952\pi\)
\(662\) 18.2960 0.711094
\(663\) 1.81898 0.0706433
\(664\) 62.1122 2.41042
\(665\) −20.2321 −0.784567
\(666\) 54.2404 2.10177
\(667\) −16.4854 −0.638317
\(668\) 80.7315 3.12360
\(669\) 15.5736 0.602110
\(670\) 6.72837 0.259940
\(671\) 0 0
\(672\) 1.80033 0.0694492
\(673\) 9.57417 0.369057 0.184529 0.982827i \(-0.440924\pi\)
0.184529 + 0.982827i \(0.440924\pi\)
\(674\) 88.6621 3.41514
\(675\) −17.8103 −0.685519
\(676\) 4.05570 0.155989
\(677\) 2.78059 0.106867 0.0534333 0.998571i \(-0.482984\pi\)
0.0534333 + 0.998571i \(0.482984\pi\)
\(678\) 34.8939 1.34009
\(679\) 21.7764 0.835701
\(680\) −10.8845 −0.417401
\(681\) −9.74988 −0.373616
\(682\) 0 0
\(683\) −48.0798 −1.83972 −0.919861 0.392244i \(-0.871699\pi\)
−0.919861 + 0.392244i \(0.871699\pi\)
\(684\) 49.3895 1.88845
\(685\) 10.2614 0.392070
\(686\) −10.5416 −0.402481
\(687\) −4.52521 −0.172647
\(688\) −30.8587 −1.17648
\(689\) −4.61767 −0.175919
\(690\) −4.89135 −0.186210
\(691\) 25.3178 0.963134 0.481567 0.876409i \(-0.340068\pi\)
0.481567 + 0.876409i \(0.340068\pi\)
\(692\) 8.37898 0.318521
\(693\) 0 0
\(694\) −55.6818 −2.11365
\(695\) −17.1681 −0.651222
\(696\) −28.7166 −1.08850
\(697\) 7.49102 0.283743
\(698\) −9.66080 −0.365667
\(699\) 10.9458 0.414008
\(700\) 63.4927 2.39980
\(701\) −12.0776 −0.456164 −0.228082 0.973642i \(-0.573245\pi\)
−0.228082 + 0.973642i \(0.573245\pi\)
\(702\) −10.8797 −0.410629
\(703\) 50.4935 1.90440
\(704\) 0 0
\(705\) 1.58363 0.0596428
\(706\) −38.9618 −1.46635
\(707\) −52.6877 −1.98152
\(708\) −0.147478 −0.00554256
\(709\) −11.6489 −0.437483 −0.218742 0.975783i \(-0.570195\pi\)
−0.218742 + 0.975783i \(0.570195\pi\)
\(710\) −25.5171 −0.957640
\(711\) 21.4263 0.803549
\(712\) 15.0433 0.563773
\(713\) 7.96492 0.298289
\(714\) 17.3953 0.651002
\(715\) 0 0
\(716\) 24.0455 0.898624
\(717\) 7.38363 0.275747
\(718\) −5.90431 −0.220347
\(719\) 30.5599 1.13969 0.569846 0.821751i \(-0.307003\pi\)
0.569846 + 0.821751i \(0.307003\pi\)
\(720\) 9.85703 0.367350
\(721\) −7.50793 −0.279610
\(722\) 21.8949 0.814844
\(723\) 16.6514 0.619271
\(724\) −85.4115 −3.17429
\(725\) −27.4427 −1.01919
\(726\) 0 0
\(727\) 4.42686 0.164183 0.0820915 0.996625i \(-0.473840\pi\)
0.0820915 + 0.996625i \(0.473840\pi\)
\(728\) 19.6591 0.728616
\(729\) 3.59902 0.133297
\(730\) −38.8868 −1.43926
\(731\) −15.5305 −0.574414
\(732\) 35.8902 1.32654
\(733\) 47.1905 1.74302 0.871511 0.490376i \(-0.163140\pi\)
0.871511 + 0.490376i \(0.163140\pi\)
