Properties

Label 1573.2.a.n.1.1
Level $1573$
Weight $2$
Character 1573.1
Self dual yes
Analytic conductor $12.560$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1573,2,Mod(1,1573)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1573.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1573, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1573 = 11^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1573.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-1,-5,1,-5,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.5604682379\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.661518125.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 7x^{6} + 5x^{5} + 15x^{4} - 7x^{3} - 10x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 143)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.50656\) of defining polynomial
Character \(\chi\) \(=\) 1573.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.46083 q^{2} -0.833297 q^{3} +4.05570 q^{4} -0.985684 q^{5} +2.05061 q^{6} +3.88617 q^{7} -5.05874 q^{8} -2.30562 q^{9} +2.42560 q^{10} -3.37961 q^{12} +1.00000 q^{13} -9.56322 q^{14} +0.821367 q^{15} +4.33732 q^{16} -2.18287 q^{17} +5.67374 q^{18} +5.28179 q^{19} -3.99764 q^{20} -3.23833 q^{21} -2.41996 q^{23} +4.21544 q^{24} -4.02843 q^{25} -2.46083 q^{26} +4.42115 q^{27} +15.7611 q^{28} -6.81225 q^{29} -2.02125 q^{30} -3.29134 q^{31} -0.555943 q^{32} +5.37168 q^{34} -3.83053 q^{35} -9.35089 q^{36} -9.55991 q^{37} -12.9976 q^{38} -0.833297 q^{39} +4.98632 q^{40} -3.43173 q^{41} +7.96900 q^{42} +7.11470 q^{43} +2.27261 q^{45} +5.95513 q^{46} +1.92804 q^{47} -3.61428 q^{48} +8.10231 q^{49} +9.91329 q^{50} +1.81898 q^{51} +4.05570 q^{52} +4.61767 q^{53} -10.8797 q^{54} -19.6591 q^{56} -4.40130 q^{57} +16.7638 q^{58} +0.0436376 q^{59} +3.33122 q^{60} +10.6196 q^{61} +8.09944 q^{62} -8.96001 q^{63} -7.30656 q^{64} -0.985684 q^{65} -2.77390 q^{67} -8.85307 q^{68} +2.01655 q^{69} +9.42631 q^{70} +10.5199 q^{71} +11.6635 q^{72} -16.0318 q^{73} +23.5253 q^{74} +3.35688 q^{75} +21.4214 q^{76} +2.05061 q^{78} +9.29309 q^{79} -4.27523 q^{80} +3.23271 q^{81} +8.44492 q^{82} -12.2782 q^{83} -13.1337 q^{84} +2.15162 q^{85} -17.5081 q^{86} +5.67663 q^{87} +2.97373 q^{89} -5.59251 q^{90} +3.88617 q^{91} -9.81465 q^{92} +2.74266 q^{93} -4.74458 q^{94} -5.20618 q^{95} +0.463266 q^{96} -5.60356 q^{97} -19.9384 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} - 5 q^{3} + q^{4} - 5 q^{5} - 3 q^{6} - 2 q^{7} - 3 q^{8} - q^{9} + 6 q^{10} - 7 q^{12} + 8 q^{13} + 2 q^{14} + 5 q^{15} - 5 q^{16} + 13 q^{17} + 5 q^{18} - 6 q^{19} - 3 q^{20} + 4 q^{21}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.46083 −1.74007 −0.870036 0.492988i \(-0.835905\pi\)
−0.870036 + 0.492988i \(0.835905\pi\)
\(3\) −0.833297 −0.481104 −0.240552 0.970636i \(-0.577329\pi\)
−0.240552 + 0.970636i \(0.577329\pi\)
\(4\) 4.05570 2.02785
\(5\) −0.985684 −0.440811 −0.220406 0.975408i \(-0.570738\pi\)
−0.220406 + 0.975408i \(0.570738\pi\)
\(6\) 2.05061 0.837156
\(7\) 3.88617 1.46883 0.734417 0.678699i \(-0.237456\pi\)
0.734417 + 0.678699i \(0.237456\pi\)
\(8\) −5.05874 −1.78854
\(9\) −2.30562 −0.768539
\(10\) 2.42560 0.767043
\(11\) 0 0
\(12\) −3.37961 −0.975608
\(13\) 1.00000 0.277350
\(14\) −9.56322 −2.55588
\(15\) 0.821367 0.212076
\(16\) 4.33732 1.08433
\(17\) −2.18287 −0.529424 −0.264712 0.964328i \(-0.585277\pi\)
−0.264712 + 0.964328i \(0.585277\pi\)
\(18\) 5.67374 1.33731
\(19\) 5.28179 1.21173 0.605863 0.795569i \(-0.292828\pi\)
0.605863 + 0.795569i \(0.292828\pi\)
\(20\) −3.99764 −0.893900
\(21\) −3.23833 −0.706662
\(22\) 0 0
\(23\) −2.41996 −0.504597 −0.252299 0.967649i \(-0.581186\pi\)
−0.252299 + 0.967649i \(0.581186\pi\)
\(24\) 4.21544 0.860473
\(25\) −4.02843 −0.805686
\(26\) −2.46083 −0.482609
\(27\) 4.42115 0.850852
\(28\) 15.7611 2.97858
\(29\) −6.81225 −1.26500 −0.632501 0.774559i \(-0.717972\pi\)
−0.632501 + 0.774559i \(0.717972\pi\)
\(30\) −2.02125 −0.369028
\(31\) −3.29134 −0.591142 −0.295571 0.955321i \(-0.595510\pi\)
−0.295571 + 0.955321i \(0.595510\pi\)
\(32\) −0.555943 −0.0982778
\(33\) 0 0
\(34\) 5.37168 0.921235
\(35\) −3.83053 −0.647478
\(36\) −9.35089 −1.55848
\(37\) −9.55991 −1.57164 −0.785819 0.618456i \(-0.787758\pi\)
−0.785819 + 0.618456i \(0.787758\pi\)
\(38\) −12.9976 −2.10849
\(39\) −0.833297 −0.133434
\(40\) 4.98632 0.788407
\(41\) −3.43173 −0.535946 −0.267973 0.963426i \(-0.586354\pi\)
−0.267973 + 0.963426i \(0.586354\pi\)
\(42\) 7.96900 1.22964
\(43\) 7.11470 1.08498 0.542491 0.840062i \(-0.317481\pi\)
0.542491 + 0.840062i \(0.317481\pi\)
\(44\) 0 0
\(45\) 2.27261 0.338780
\(46\) 5.95513 0.878035
\(47\) 1.92804 0.281233 0.140616 0.990064i \(-0.455092\pi\)
0.140616 + 0.990064i \(0.455092\pi\)
\(48\) −3.61428 −0.521676
\(49\) 8.10231 1.15747
\(50\) 9.91329 1.40195
\(51\) 1.81898 0.254708
\(52\) 4.05570 0.562425
\(53\) 4.61767 0.634285 0.317143 0.948378i \(-0.397277\pi\)
0.317143 + 0.948378i \(0.397277\pi\)
\(54\) −10.8797 −1.48054
\(55\) 0 0
\(56\) −19.6591 −2.62706
