Properties

Label 1573.1.s.b.928.1
Level $1573$
Weight $1$
Character 1573.928
Analytic conductor $0.785$
Analytic rank $0$
Dimension $8$
Projective image $S_{4}$
CM/RM no
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1573,1,Mod(148,1573)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1573.148"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1573, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([8, 15])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 1573 = 11^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1573.s (of order \(20\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.785029264872\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(S_{4}\)
Projective field: Galois closure of 4.0.265837.1

Embedding invariants

Embedding label 928.1
Root \(-0.951057 - 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 1573.928
Dual form 1573.1.s.b.1334.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.39680 - 0.221232i) q^{2} +(0.309017 - 0.951057i) q^{3} +(0.951057 - 0.309017i) q^{4} +(0.221232 - 1.39680i) q^{6} -1.00000i q^{12} +(0.587785 - 0.809017i) q^{13} +(-0.809017 + 0.587785i) q^{16} +(-0.587785 - 0.809017i) q^{17} +(-0.642040 - 1.26007i) q^{19} +1.00000i q^{23} +(0.951057 + 0.309017i) q^{25} +(0.642040 - 1.26007i) q^{26} +(0.809017 - 0.587785i) q^{27} +(0.309017 + 0.951057i) q^{29} +(-1.00000 + 1.00000i) q^{32} +(-1.00000 - 1.00000i) q^{34} +(-0.642040 + 1.26007i) q^{37} +(-1.17557 - 1.61803i) q^{38} +(-0.587785 - 0.809017i) q^{39} +1.00000i q^{43} +(0.221232 + 1.39680i) q^{46} +(-1.26007 + 0.642040i) q^{47} +(0.309017 + 0.951057i) q^{48} +(0.587785 + 0.809017i) q^{49} +(1.39680 + 0.221232i) q^{50} +(-0.951057 + 0.309017i) q^{51} +(0.309017 - 0.951057i) q^{52} +(-0.809017 - 0.587785i) q^{53} +(1.00000 - 1.00000i) q^{54} +(-1.39680 + 0.221232i) q^{57} +(0.642040 + 1.26007i) q^{58} +(-0.809017 + 0.587785i) q^{61} +(-0.587785 + 0.809017i) q^{64} +(-0.809017 - 0.587785i) q^{68} +(0.951057 + 0.309017i) q^{69} +(0.221232 - 1.39680i) q^{71} +(0.642040 - 1.26007i) q^{73} +(-0.618034 + 1.90211i) q^{74} +(0.587785 - 0.809017i) q^{75} +(-1.00000 - 1.00000i) q^{76} +(-1.00000 - 1.00000i) q^{78} +(-0.809017 - 0.587785i) q^{79} +(-0.309017 - 0.951057i) q^{81} +(-0.221232 + 1.39680i) q^{83} +(0.221232 + 1.39680i) q^{86} +1.00000 q^{87} +(0.309017 + 0.951057i) q^{92} +(-1.61803 + 1.17557i) q^{94} +(0.642040 + 1.26007i) q^{96} +(1.00000 + 1.00000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 2 q^{3} + 2 q^{6} - 2 q^{16} - 2 q^{19} + 2 q^{26} + 2 q^{27} - 2 q^{29} - 8 q^{32} - 8 q^{34} - 2 q^{37} + 2 q^{46} + 2 q^{47} - 2 q^{48} + 2 q^{50} - 2 q^{52} - 2 q^{53} + 8 q^{54} - 2 q^{57}+ \cdots + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1573\mathbb{Z}\right)^\times\).