\(734\) −44.9565 −1.65937
\(735\) 6.65497 0.245472
\(736\) −1.34536 −0.0495907
\(737\) 0 0
\(738\) −19.4707 −0.716728
\(739\) −3.94349 −0.145064 −0.0725318 0.997366i \(-0.523108\pi\)
−0.0725318 + 0.997366i \(0.523108\pi\)
\(740\) 38.2171 1.40489
\(741\) −4.40130 −0.161686
\(742\) −44.1598 −1.62116
\(743\) −12.7375 −0.467293 −0.233647 0.972322i \(-0.575066\pi\)
−0.233647 + 0.972322i \(0.575066\pi\)
\(744\) 13.8744 0.508662
\(745\) −7.34720 −0.269181
\(746\) 22.9265 0.839398
\(747\) −28.3088 −1.03576
\(748\) 0 0
\(749\) 56.3019 2.05723
\(750\) −18.2487 −0.666348
\(751\) 50.7641 1.85241 0.926205 0.377020i \(-0.123051\pi\)
0.926205 + 0.377020i \(0.123051\pi\)
\(752\) 8.36252 0.304950
\(753\) 24.6135 0.896966
\(754\) −16.7638 −0.610502
\(755\) 2.58525 0.0940869
\(756\) −69.6825 −2.53433
\(757\) −5.29781 −0.192552 −0.0962761 0.995355i \(-0.530693\pi\)
−0.0962761 + 0.995355i \(0.530693\pi\)
\(758\) 48.4701 1.76051
\(759\) 0 0
\(760\) 26.3367 0.955333
\(761\) 40.4037 1.46463 0.732317 0.680964i \(-0.238439\pi\)
0.732317 + 0.680964i \(0.238439\pi\)
\(762\) 6.08793 0.220542
\(763\) −45.9038 −1.66183
\(764\) −39.2777 −1.42102
\(765\) 4.96081 0.179358
\(766\) 12.0777 0.436385
\(767\) −0.0436376 −0.00157566
\(768\) 26.9733 0.973317
\(769\) 3.32366 0.119854 0.0599270 0.998203i \(-0.480913\pi\)
0.0599270 + 0.998203i \(0.480913\pi\)
\(770\) 0 0
\(771\) 7.15168 0.257562
\(772\) 7.01800 0.252583
\(773\) −27.9917 −1.00679 −0.503396 0.864056i \(-0.667916\pi\)
−0.503396 + 0.864056i \(0.667916\pi\)
\(774\) 40.3669 1.45096
\(775\) 13.2589 0.476275
\(776\) −28.3470 −1.01760
\(777\) −30.9582 −1.11062
\(778\) −41.8102 −1.49897
\(779\) −18.1257 −0.649421
\(780\) −3.33122 −0.119277
\(781\) 0 0
\(782\) −12.9993 −0.464853
\(783\) 30.1180 1.07633
\(784\) 35.1423 1.25508
\(785\) 13.9482 0.497834
\(786\) 32.4060 1.15588
\(787\) −24.3657 −0.868542 −0.434271 0.900782i \(-0.642994\pi\)
−0.434271 + 0.900782i \(0.642994\pi\)
\(788\) 100.338 3.57439
\(789\) 13.9529 0.496735
\(790\) 22.5414 0.801986
\(791\) 66.1286 2.35126
\(792\) 0 0
\(793\) 10.6196 0.377114
\(794\) 41.4510 1.47104
\(795\) 3.79280 0.134517
\(796\) −8.62885 −0.305842
\(797\) 51.7817 1.83420 0.917101 0.398654i \(-0.130523\pi\)
0.917101 + 0.398654i \(0.130523\pi\)
\(798\) −42.0906 −1.48999
\(799\) 4.20865 0.148891
\(800\) −2.23958 −0.0791810
\(801\) −6.85628 −0.242255
\(802\) 86.4087 3.05120
\(803\) 0 0
\(804\) 9.37468 0.330619
\(805\) −9.26975 −0.326716