\(57\) −4.40130 −0.582967
\(58\) 16.7638 2.20120
\(59\) 0.0436376 0.00568113 0.00284056 0.999996i \(-0.499096\pi\)
0.00284056 + 0.999996i \(0.499096\pi\)
\(60\) 3.33122 0.430059
\(61\) 10.6196 1.35970 0.679852 0.733349i \(-0.262044\pi\)
0.679852 + 0.733349i \(0.262044\pi\)
\(62\) 8.09944 1.02863
\(63\) −8.96001 −1.12886
\(64\) −7.30656 −0.913320
\(65\) −0.985684 −0.122259
\(66\) 0 0
\(67\) −2.77390 −0.338885 −0.169443 0.985540i \(-0.554197\pi\)
−0.169443 + 0.985540i \(0.554197\pi\)
\(68\) −8.85307 −1.07359
\(69\) 2.01655 0.242764
\(70\) 9.42631 1.12666
\(71\) 10.5199 1.24848 0.624241 0.781232i \(-0.285408\pi\)
0.624241 + 0.781232i \(0.285408\pi\)
\(72\) 11.6635 1.37456
\(73\) −16.0318 −1.87638 −0.938189 0.346123i \(-0.887498\pi\)
−0.938189 + 0.346123i \(0.887498\pi\)
\(74\) 23.5253 2.73477
\(75\) 3.35688 0.387619
\(76\) 21.4214 2.45720
\(77\) 0 0
\(78\) 2.05061 0.232185
\(79\) 9.29309 1.04555 0.522777 0.852469i \(-0.324896\pi\)
0.522777 + 0.852469i \(0.324896\pi\)
\(80\) −4.27523 −0.477985
\(81\) 3.23271 0.359190
\(82\) 8.44492 0.932585
\(83\) −12.2782 −1.34771 −0.673853 0.738865i \(-0.735362\pi\)
−0.673853 + 0.738865i \(0.735362\pi\)
\(84\) −13.1337 −1.43301
\(85\) 2.15162 0.233376
\(86\) −17.5081 −1.88795
\(87\) 5.67663 0.608598
\(88\) 0 0
\(89\) 2.97373 0.315215 0.157607 0.987502i \(-0.449622\pi\)
0.157607 + 0.987502i \(0.449622\pi\)
\(90\) −5.59251 −0.589502
\(91\) 3.88617 0.407381
\(92\) −9.81465 −1.02325
\(93\) 2.74266 0.284401
\(94\) −4.74458 −0.489366
\(95\) −5.20618 −0.534143
\(96\) 0.463266 0.0472819
\(97\) −5.60356 −0.568955 −0.284478 0.958683i \(-0.591820\pi\)
−0.284478 + 0.958683i \(0.591820\pi\)
\(98\) −19.9384 −2.01409
\(99\) 0 0
\(100\) −16.3381 −1.63381
\(101\) −13.5577 −1.34905 −0.674523 0.738254i \(-0.735650\pi\)
−0.674523 + 0.738254i \(0.735650\pi\)
\(102\) −4.47620 −0.443210
\(103\) 1.93196 0.190362 0.0951809 0.995460i \(-0.469657\pi\)
0.0951809 + 0.995460i \(0.469657\pi\)
\(104\) −5.05874 −0.496051
\(105\) 3.19197 0.311505
\(106\) −11.3633 −1.10370
\(107\) 14.4878 1.40059 0.700293 0.713856i \(-0.253053\pi\)
0.700293 + 0.713856i \(0.253053\pi\)
\(108\) 17.9309 1.72540
\(109\) −11.8121 −1.13139 −0.565697 0.824613i \(-0.691393\pi\)
−0.565697 + 0.824613i \(0.691393\pi\)
\(110\) 0 0
\(111\) 7.96624 0.756122
\(112\) 16.8556 1.59270
\(113\) −17.0164 −1.60077 −0.800384 0.599487i \(-0.795371\pi\)
−0.800384 + 0.599487i \(0.795371\pi\)
\(114\) 10.8309 1.01440
\(115\) 2.38532 0.222432
\(116\) −27.6285 −2.56524
\(117\) −2.30562 −0.213154
\(118\) −0.107385 −0.00988557
\(119\) −8.48300 −0.777635
\(120\) −4.15509 −0.379306
\(121\) 0 0
\(122\) −26.1331 −2.36598
\(123\) 2.85965 0.257846
\(124\) −13.3487 −1.19875
\(125\) 8.89917 0.795966
\(126\) 22.0491 1.96429
\(127\) 2.96884 0.263442 0.131721 0.991287i \(-0.457950\pi\)
0.131721 + 0.991287i \(0.457950\pi\)
\(128\) 19.0921 1.68752
\(129\) −5.92866 −0.521989
\(130\) 2.42560 0.212740
\(131\) 15.8031 1.38073 0.690363 0.723463i \(-0.257451\pi\)
0.690363 + 0.723463i \(0.257451\pi\)
\(132\) 0 0
\(133\) 20.5259 1.77983
\(134\) 6.82610 0.589685
\(135\) −4.35786 −0.375065
\(136\) 11.0426 0.946893
\(137\) −10.4105 −0.889428 −0.444714 0.895673i \(-0.646695\pi\)
−0.444714 + 0.895673i \(0.646695\pi\)
\(138\) −4.96239 −0.422427
\(139\) −17.4174 −1.47733 −0.738663 0.674075i \(-0.764543\pi\)
−0.738663 + 0.674075i \(0.764543\pi\)
\(140\) −15.5355 −1.31299
\(141\) −1.60663 −0.135302
\(142\) −25.8877 −2.17245
\(143\) 0 0
\(144\) −10.0002 −0.833350
\(145\) 6.71472 0.557627
\(146\) 39.4516 3.26503
\(147\) −6.75163 −0.556865
\(148\) −38.7721 −3.18705
\(149\) −7.45391 −0.610648 −0.305324 0.952248i \(-0.598765\pi\)
−0.305324 + 0.952248i \(0.598765\pi\)
\(150\) −8.26072 −0.674485
\(151\) 2.62280 0.213440 0.106720 0.994289i \(-0.465965\pi\)
0.106720 + 0.994289i \(0.465965\pi\)
\(152\) −26.7193 −2.16722
\(153\) 5.03286 0.406882
\(154\) 0 0
\(155\) 3.24422 0.260582
\(156\) −3.37961 −0.270585
\(157\) −14.1508 −1.12936 −0.564679 0.825310i \(-0.691000\pi\)
−0.564679 + 0.825310i \(0.691000\pi\)
\(158\) −22.8688 −1.81934
\(159\) −3.84789 −0.305157
\(160\) 0.547984 0.0433220
\(161\) −9.40438 −0.741169
\(162\) −7.95517 −0.625017
\(163\) −17.8224 −1.39596 −0.697979 0.716119i \(-0.745917\pi\)
−0.697979 + 0.716119i \(0.745917\pi\)
\(164\) −13.9181 −1.08682
\(165\) 0 0
\(166\) 30.2146 2.34511
\(167\) −19.9057 −1.54035 −0.770173 0.637834i \(-0.779830\pi\)
−0.770173 + 0.637834i \(0.779830\pi\)
\(168\) 16.3819 1.26389
\(169\) 1.00000 0.0769231
\(170\) −5.29478 −0.406091
\(171\) −12.1778 −0.931259
\(172\) 28.8551 2.20018
\(173\) −2.06598 −0.157073 −0.0785366 0.996911i \(-0.525025\pi\)
−0.0785366 + 0.996911i \(0.525025\pi\)
\(174\) −13.9692 −1.05901
\(175\) −15.6552 −1.18342
\(176\) 0 0
\(177\) −0.0363631 −0.00273322
\(178\) −7.31786 −0.548497
\(179\) 5.92882 0.443141 0.221570 0.975144i \(-0.428882\pi\)
0.221570 + 0.975144i \(0.428882\pi\)
\(180\) 9.21702 0.686996
\(181\) −21.0596 −1.56535 −0.782674 0.622432i \(-0.786145\pi\)
−0.782674 + 0.622432i \(0.786145\pi\)
\(182\) −9.56322 −0.708873
\(183\) −8.84931 −0.654160
\(184\) 12.2420 0.902490
\(185\) 9.42304 0.692796
\(186\) −6.74924 −0.494878
\(187\) 0 0
\(188\) 7.81954 0.570299
\(189\) 17.1814 1.24976
\(190\) 12.8115 0.929447
\(191\) −9.68456 −0.700750 −0.350375 0.936610i \(-0.613946\pi\)
−0.350375 + 0.936610i \(0.613946\pi\)
\(192\) 6.08854 0.439402
\(193\) −1.73040 −0.124557 −0.0622786 0.998059i \(-0.519837\pi\)
−0.0622786 + 0.998059i \(0.519837\pi\)
\(194\) 13.7894 0.990023
\(195\) 0.821367 0.0588193
\(196\) 32.8606 2.34718
\(197\) −24.7399 −1.76265 −0.881323 0.472514i \(-0.843347\pi\)
−0.881323 + 0.472514i \(0.843347\pi\)
\(198\) 0 0
\(199\) −2.12759 −0.150821 −0.0754103 0.997153i \(-0.524027\pi\)
−0.0754103 + 0.997153i \(0.524027\pi\)
\(200\) 20.3788 1.44100
\(201\) 2.31148 0.163039
\(202\) 33.3633 2.34744
\(203\) −26.4735 −1.85808
\(204\) 7.37724 0.516510
\(205\) 3.38260 0.236251
\(206\) −4.75423 −0.331243
\(207\) 5.57950 0.387802
\(208\) 4.33732 0.300739
\(209\) 0 0
\(210\) −7.85491 −0.542041
\(211\) 3.55487 0.244727 0.122364 0.992485i \(-0.460953\pi\)
0.122364 + 0.992485i \(0.460953\pi\)
\(212\) 18.7279 1.28624
\(213\) −8.76620 −0.600650
\(214\) −35.6520 −2.43712
\(215\) −7.01284 −0.478272
\(216\) −22.3655 −1.52178
\(217\) −12.7907 −0.868289
\(218\) 29.0676 1.96871
\(219\) 13.3592 0.902734
\(220\) 0 0
\(221\) −2.18287 −0.146836
\(222\) −19.6036 −1.31571
\(223\) −18.6891 −1.25152 −0.625758 0.780017i \(-0.715210\pi\)
−0.625758 + 0.780017i \(0.715210\pi\)
\(224\) −2.16049 −0.144354
\(225\) 9.28801 0.619200
\(226\) 41.8746 2.78545
\(227\) −11.7004 −0.776580 −0.388290 0.921537i \(-0.626934\pi\)
−0.388290 + 0.921537i \(0.626934\pi\)
\(228\) −17.8504 −1.18217
\(229\) 5.43048 0.358856 0.179428 0.983771i \(-0.442575\pi\)
0.179428 + 0.983771i \(0.442575\pi\)
\(230\) −5.86987 −0.387048
\(231\) 0 0
\(232\) 34.4614 2.26250
\(233\) 13.1355 0.860536 0.430268 0.902701i \(-0.358419\pi\)
0.430268 + 0.902701i \(0.358419\pi\)
\(234\) 5.67374 0.370904
\(235\) −1.90043 −0.123971
\(236\) 0.176981 0.0115205
\(237\) −7.74391 −0.503021
\(238\) 20.8753 1.35314
\(239\) 8.86074 0.573154 0.286577 0.958057i \(-0.407483\pi\)
0.286577 + 0.958057i \(0.407483\pi\)
\(240\) 3.56254 0.229961
\(241\) 19.9825 1.28719 0.643593 0.765368i \(-0.277443\pi\)
0.643593 + 0.765368i \(0.277443\pi\)
\(242\) 0 0
\(243\) −15.9573 −1.02366
\(244\) 43.0701 2.75728
\(245\) −7.98631 −0.510227
\(246\) −7.03713 −0.448671
\(247\) 5.28179 0.336073
\(248\) 16.6500 1.05728
\(249\) 10.2314 0.648388
\(250\) −21.8994 −1.38504
\(251\) −29.5375 −1.86439 −0.932195 0.361956i \(-0.882109\pi\)
−0.932195 + 0.361956i \(0.882109\pi\)
\(252\) −36.3392 −2.28915
\(253\) 0 0
\(254\) −7.30583 −0.458409
\(255\) −1.79294 −0.112278
\(256\) −32.3694 −2.02309
\(257\) −8.58239 −0.535355 −0.267677 0.963509i \(-0.586256\pi\)
−0.267677 + 0.963509i \(0.586256\pi\)
\(258\) 14.5894 0.908299
\(259\) −37.1514 −2.30848
\(260\) −3.99764 −0.247923
\(261\) 15.7064 0.972204
\(262\) −38.8889 −2.40256
\(263\) 16.7442 1.03249 0.516245 0.856441i \(-0.327329\pi\)
0.516245 + 0.856441i \(0.327329\pi\)
\(264\) 0 0
\(265\) −4.55156 −0.279600
\(266\) −50.5109 −3.09702
\(267\) −2.47800 −0.151651
\(268\) −11.2501 −0.687209
\(269\) 7.33341 0.447126 0.223563 0.974689i \(-0.428231\pi\)
0.223563 + 0.974689i \(0.428231\pi\)
\(270\) 10.7240 0.652640
\(271\) 21.9098 1.33093 0.665463 0.746431i \(-0.268234\pi\)
0.665463 + 0.746431i \(0.268234\pi\)
\(272\) −9.46781 −0.574070
\(273\) −3.23833 −0.195993
\(274\) 25.6185 1.54767
\(275\) 0 0
\(276\) 8.17852 0.492289
\(277\) 9.61513 0.577717 0.288859 0.957372i \(-0.406724\pi\)
0.288859 + 0.957372i \(0.406724\pi\)
\(278\) 42.8614 2.57066
\(279\) 7.58857 0.454316
\(280\) 19.3777 1.15804
\(281\) −1.65128 −0.0985071 −0.0492535 0.998786i \(-0.515684\pi\)
−0.0492535 + 0.998786i \(0.515684\pi\)
\(282\) 3.95364 0.235436
\(283\) −14.6389 −0.870189 −0.435095 0.900385i \(-0.643285\pi\)
−0.435095 + 0.900385i \(0.643285\pi\)
\(284\) 42.6656 2.53174
\(285\) 4.33829 0.256978
\(286\) 0 0
\(287\) −13.3363 −0.787216
\(288\) 1.28179 0.0755303
\(289\) −12.2351 −0.719711
\(290\) −16.5238 −0.970312
\(291\) 4.66943 0.273727
\(292\) −65.0202 −3.80502
\(293\) 0.405770 0.0237054 0.0118527 0.999930i \(-0.496227\pi\)
0.0118527 + 0.999930i \(0.496227\pi\)
\(294\) 16.6146 0.968986
\(295\) −0.0430128 −0.00250430
\(296\) 48.3611 2.81093
\(297\) 0 0
\(298\) 18.3428 1.06257
\(299\) −2.41996 −0.139950
\(300\) 13.6145 0.786034
\(301\) 27.6489 1.59366
\(302\) −6.45427 −0.371402
\(303\) 11.2976 0.649031
\(304\) 22.9089 1.31391
\(305\) −10.4676 −0.599373
\(306\) −12.3850 −0.708005
\(307\) −9.00182 −0.513761 −0.256880 0.966443i \(-0.582695\pi\)
−0.256880 + 0.966443i \(0.582695\pi\)
\(308\) 0 0
\(309\) −1.60990 −0.0915839
\(310\) −7.98349 −0.453432
\(311\) 6.37201 0.361324 0.180662 0.983545i \(-0.442176\pi\)
0.180662 + 0.983545i \(0.442176\pi\)
\(312\) 4.21544 0.238652
\(313\) 18.3812 1.03897 0.519484 0.854480i \(-0.326124\pi\)
0.519484 + 0.854480i \(0.326124\pi\)