\(806\) 8.09944 0.285291
\(807\) −6.11091 −0.215114
\(808\) 68.5851 2.41282
\(809\) 22.5900 0.794222 0.397111 0.917770i \(-0.370013\pi\)
0.397111 + 0.917770i \(0.370013\pi\)
\(810\) −7.84128 −0.275514
\(811\) 12.7361 0.447226 0.223613 0.974678i \(-0.428215\pi\)
0.223613 + 0.974678i \(0.428215\pi\)
\(812\) −107.369 −3.76791
\(813\) 18.2574 0.640314
\(814\) 0 0
\(815\) 17.5672 0.615353
\(816\) −7.88950 −0.276188
\(817\) 37.5784 1.31470
\(818\) −37.6842 −1.31760
\(819\) −8.96001 −0.313088
\(820\) −13.7188 −0.479082
\(821\) −35.6034 −1.24257 −0.621283 0.783586i \(-0.713388\pi\)
−0.621283 + 0.783586i \(0.713388\pi\)
\(822\) 21.3478 0.744590
\(823\) 22.5552 0.786225 0.393113 0.919490i \(-0.371398\pi\)
0.393113 + 0.919490i \(0.371398\pi\)
\(824\) 9.77330 0.340469
\(825\) 0 0
\(826\) −0.417316 −0.0145203
\(827\) −26.8873 −0.934963 −0.467482 0.884003i \(-0.654839\pi\)
−0.467482 + 0.884003i \(0.654839\pi\)
\(828\) 22.6288 0.786406
\(829\) 32.3304 1.12288 0.561441 0.827517i \(-0.310247\pi\)
0.561441 + 0.827517i \(0.310247\pi\)
\(830\) −29.7820 −1.03375
\(831\) 8.01226 0.277942
\(832\) 7.30656 0.253309
\(833\) 17.6863 0.612793
\(834\) −35.7163 −1.23675
\(835\) −19.6207 −0.679002
\(836\) 0 0
\(837\) −14.5515 −0.502974
\(838\) 35.7728 1.23575
\(839\) 39.6152 1.36767 0.683834 0.729637i \(-0.260311\pi\)
0.683834 + 0.729637i \(0.260311\pi\)
\(840\) −16.1474 −0.557137
\(841\) 17.4067 0.600232
\(842\) −14.8565 −0.511991
\(843\) −1.37601 −0.0473922
\(844\) −14.4175 −0.496270
\(845\) −0.985684 −0.0339085
\(846\) −10.9392 −0.376096
\(847\) 0 0
\(848\) 20.0283 0.687775
\(849\) −12.1985 −0.418652
\(850\) −21.6394 −0.742226
\(851\) 23.1346 0.793044
\(852\) −35.5531 −1.21803
\(853\) 9.06728 0.310458 0.155229 0.987879i \(-0.450389\pi\)
0.155229 + 0.987879i \(0.450389\pi\)
\(854\) 101.558 3.47524
\(855\) −12.0034 −0.410509
\(856\) −73.2899 −2.50500
\(857\) −31.9836 −1.09254 −0.546269 0.837610i \(-0.683952\pi\)
−0.546269 + 0.837610i \(0.683952\pi\)
\(858\) 0 0
\(859\) −30.4821 −1.04004 −0.520018 0.854155i \(-0.674075\pi\)
−0.520018 + 0.854155i \(0.674075\pi\)
\(860\) 28.4420 0.969864
\(861\) 11.1131 0.378733
\(862\) 12.1351 0.413323
\(863\) −11.2299 −0.382269 −0.191134 0.981564i \(-0.561217\pi\)
−0.191134 + 0.981564i \(0.561217\pi\)
\(864\) 2.45791 0.0836198
\(865\) −2.03640 −0.0692396
\(866\) −13.6125 −0.462573
\(867\) 10.1955 0.346256
\(868\) 51.8753 1.76076
\(869\) 0 0
\(870\) 13.7692 0.466821