\(314\) 34.8228 1.96517
\(315\) 8.83174 0.497612
\(316\) 37.6900 2.12023
\(317\) −6.18506 −0.347387 −0.173694 0.984800i \(-0.555570\pi\)
−0.173694 + 0.984800i \(0.555570\pi\)
\(318\) 9.46902 0.530996
\(319\) 0 0
\(320\) 7.20196 0.402602
\(321\) −12.0726 −0.673828
\(322\) 23.1426 1.28969
\(323\) −11.5295 −0.641517
\(324\) 13.1109 0.728384
\(325\) −4.02843 −0.223457
\(326\) 43.8579 2.42907
\(327\) 9.84298 0.544318
\(328\) 17.3603 0.958559
\(329\) 7.49267 0.413084
\(330\) 0 0
\(331\) 7.43488 0.408658 0.204329 0.978902i \(-0.434499\pi\)
0.204329 + 0.978902i \(0.434499\pi\)
\(332\) −49.7967 −2.73295
\(333\) 22.0415 1.20787
\(334\) 48.9845 2.68032
\(335\) 2.73418 0.149384
\(336\) −14.0457 −0.766256
\(337\) −36.0293 −1.96264 −0.981321 0.192380i \(-0.938379\pi\)
−0.981321 + 0.192380i \(0.938379\pi\)
\(338\) −2.46083 −0.133852
\(339\) 14.1797 0.770137
\(340\) 8.72633 0.473251
\(341\) 0 0
\(342\) 29.9675 1.62046
\(343\) 4.28376 0.231301
\(344\) −35.9914 −1.94053
\(345\) −1.98768 −0.107013
\(346\) 5.08402 0.273319
\(347\) 22.6272 1.21469 0.607346 0.794437i \(-0.292234\pi\)
0.607346 + 0.794437i \(0.292234\pi\)
\(348\) 23.0227 1.23415
\(349\) 3.92582 0.210145 0.105072 0.994465i \(-0.466493\pi\)
0.105072 + 0.994465i \(0.466493\pi\)
\(350\) 38.5247 2.05923
\(351\) 4.42115 0.235984
\(352\) 0 0
\(353\) −15.8328 −0.842694 −0.421347 0.906900i \(-0.638443\pi\)
−0.421347 + 0.906900i \(0.638443\pi\)
\(354\) 0.0894835 0.00475599
\(355\) −10.3693 −0.550345
\(356\) 12.0606 0.639209
\(357\) 7.06886 0.374124
\(358\) −14.5898 −0.771097
\(359\) 2.39931 0.126631 0.0633154 0.997994i \(-0.479833\pi\)
0.0633154 + 0.997994i \(0.479833\pi\)
\(360\) −11.4965 −0.605921
\(361\) 8.89735 0.468282
\(362\) 51.8242 2.72382
\(363\) 0 0
\(364\) 15.7611 0.826109
\(365\) 15.8023 0.827128
\(366\) 21.7767 1.13829
\(367\) −18.2688 −0.953624 −0.476812 0.879005i \(-0.658208\pi\)
−0.476812 + 0.879005i \(0.658208\pi\)
\(368\) −10.4962 −0.547150
\(369\) 7.91225 0.411895
\(370\) −23.1885 −1.20551
\(371\) 17.9450 0.931660
\(372\) 11.1234 0.576723
\(373\) −9.31655 −0.482393 −0.241196 0.970476i \(-0.577540\pi\)
−0.241196 + 0.970476i \(0.577540\pi\)
\(374\) 0 0
\(375\) −7.41566 −0.382943
\(376\) −9.75344 −0.502995
\(377\) −6.81225 −0.350849
\(378\) −42.2805 −2.17467
\(379\) 19.6966 1.01175 0.505874 0.862607i \(-0.331170\pi\)
0.505874 + 0.862607i \(0.331170\pi\)
\(380\) −21.1147 −1.08316
\(381\) −2.47393 −0.126743
\(382\) 23.8321 1.21936
\(383\) 4.90797 0.250786 0.125393 0.992107i \(-0.459981\pi\)
0.125393 + 0.992107i \(0.459981\pi\)
\(384\) −15.9094 −0.811874
\(385\) 0 0
\(386\) 4.25823 0.216738
\(387\) −16.4038 −0.833850
\(388\) −22.7264 −1.15376
\(389\) −16.9903 −0.861441 −0.430721 0.902485i \(-0.641741\pi\)
−0.430721 + 0.902485i \(0.641741\pi\)
\(390\) −2.02125 −0.102350
\(391\) 5.28246 0.267146
\(392\) −40.9875 −2.07018
\(393\) −13.1687 −0.664273
\(394\) 60.8808 3.06713
\(395\) −9.16005 −0.460892
\(396\) 0 0
\(397\) 16.8443 0.845391 0.422695 0.906272i \(-0.361084\pi\)
0.422695 + 0.906272i \(0.361084\pi\)
\(398\) 5.23563 0.262439
\(399\) −17.1042 −0.856282
\(400\) −17.4726 −0.873630
\(401\) 35.1136 1.75349 0.876745 0.480956i \(-0.159710\pi\)
0.876745 + 0.480956i \(0.159710\pi\)
\(402\) −5.68817 −0.283700
\(403\) −3.29134 −0.163953
\(404\) −54.9862 −2.73566
\(405\) −3.18643 −0.158335
\(406\) 65.1470 3.23319
\(407\) 0 0
\(408\) −9.20175 −0.455554
\(409\) 15.3136 0.757209 0.378605 0.925559i \(-0.376404\pi\)
0.378605 + 0.925559i \(0.376404\pi\)
\(410\) −8.32402 −0.411094
\(411\) 8.67503 0.427908
\(412\) 7.83546 0.386025
\(413\) 0.169583 0.00834463
\(414\) −13.7302 −0.674804
\(415\) 12.1024 0.594084
\(416\) −0.555943 −0.0272574
\(417\) 14.5139 0.710748
\(418\) 0 0
\(419\) 14.5369 0.710173 0.355086 0.934833i \(-0.384451\pi\)
0.355086 + 0.934833i \(0.384451\pi\)
\(420\) 12.9457 0.631685
\(421\) −6.03720 −0.294235 −0.147118 0.989119i \(-0.547000\pi\)
−0.147118 + 0.989119i \(0.547000\pi\)
\(422\) −8.74794 −0.425843
\(423\) −4.44531 −0.216138
\(424\) −23.3596 −1.13444
\(425\) 8.79353 0.426549
\(426\) 21.5722 1.04518
\(427\) 41.2697 1.99718
\(428\) 58.7581 2.84018
\(429\) 0 0
\(430\) 17.2574 0.832227
\(431\) −4.93130 −0.237532 −0.118766 0.992922i \(-0.537894\pi\)
−0.118766 + 0.992922i \(0.537894\pi\)
\(432\) 19.1760 0.922605
\(433\) −5.53167 −0.265835 −0.132918 0.991127i \(-0.542435\pi\)
−0.132918 + 0.991127i \(0.542435\pi\)
\(434\) 31.4758 1.51089
\(435\) −5.59536 −0.268277
\(436\) −47.9063 −2.29430
\(437\) −12.7817 −0.611434
\(438\) −32.8749 −1.57082
\(439\) −16.1221 −0.769468 −0.384734 0.923028i \(-0.625707\pi\)
−0.384734 + 0.923028i \(0.625707\pi\)
\(440\) 0 0
\(441\) −18.6808 −0.889562
\(442\) 5.37168 0.255505
\(443\) 2.21666 0.105317 0.0526584 0.998613i \(-0.483231\pi\)
0.0526584 + 0.998613i \(0.483231\pi\)
\(444\) 32.3087 1.53330
\(445\) −2.93116 −0.138950
\(446\) 45.9908 2.17773
\(447\) 6.21132 0.293786
\(448\) −28.3945 −1.34152
\(449\) 0.209393 0.00988186 0.00494093 0.999988i \(-0.498427\pi\)
0.00494093 + 0.999988i \(0.498427\pi\)
\(450\) −22.8562 −1.07745
\(451\) 0 0
\(452\) −69.0135 −3.24612
\(453\) −2.18557 −0.102687
\(454\) 28.7926 1.35131
\(455\) −3.83053 −0.179578
\(456\) 22.2651 1.04266
\(457\) 33.6647 1.57477 0.787383 0.616464i \(-0.211435\pi\)
0.787383 + 0.616464i \(0.211435\pi\)
\(458\) −13.3635 −0.624436
\(459\) −9.65080 −0.450461
\(460\) 9.67414 0.451059
\(461\) −21.4300 −0.998093 −0.499046 0.866575i \(-0.666316\pi\)
−0.499046 + 0.866575i \(0.666316\pi\)
\(462\) 0 0
\(463\) −14.4598 −0.672005 −0.336002 0.941861i \(-0.609075\pi\)
−0.336002 + 0.941861i \(0.609075\pi\)
\(464\) −29.5469 −1.37168
\(465\) −2.70340 −0.125367
\(466\) −32.3243 −1.49739
\(467\) −11.7989 −0.545987 −0.272993 0.962016i \(-0.588014\pi\)
−0.272993 + 0.962016i \(0.588014\pi\)
\(468\) −9.35089 −0.432245
\(469\) −10.7798 −0.497766
\(470\) 4.67665 0.215718
\(471\) 11.7918 0.543340
\(472\) −0.220751 −0.0101609
\(473\) 0 0
\(474\) 19.0565 0.875293
\(475\) −21.2773 −0.976271
\(476\) −34.4045 −1.57693
\(477\) −10.6466 −0.487473
\(478\) −21.8048 −0.997329
\(479\) −29.4009 −1.34336 −0.671681 0.740841i \(-0.734427\pi\)
−0.671681 + 0.740841i \(0.734427\pi\)
\(480\) −0.456634 −0.0208424
\(481\) −9.55991 −0.435894
\(482\) −49.1736 −2.23980
\(483\) 7.83665 0.356580
\(484\) 0 0
\(485\) 5.52334 0.250802
\(486\) 39.2682 1.78124
\(487\) 0.0842815 0.00381916 0.00190958 0.999998i \(-0.499392\pi\)
0.00190958 + 0.999998i \(0.499392\pi\)
\(488\) −53.7220 −2.43188
\(489\) 14.8513 0.671601
\(490\) 19.6530 0.887832
\(491\) 29.9386 1.35111 0.675555 0.737310i \(-0.263904\pi\)
0.675555 + 0.737310i \(0.263904\pi\)
\(492\) 11.5979 0.522874
\(493\) 14.8702 0.669722
\(494\) −12.9976 −0.584791
\(495\) 0 0
\(496\) −14.2756 −0.640994
\(497\) 40.8821 1.83381
\(498\) −25.1777 −1.12824
\(499\) −32.3127 −1.44652 −0.723258 0.690578i \(-0.757356\pi\)
−0.723258 + 0.690578i \(0.757356\pi\)
\(500\) 36.0924 1.61410
\(501\) 16.5873 0.741068
\(502\) 72.6869 3.24417
\(503\) 6.85971 0.305859 0.152930 0.988237i \(-0.451129\pi\)
0.152930 + 0.988237i \(0.451129\pi\)
\(504\) 45.3264 2.01900
\(505\) 13.3636 0.594674
\(506\) 0 0
\(507\) −0.833297 −0.0370080
\(508\) 12.0408 0.534222
\(509\) 2.89107 0.128145 0.0640723 0.997945i \(-0.479591\pi\)
0.0640723 + 0.997945i \(0.479591\pi\)
\(510\) 4.41212 0.195372
\(511\) −62.3022 −2.75609
\(512\) 41.4715 1.83280
\(513\) 23.3516 1.03100
\(514\) 21.1198 0.931556
\(515\) −1.90430 −0.0839136
\(516\) −24.0449 −1.05852
\(517\) 0 0
\(518\) 91.4234 4.01692
\(519\) 1.72157 0.0755686
\(520\) 4.98632 0.218665
\(521\) 22.5461 0.987763 0.493882 0.869529i \(-0.335578\pi\)
0.493882 + 0.869529i \(0.335578\pi\)
\(522\) −38.6509 −1.69170
\(523\) 24.3954 1.06674 0.533369 0.845883i \(-0.320926\pi\)
0.533369 + 0.845883i \(0.320926\pi\)
\(524\) 64.0928 2.79991
\(525\) 13.0454 0.569348
\(526\) −41.2046 −1.79661
\(527\) 7.18456 0.312965
\(528\) 0 0
\(529\) −17.1438 −0.745382
\(530\) 11.2006 0.486524
\(531\) −0.100611 −0.00436617
\(532\) 83.2472 3.60922
\(533\) −3.43173 −0.148645
\(534\) 6.09795 0.263884
\(535\) −14.2804 −0.617394
\(536\) 14.0324 0.606109
\(537\) −4.94047 −0.213197
\(538\) −18.0463 −0.778032
\(539\) 0 0
\(540\) −17.6742 −0.760576
\(541\) −15.1928 −0.653188 −0.326594 0.945165i \(-0.605901\pi\)
−0.326594 + 0.945165i \(0.605901\pi\)
\(542\) −53.9164 −2.31591
\(543\) 17.5489 0.753096
\(544\) 1.21355 0.0520306
\(545\) 11.6430 0.498731
\(546\) 7.96900 0.341042
\(547\) 4.55377 0.194705 0.0973525 0.995250i \(-0.468963\pi\)
0.0973525 + 0.995250i \(0.468963\pi\)
\(548\) −42.2218 −1.80363
\(549\) −24.4848 −1.04499
\(550\) 0 0
\(551\) −35.9809 −1.53284
\(552\) −10.2012 −0.434192
\(553\) 36.1145 1.53575
\(554\) −23.6612 −1.00527
\(555\) −7.85219 −0.333307
\(556\) −70.6399 −2.99580
\(557\) −11.8262 −0.501091 −0.250546 0.968105i \(-0.580610\pi\)
−0.250546 + 0.968105i \(0.580610\pi\)
\(558\) −18.6742 −0.790542
\(559\) 7.11470 0.300920
\(560\) −16.6143 −0.702081
\(561\) 0 0
\(562\) 4.06352 0.171409
\(563\) −5.98613 −0.252285 −0.126143 0.992012i \(-0.540260\pi\)
−0.126143 + 0.992012i \(0.540260\pi\)
\(564\) −6.51600 −0.274373
\(565\) 16.7728 0.705637
\(566\) 36.0238 1.51419
\(567\) 12.5629 0.527591
\(568\) −53.2175 −2.23296
\(569\) −17.1759 −0.720051 −0.360025 0.932942i \(-0.617232\pi\)
−0.360025 + 0.932942i \(0.617232\pi\)
\(570\) −10.6758 −0.447161
\(571\) 17.1160 0.716282 0.358141 0.933668i \(-0.383411\pi\)
0.358141 + 0.933668i \(0.383411\pi\)
\(572\) 0 0
\(573\) 8.07011 0.337134
\(574\) 32.8184 1.36981
\(575\) 9.74864 0.406547
\(576\) 16.8461 0.701922
\(577\) 16.0156 0.666738 0.333369 0.942796i \(-0.391814\pi\)
0.333369 + 0.942796i \(0.391814\pi\)
\(578\) 30.1085 1.25235
\(579\) 1.44194 0.0599250
\(580\) 27.2329 1.13079
\(581\) −47.7151 −1.97956
\(582\) −11.4907 −0.476304
\(583\) 0 0
\(584\) 81.1007 3.35597
\(585\) 2.27261 0.0939608
\(586\) −0.998533 −0.0412490
\(587\) −18.6575 −0.770079 −0.385039 0.922900i \(-0.625812\pi\)
−0.385039 + 0.922900i \(0.625812\pi\)
\(588\) −27.3826 −1.12924
\(589\) −17.3842 −0.716303
\(590\) 0.105847 0.00435767