\(871\) 2.77390 0.0939899
\(872\) 59.7544 2.02354
\(873\) 12.9197 0.437264
\(874\) 31.4538 1.06394
\(875\) −34.5837 −1.16914
\(876\) −54.1811 −1.83061
\(877\) −17.4892 −0.590568 −0.295284 0.955410i \(-0.595414\pi\)
−0.295284 + 0.955410i \(0.595414\pi\)
\(878\) 39.6739 1.33893
\(879\) 0.338127 0.0114047
\(880\) 0 0
\(881\) 35.5824 1.19880 0.599400 0.800450i \(-0.295406\pi\)
0.599400 + 0.800450i \(0.295406\pi\)
\(882\) −45.9704 −1.54790
\(883\) −30.3668 −1.02192 −0.510962 0.859603i \(-0.670711\pi\)
−0.510962 + 0.859603i \(0.670711\pi\)
\(884\) −8.85307 −0.297761
\(885\) 0.0358425 0.00120483
\(886\) 5.45484 0.183259
\(887\) 9.74009 0.327040 0.163520 0.986540i \(-0.447715\pi\)
0.163520 + 0.986540i \(0.447715\pi\)
\(888\) 40.2992 1.35235
\(889\) 11.5374 0.386953
\(890\) −7.21309 −0.241783
\(891\) 0 0
\(892\) −75.7975 −2.53789
\(893\) −10.1835 −0.340778
\(894\) −15.2850 −0.511208
\(895\) −5.84394 −0.195341
\(896\) 74.1952 2.47869
\(897\) −2.01655 −0.0673306
\(898\) 0.515281 0.0171952
\(899\) −22.4214 −0.747796
\(900\) 37.6694 1.25565
\(901\) 10.0798 0.335806
\(902\) 0 0
\(903\) −23.0398 −0.766715
\(904\) −86.0817 −2.86303
\(905\) 20.7581 0.690023
\(906\) 5.37833 0.178683
\(907\) −3.10515 −0.103105 −0.0515525 0.998670i \(-0.516417\pi\)
−0.0515525 + 0.998670i \(0.516417\pi\)
\(908\) 47.4532 1.57479
\(909\) −31.2589 −1.03679
\(910\) −9.42631 −0.312479
\(911\) 13.0287 0.431660 0.215830 0.976431i \(-0.430754\pi\)
0.215830 + 0.976431i \(0.430754\pi\)
\(912\) 19.0899 0.632129
\(913\) 0 0
\(914\) −82.8431 −2.74021
\(915\) −8.72262 −0.288361
\(916\) 22.0244 0.727708
\(917\) 61.4136 2.02806
\(918\) 23.7490 0.783835
\(919\) 34.3125 1.13187 0.565933 0.824451i \(-0.308516\pi\)
0.565933 + 0.824451i \(0.308516\pi\)
\(920\) 12.0667 0.397828
\(921\) −7.50119 −0.247173
\(922\) 52.7356 1.73675
\(923\) −10.5199 −0.346267
\(924\) 0 0
\(925\) 38.5114 1.26625
\(926\) −35.5832 −1.16934
\(927\) −4.45436 −0.146300
\(928\) 3.78722 0.124322
\(929\) 35.8697 1.17685 0.588424 0.808553i \(-0.299749\pi\)
0.588424 + 0.808553i \(0.299749\pi\)
\(930\) −6.65262 −0.218148
\(931\) −42.7947 −1.40254
\(932\) −53.2737 −1.74504
\(933\) −5.30978 −0.173834
\(934\) −29.0351 −0.950057
\(935\) 0 0
\(936\) 11.6635 0.381234
\(937\) −22.0230 −0.719461 −0.359730 0.933056i \(-0.617131\pi\)
−0.359730 + 0.933056i \(0.617131\pi\)
\(938\) 26.5274 0.866149
\(939\) −15.3170 −0.499852
\(940\) −7.70759 −0.251394
\(941\) −1.81992 −0.0593278 −0.0296639 0.999560i \(-0.509444\pi\)