\(591\) 20.6157 0.848017
\(592\) −41.4644 −1.70418
\(593\) 0.889024 0.0365078 0.0182539 0.999833i \(-0.494189\pi\)
0.0182539 + 0.999833i \(0.494189\pi\)
\(594\) 0 0
\(595\) 8.36155 0.342790
\(596\) −30.2309 −1.23830
\(597\) 1.77291 0.0725604
\(598\) 5.95513 0.243523
\(599\) −5.61187 −0.229295 −0.114647 0.993406i \(-0.536574\pi\)
−0.114647 + 0.993406i \(0.536574\pi\)
\(600\) −16.9816 −0.693270
\(601\) 27.6110 1.12628 0.563138 0.826363i \(-0.309594\pi\)
0.563138 + 0.826363i \(0.309594\pi\)
\(602\) −68.0394 −2.77308
\(603\) 6.39554 0.260446
\(604\) 10.6373 0.432825
\(605\) 0 0
\(606\) −27.8016 −1.12936
\(607\) 42.8599 1.73963 0.869814 0.493379i \(-0.164238\pi\)
0.869814 + 0.493379i \(0.164238\pi\)
\(608\) −2.93638 −0.119086
\(609\) 22.0603 0.893930
\(610\) 25.7590 1.04295
\(611\) 1.92804 0.0780000
\(612\) 20.4118 0.825097
\(613\) −18.1307 −0.732291 −0.366145 0.930558i \(-0.619323\pi\)
−0.366145 + 0.930558i \(0.619323\pi\)
\(614\) 22.1520 0.893981
\(615\) −2.81871 −0.113661
\(616\) 0 0
\(617\) 17.6030 0.708671 0.354336 0.935118i \(-0.384707\pi\)
0.354336 + 0.935118i \(0.384707\pi\)
\(618\) 3.96169 0.159363
\(619\) 13.2971 0.534454 0.267227 0.963634i \(-0.413893\pi\)
0.267227 + 0.963634i \(0.413893\pi\)
\(620\) 13.1576 0.528422
\(621\) −10.6990 −0.429337
\(622\) −15.6805 −0.628730
\(623\) 11.5564 0.462998
\(624\) −3.61428 −0.144687
\(625\) 11.3704 0.454815
\(626\) −45.2331 −1.80788
\(627\) 0 0
\(628\) −57.3916 −2.29017
\(629\) 20.8680 0.832063
\(630\) −21.7334 −0.865881
\(631\) −39.1399 −1.55814 −0.779068 0.626939i \(-0.784307\pi\)
−0.779068 + 0.626939i \(0.784307\pi\)
\(632\) −47.0114 −1.87001
\(633\) −2.96226 −0.117739
\(634\) 15.2204 0.604479
\(635\) −2.92634 −0.116128
\(636\) −15.6059 −0.618814
\(637\) 8.10231 0.321025
\(638\) 0 0
\(639\) −24.2548 −0.959507
\(640\) −18.8188 −0.743878
\(641\) 4.17668 0.164969 0.0824846 0.996592i \(-0.473714\pi\)
0.0824846 + 0.996592i \(0.473714\pi\)
\(642\) 29.7087 1.17251
\(643\) −43.8692 −1.73003 −0.865017 0.501743i \(-0.832692\pi\)
−0.865017 + 0.501743i \(0.832692\pi\)
\(644\) −38.1414 −1.50298
\(645\) 5.84378 0.230099
\(646\) 28.3721 1.11629
\(647\) −3.38093 −0.132918 −0.0664590 0.997789i \(-0.521170\pi\)
−0.0664590 + 0.997789i \(0.521170\pi\)
\(648\) −16.3535 −0.642425
\(649\) 0 0
\(650\) 9.91329 0.388831
\(651\) 10.6585 0.417738
\(652\) −72.2823 −2.83079
\(653\) −19.0214 −0.744365 −0.372182 0.928160i \(-0.621390\pi\)
−0.372182 + 0.928160i \(0.621390\pi\)
\(654\) −24.2219 −0.947153
\(655\) −15.5769 −0.608639
\(656\) −14.8845 −0.581143
\(657\) 36.9631 1.44207
\(658\) −18.4382 −0.718797
\(659\) −2.06130 −0.0802970 −0.0401485 0.999194i \(-0.512783\pi\)
−0.0401485 + 0.999194i \(0.512783\pi\)
\(660\) 0 0
\(661\) −42.9729 −1.67145 −0.835725 0.549148i \(-0.814952\pi\)
−0.835725 + 0.549148i \(0.814952\pi\)
\(662\) −18.2960 −0.711094
\(663\) 1.81898 0.0706433
\(664\) 62.1122 2.41042
\(665\) −20.2321 −0.784567
\(666\) −54.2404 −2.10177
\(667\) 16.4854 0.638317
\(668\) −80.7315 −3.12360
\(669\) 15.5736 0.602110
\(670\) −6.72837 −0.259940
\(671\) 0 0
\(672\) 1.80033 0.0694492
\(673\) −9.57417 −0.369057 −0.184529 0.982827i \(-0.559076\pi\)
−0.184529 + 0.982827i \(0.559076\pi\)
\(674\) 88.6621 3.41514
\(675\) −17.8103 −0.685519
\(676\) 4.05570 0.155989
\(677\) −2.78059 −0.106867 −0.0534333 0.998571i \(-0.517016\pi\)
−0.0534333 + 0.998571i \(0.517016\pi\)
\(678\) −34.8939 −1.34009
\(679\) −21.7764 −0.835701
\(680\) −10.8845 −0.417401
\(681\) 9.74988 0.373616
\(682\) 0 0
\(683\) −48.0798 −1.83972 −0.919861 0.392244i \(-0.871699\pi\)
−0.919861 + 0.392244i \(0.871699\pi\)
\(684\) −49.3895 −1.88845
\(685\) 10.2614 0.392070
\(686\) −10.5416 −0.402481
\(687\) −4.52521 −0.172647
\(688\) 30.8587 1.17648
\(689\) 4.61767 0.175919
\(690\) 4.89135 0.186210
\(691\) 25.3178 0.963134 0.481567 0.876409i \(-0.340068\pi\)
0.481567 + 0.876409i \(0.340068\pi\)
\(692\) −8.37898 −0.318521
\(693\) 0 0
\(694\) −55.6818 −2.11365
\(695\) 17.1681 0.651222
\(696\) −28.7166 −1.08850
\(697\) 7.49102 0.283743
\(698\) −9.66080 −0.365667
\(699\) −10.9458 −0.414008
\(700\) −63.4927 −2.39980
\(701\) 12.0776 0.456164 0.228082 0.973642i \(-0.426755\pi\)
0.228082 + 0.973642i \(0.426755\pi\)
\(702\) −10.8797 −0.410629
\(703\) −50.4935 −1.90440
\(704\) 0 0
\(705\) 1.58363 0.0596428
\(706\) 38.9618 1.46635
\(707\) −52.6877 −1.98152
\(708\) −0.147478 −0.00554256
\(709\) −11.6489 −0.437483 −0.218742 0.975783i \(-0.570195\pi\)
−0.218742 + 0.975783i \(0.570195\pi\)
\(710\) 25.5171 0.957640
\(711\) −21.4263 −0.803549
\(712\) −15.0433 −0.563773
\(713\) 7.96492 0.298289
\(714\) −17.3953 −0.651002
\(715\) 0 0
\(716\) 24.0455 0.898624
\(717\) −7.38363 −0.275747
\(718\) −5.90431 −0.220347
\(719\) 30.5599 1.13969 0.569846 0.821751i \(-0.307003\pi\)
0.569846 + 0.821751i \(0.307003\pi\)
\(720\) 9.85703 0.367350
\(721\) 7.50793 0.279610
\(722\) −21.8949 −0.814844
\(723\) −16.6514 −0.619271
\(724\) −85.4115 −3.17429
\(725\) 27.4427 1.01919
\(726\) 0 0
\(727\) 4.42686 0.164183 0.0820915 0.996625i \(-0.473840\pi\)
0.0820915 + 0.996625i \(0.473840\pi\)
\(728\) −19.6591 −0.728616
\(729\) 3.59902 0.133297
\(730\) −38.8868 −1.43926
\(731\) −15.5305 −0.574414
\(732\) −35.8902 −1.32654
\(733\) −47.1905 −1.74302 −0.871511 0.490376i \(-0.836860\pi\)
−0.871511 + 0.490376i \(0.836860\pi\)
\(734\) 44.9565 1.65937
\(735\) 6.65497 0.245472
\(736\) 1.34536 0.0495907
\(737\) 0 0
\(738\) −19.4707 −0.716728
\(739\) 3.94349 0.145064 0.0725318 0.997366i \(-0.476892\pi\)
0.0725318 + 0.997366i \(0.476892\pi\)
\(740\) 38.2171 1.40489
\(741\) −4.40130 −0.161686
\(742\) −44.1598 −1.62116
\(743\) 12.7375 0.467293 0.233647 0.972322i \(-0.424934\pi\)
0.233647 + 0.972322i \(0.424934\pi\)
\(744\) −13.8744 −0.508662
\(745\) 7.34720 0.269181
\(746\) 22.9265 0.839398
\(747\) 28.3088 1.03576
\(748\) 0 0
\(749\) 56.3019 2.05723
\(750\) 18.2487 0.666348
\(751\) 50.7641 1.85241 0.926205 0.377020i \(-0.123051\pi\)
0.926205 + 0.377020i \(0.123051\pi\)
\(752\) 8.36252 0.304950
\(753\) 24.6135 0.896966
\(754\) 16.7638 0.610502
\(755\) −2.58525 −0.0940869
\(756\) 69.6825 2.53433
\(757\) −5.29781 −0.192552 −0.0962761 0.995355i \(-0.530693\pi\)
−0.0962761 + 0.995355i \(0.530693\pi\)
\(758\) −48.4701 −1.76051
\(759\) 0 0
\(760\) 26.3367 0.955333
\(761\) −40.4037 −1.46463 −0.732317 0.680964i \(-0.761561\pi\)
−0.732317 + 0.680964i \(0.761561\pi\)
\(762\) 6.08793 0.220542
\(763\) −45.9038 −1.66183
\(764\) −39.2777 −1.42102
\(765\) −4.96081 −0.179358
\(766\) −12.0777 −0.436385
\(767\) 0.0436376 0.00157566
\(768\) 26.9733 0.973317
\(769\) −3.32366 −0.119854 −0.0599270 0.998203i \(-0.519087\pi\)
−0.0599270 + 0.998203i \(0.519087\pi\)
\(770\) 0 0
\(771\) 7.15168 0.257562
\(772\) −7.01800 −0.252583
\(773\) −27.9917 −1.00679 −0.503396 0.864056i \(-0.667916\pi\)
−0.503396 + 0.864056i \(0.667916\pi\)
\(774\) 40.3669 1.45096
\(775\) 13.2589 0.476275
\(776\) 28.3470 1.01760
\(777\) 30.9582 1.11062
\(778\) 41.8102 1.49897
\(779\) −18.1257 −0.649421
\(780\) 3.33122 0.119277
\(781\) 0 0
\(782\) −12.9993 −0.464853
\(783\) −30.1180 −1.07633
\(784\) 35.1423 1.25508
\(785\) 13.9482 0.497834
\(786\) 32.4060 1.15588
\(787\) 24.3657 0.868542 0.434271 0.900782i \(-0.357006\pi\)
0.434271 + 0.900782i \(0.357006\pi\)
\(788\) −100.338 −3.57439
\(789\) −13.9529 −0.496735
\(790\) 22.5414 0.801986
\(791\) −66.1286 −2.35126
\(792\) 0 0
\(793\) 10.6196 0.377114
\(794\) −41.4510 −1.47104
\(795\) 3.79280 0.134517
\(796\) −8.62885 −0.305842
\(797\) 51.7817 1.83420 0.917101 0.398654i \(-0.130523\pi\)
0.917101 + 0.398654i \(0.130523\pi\)
\(798\) 42.0906 1.48999
\(799\) −4.20865 −0.148891
\(800\) 2.23958 0.0791810
\(801\) −6.85628 −0.242255
\(802\) −86.4087 −3.05120
\(803\) 0 0
\(804\) 9.37468 0.330619
\(805\) 9.26975 0.326716
\(806\) 8.09944 0.285291
\(807\) −6.11091 −0.215114
\(808\) 68.5851 2.41282
\(809\) −22.5900 −0.794222 −0.397111 0.917770i \(-0.629987\pi\)
−0.397111 + 0.917770i \(0.629987\pi\)
\(810\) 7.84128 0.275514
\(811\) −12.7361 −0.447226 −0.223613 0.974678i \(-0.571785\pi\)
−0.223613 + 0.974678i \(0.571785\pi\)
\(812\) −107.369 −3.76791
\(813\) −18.2574 −0.640314
\(814\) 0 0
\(815\) 17.5672 0.615353
\(816\) 7.88950 0.276188
\(817\) 37.5784 1.31470
\(818\) −37.6842 −1.31760
\(819\) −8.96001 −0.313088
\(820\) 13.7188 0.479082
\(821\) 35.6034 1.24257 0.621283 0.783586i \(-0.286612\pi\)
0.621283 + 0.783586i \(0.286612\pi\)
\(822\) −21.3478 −0.744590
\(823\) 22.5552 0.786225 0.393113 0.919490i \(-0.371398\pi\)
0.393113 + 0.919490i \(0.371398\pi\)
\(824\) −9.77330 −0.340469
\(825\) 0 0
\(826\) −0.417316 −0.0145203
\(827\) 26.8873 0.934963 0.467482 0.884003i \(-0.345161\pi\)
0.467482 + 0.884003i \(0.345161\pi\)
\(828\) 22.6288 0.786406
\(829\) 32.3304 1.12288 0.561441 0.827517i \(-0.310247\pi\)
0.561441 + 0.827517i \(0.310247\pi\)
\(830\) −29.7820 −1.03375
\(831\) −8.01226 −0.277942
\(832\) −7.30656 −0.253309
\(833\) −17.6863 −0.612793
\(834\) −35.7163 −1.23675
\(835\) 19.6207 0.679002
\(836\) 0 0
\(837\) −14.5515 −0.502974
\(838\) −35.7728 −1.23575
\(839\) 39.6152 1.36767 0.683834 0.729637i \(-0.260311\pi\)
0.683834 + 0.729637i \(0.260311\pi\)
\(840\) −16.1474 −0.557137
\(841\) 17.4067 0.600232
\(842\) 14.8565 0.511991
\(843\) 1.37601 0.0473922
\(844\) 14.4175 0.496270
\(845\) −0.985684 −0.0339085
\(846\) 10.9392 0.376096
\(847\) 0 0
\(848\) 20.0283 0.687775
\(849\) 12.1985 0.418652
\(850\) −21.6394 −0.742226
\(851\) 23.1346 0.793044
\(852\) −35.5531 −1.21803
\(853\) −9.06728 −0.310458 −0.155229 0.987879i \(-0.549611\pi\)
−0.155229 + 0.987879i \(0.549611\pi\)
\(854\) −101.558 −3.47524
\(855\) 12.0034 0.410509
\(856\) −73.2899 −2.50500
\(857\) 31.9836 1.09254 0.546269 0.837610i \(-0.316048\pi\)
0.546269 + 0.837610i \(0.316048\pi\)
\(858\) 0 0
\(859\) −30.4821 −1.04004 −0.520018 0.854155i \(-0.674075\pi\)
−0.520018 + 0.854155i \(0.674075\pi\)
\(860\) −28.4420 −0.969864
\(861\) 11.1131 0.378733
\(862\) 12.1351 0.413323
\(863\) −11.2299 −0.382269 −0.191134 0.981564i \(-0.561217\pi\)
−0.191134 + 0.981564i \(0.561217\pi\)
\(864\) −2.45791 −0.0836198