−0.0296639 + 0.999560i \(0.509444\pi\)
\(942\) 29.0178 0.945450
\(943\) −8.30466 −0.270437
\(944\) 0.189270 0.00616022
\(945\) 16.9354 0.550908
\(946\) 0 0
\(947\) 25.5160 0.829160 0.414580 0.910013i \(-0.363929\pi\)
0.414580 + 0.910013i \(0.363929\pi\)
\(948\) 31.4070 1.02005
\(949\) −16.0318 −0.520414
\(950\) 52.3600 1.69878
\(951\) 5.15399 0.167130
\(952\) −42.9133 −1.39083
\(953\) 20.0693 0.650109 0.325055 0.945695i \(-0.394617\pi\)
0.325055 + 0.945695i \(0.394617\pi\)
\(954\) −26.1994 −0.848238
\(955\) 9.54591 0.308898
\(956\) −35.9365 −1.16227
\(957\) 0 0
\(958\) 72.3507 2.33755
\(959\) 40.4569 1.30642
\(960\) −6.00137 −0.193693
\(961\) −20.1671 −0.650551
\(962\) 23.5253 0.758487
\(963\) 33.4032 1.07640
\(964\) −81.0431 −2.61022
\(965\) −1.70563 −0.0549062
\(966\) −19.2847 −0.620475
\(967\) −40.9837 −1.31795 −0.658973 0.752167i \(-0.729009\pi\)
−0.658973 + 0.752167i \(0.729009\pi\)
\(968\) 0 0
\(969\) 9.60747 0.308636
\(970\) 13.5920 0.436413
\(971\) 20.9281 0.671613 0.335807 0.941931i \(-0.390991\pi\)
0.335807 + 0.941931i \(0.390991\pi\)
\(972\) −64.7180 −2.07583
\(973\) −67.6870 −2.16995
\(974\) 0.207403 0.00664561
\(975\) −3.35688 −0.107506
\(976\) −46.0608 −1.47437
\(977\) −15.7760 −0.504719 −0.252359 0.967634i \(-0.581207\pi\)
−0.252359 + 0.967634i \(0.581207\pi\)
\(978\) 36.5467 1.16863
\(979\) 0 0
\(980\) −32.3901 −1.03466
\(981\) −27.2341 −0.869519
\(982\) −73.6739 −2.35103
\(983\) 44.7595 1.42761 0.713804 0.700346i \(-0.246971\pi\)
0.713804 + 0.700346i \(0.246971\pi\)
\(984\) −14.4662 −0.461167
\(985\) −24.3857 −0.776994
\(986\) 36.5932 1.16537
\(987\) 6.24362 0.198737
\(988\) 21.4214 0.681505
\(989\) 17.2173 0.547478
\(990\) 0 0
\(991\) 13.7020 0.435258 0.217629 0.976032i \(-0.430168\pi\)
0.217629 + 0.976032i \(0.430168\pi\)
\(992\) −1.82980 −0.0580962
\(993\) −6.19546 −0.196607
\(994\) −100.604 −3.19097
\(995\) 2.09713 0.0664834
\(996\) −41.4955 −1.31483
\(997\) −11.0927 −0.351308 −0.175654 0.984452i \(-0.556204\pi\)
−0.175654 + 0.984452i \(0.556204\pi\)
\(998\) −79.5162 −2.51704
\(999\) −42.2658 −1.33723
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1573.2.a.o.1.8 8
11.3 even 5 143.2.h.b.53.4 yes 16
11.4 even 5 143.2.h.b.27.4 16
11.10 odd 2 1573.2.a.n.1.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
143.2.h.b.27.4 16 11.4 even 5
143.2.h.b.53.4 yes 16 11.3 even 5
1573.2.a.n.1.1 8 11.10 odd 2
1573.2.a.o.1.8 8 1.1 even 1 trivial