\(865\) 2.03640 0.0692396
\(866\) 13.6125 0.462573
\(867\) 10.1955 0.346256
\(868\) −51.8753 −1.76076
\(869\) 0 0
\(870\) 13.7692 0.466821
\(871\) −2.77390 −0.0939899
\(872\) 59.7544 2.02354
\(873\) 12.9197 0.437264
\(874\) 31.4538 1.06394
\(875\) 34.5837 1.16914
\(876\) 54.1811 1.83061
\(877\) 17.4892 0.590568 0.295284 0.955410i \(-0.404586\pi\)
0.295284 + 0.955410i \(0.404586\pi\)
\(878\) 39.6739 1.33893
\(879\) −0.338127 −0.0114047
\(880\) 0 0
\(881\) 35.5824 1.19880 0.599400 0.800450i \(-0.295406\pi\)
0.599400 + 0.800450i \(0.295406\pi\)
\(882\) 45.9704 1.54790
\(883\) −30.3668 −1.02192 −0.510962 0.859603i \(-0.670711\pi\)
−0.510962 + 0.859603i \(0.670711\pi\)
\(884\) −8.85307 −0.297761
\(885\) 0.0358425 0.00120483
\(886\) −5.45484 −0.183259
\(887\) −9.74009 −0.327040 −0.163520 0.986540i \(-0.552285\pi\)
−0.163520 + 0.986540i \(0.552285\pi\)
\(888\) −40.2992 −1.35235
\(889\) 11.5374 0.386953
\(890\) 7.21309 0.241783
\(891\) 0 0
\(892\) −75.7975 −2.53789
\(893\) 10.1835 0.340778
\(894\) −15.2850 −0.511208
\(895\) −5.84394 −0.195341
\(896\) 74.1952 2.47869
\(897\) 2.01655 0.0673306
\(898\) −0.515281 −0.0171952
\(899\) 22.4214 0.747796
\(900\) 37.6694 1.25565
\(901\) −10.0798 −0.335806
\(902\) 0 0
\(903\) −23.0398 −0.766715
\(904\) 86.0817 2.86303
\(905\) 20.7581 0.690023
\(906\) 5.37833 0.178683
\(907\) −3.10515 −0.103105 −0.0515525 0.998670i \(-0.516417\pi\)
−0.0515525 + 0.998670i \(0.516417\pi\)
\(908\) −47.4532 −1.57479
\(909\) 31.2589 1.03679
\(910\) 9.42631 0.312479
\(911\) 13.0287 0.431660 0.215830 0.976431i \(-0.430754\pi\)
0.215830 + 0.976431i \(0.430754\pi\)
\(912\) −19.0899 −0.632129
\(913\) 0 0
\(914\) −82.8431 −2.74021
\(915\) 8.72262 0.288361
\(916\) 22.0244 0.727708
\(917\) 61.4136 2.02806
\(918\) 23.7490 0.783835
\(919\) −34.3125 −1.13187 −0.565933 0.824451i \(-0.691484\pi\)
−0.565933 + 0.824451i \(0.691484\pi\)
\(920\) −12.0667 −0.397828
\(921\) 7.50119 0.247173
\(922\) 52.7356 1.73675
\(923\) 10.5199 0.346267
\(924\) 0 0
\(925\) 38.5114 1.26625
\(926\) 35.5832 1.16934
\(927\) −4.45436 −0.146300
\(928\) 3.78722 0.124322
\(929\) 35.8697 1.17685 0.588424 0.808553i \(-0.299749\pi\)
0.588424 + 0.808553i \(0.299749\pi\)
\(930\) 6.65262 0.218148
\(931\) 42.7947 1.40254
\(932\) 53.2737 1.74504
\(933\) −5.30978 −0.173834
\(934\) 29.0351 0.950057
\(935\) 0 0
\(936\) 11.6635 0.381234
\(937\) 22.0230 0.719461 0.359730 0.933056i \(-0.382869\pi\)
0.359730 + 0.933056i \(0.382869\pi\)
\(938\) 26.5274 0.866149
\(939\) −15.3170 −0.499852
\(940\) −7.70759 −0.251394
\(941\) 1.81992 0.0593278 0.0296639 0.999560i \(-0.490556\pi\)
0.0296639 + 0.999560i \(0.490556\pi\)
\(942\) −29.0178 −0.945450
\(943\) 8.30466 0.270437
\(944\) 0.189270 0.00616022
\(945\) −16.9354 −0.550908
\(946\) 0 0
\(947\) 25.5160 0.829160 0.414580 0.910013i \(-0.363929\pi\)
0.414580 + 0.910013i \(0.363929\pi\)
\(948\) −31.4070 −1.02005
\(949\) −16.0318 −0.520414
\(950\) 52.3600 1.69878
\(951\) 5.15399 0.167130
\(952\) 42.9133 1.39083
\(953\) −20.0693 −0.650109 −0.325055 0.945695i \(-0.605383\pi\)
−0.325055 + 0.945695i \(0.605383\pi\)
\(954\) 26.1994 0.848238
\(955\) 9.54591 0.308898
\(956\) 35.9365 1.16227
\(957\) 0 0
\(958\) 72.3507 2.33755
\(959\) −40.4569 −1.30642
\(960\) −6.00137 −0.193693
\(961\) −20.1671 −0.650551
\(962\) 23.5253 0.758487
\(963\) −33.4032 −1.07640
\(964\) 81.0431 2.61022
\(965\) 1.70563 0.0549062
\(966\) −19.2847 −0.620475
\(967\) 40.9837 1.31795 0.658973 0.752167i \(-0.270991\pi\)
0.658973 + 0.752167i \(0.270991\pi\)
\(968\) 0 0
\(969\) 9.60747 0.308636
\(970\) −13.5920 −0.436413
\(971\) 20.9281 0.671613 0.335807 0.941931i \(-0.390991\pi\)
0.335807 + 0.941931i \(0.390991\pi\)
\(972\) −64.7180 −2.07583
\(973\) −67.6870 −2.16995
\(974\) −0.207403 −0.00664561
\(975\) 3.35688 0.107506
\(976\) 46.0608 1.47437
\(977\) −15.7760 −0.504719 −0.252359 0.967634i \(-0.581207\pi\)
−0.252359 + 0.967634i \(0.581207\pi\)
\(978\) −36.5467 −1.16863
\(979\) 0 0
\(980\) −32.3901 −1.03466
\(981\) 27.2341 0.869519
\(982\) −73.6739 −2.35103
\(983\) 44.7595 1.42761 0.713804 0.700346i \(-0.246971\pi\)
0.713804 + 0.700346i \(0.246971\pi\)
\(984\) −14.4662 −0.461167
\(985\) 24.3857 0.776994
\(986\) −36.5932 −1.16537
\(987\) −6.24362 −0.198737
\(988\) 21.4214 0.681505
\(989\) −17.2173 −0.547478
\(990\) 0 0
\(991\) 13.7020 0.435258 0.217629 0.976032i \(-0.430168\pi\)
0.217629 + 0.976032i \(0.430168\pi\)
\(992\) 1.82980 0.0580962
\(993\) −6.19546 −0.196607
\(994\) −100.604 −3.19097
\(995\) 2.09713 0.0664834
\(996\) 41.4955 1.31483
\(997\) 11.0927 0.351308 0.175654 0.984452i \(-0.443796\pi\)
0.175654 + 0.984452i \(0.443796\pi\)
\(998\) 79.5162 2.51704
\(999\) −42.2658 −1.33723
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1573.2.a.n.1.1 8
11.7 odd 10 143.2.h.b.27.4 16
11.8 odd 10 143.2.h.b.53.4 yes 16
11.10 odd 2 1573.2.a.o.1.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
143.2.h.b.27.4 16 11.7 odd 10
143.2.h.b.53.4 yes 16 11.8 odd 10
1573.2.a.n.1.1 8 1.1 even 1 trivial
1573.2.a.o.1.8 8 11.10 odd 2