\(n\) \(365\) \(1211\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.39680 0.221232i 1.39680 0.221232i 0.587785 0.809017i \(-0.300000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(3\) 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i \(-0.733333\pi\)
0.978148 0.207912i \(-0.0666667\pi\)
\(4\) 0.951057 0.309017i 0.951057 0.309017i
\(5\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(6\) 0.221232 1.39680i 0.221232 1.39680i
\(7\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0
\(12\) 1.00000i 1.00000i
\(13\) 0.587785 0.809017i 0.587785 0.809017i
\(14\) 0 0
\(15\) 0 0
\(16\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(17\) −0.587785 0.809017i −0.587785 0.809017i 0.406737 0.913545i \(-0.366667\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(18\) 0 0
\(19\) −0.642040 1.26007i −0.642040 1.26007i −0.951057 0.309017i \(-0.900000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(26\) 0.642040 1.26007i 0.642040 1.26007i
\(27\) 0.809017 0.587785i 0.809017 0.587785i
\(28\) 0 0
\(29\) 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i \(0.0666667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(30\) 0 0
\(31\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(32\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(33\) 0 0
\(34\) −1.00000 1.00000i −1.00000 1.00000i
\(35\) 0 0
\(36\) 0 0
\(37\) −0.642040 + 1.26007i −0.642040 + 1.26007i 0.309017 + 0.951057i \(0.400000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(38\) −1.17557 1.61803i −1.17557 1.61803i
\(39\) −0.587785 0.809017i −0.587785 0.809017i
\(40\) 0 0
\(41\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(42\) 0 0
\(43\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0.221232 + 1.39680i 0.221232 + 1.39680i
\(47\) −1.26007 + 0.642040i −1.26007 + 0.642040i −0.951057 0.309017i \(-0.900000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(48\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(49\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(50\) 1.39680 + 0.221232i 1.39680 + 0.221232i
\(51\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(52\) 0.309017 0.951057i 0.309017 0.951057i
\(53\) −0.809017 0.587785i −0.809017 0.587785i 0.104528 0.994522i \(-0.466667\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(54\) 1.00000 1.00000i 1.00000 1.00000i
\(55\) 0 0
\(56\) 0 0
\(57\) −1.39680 + 0.221232i −1.39680 + 0.221232i
\(58\) 0.642040 + 1.26007i 0.642040 + 1.26007i
\(59\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(60\) 0 0
\(61\) −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i \(-0.866667\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(68\) −0.809017 0.587785i −0.809017 0.587785i
\(69\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(70\) 0 0
\(71\) 0.221232 1.39680i 0.221232 1.39680i −0.587785 0.809017i \(-0.700000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(72\) 0 0
\(73\) 0.642040 1.26007i 0.642040 1.26007i −0.309017 0.951057i \(-0.600000\pi\)
0.951057 0.309017i \(-0.100000\pi\)
\(74\) −0.618034 + 1.90211i −0.618034 + 1.90211i
\(75\) 0.587785 0.809017i 0.587785 0.809017i
\(76\) −1.00000 1.00000i −1.00000 1.00000i
\(77\) 0 0
\(78\) −1.00000 1.00000i −1.00000 1.00000i
\(79\) −0.809017 0.587785i −0.809017 0.587785i 0.104528 0.994522i \(-0.466667\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(80\) 0 0
\(81\) −0.309017 0.951057i −0.309017 0.951057i
\(82\) 0 0
\(83\) −0.221232 + 1.39680i −0.221232 + 1.39680i 0.587785 + 0.809017i \(0.300000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.221232 + 1.39680i 0.221232 + 1.39680i
\(87\) 1.00000 1.00000
\(88\) 0 0
\(89\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(93\) 0 0
\(94\) −1.61803 + 1.17557i −1.61803 + 1.17557i
\(95\) 0 0
\(96\) 0.642040 + 1.26007i 0.642040 + 1.26007i
\(97\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(98\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(99\) 0 0
\(100\) 1.00000 1.00000
\(101\) −0.587785 + 0.809017i −0.587785 + 0.809017i −0.994522 0.104528i \(-0.966667\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(102\) −1.26007 + 0.642040i −1.26007 + 0.642040i
\(103\) 0.951057 0.309017i 0.951057 0.309017i 0.207912 0.978148i \(-0.433333\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −1.26007 0.642040i −1.26007 0.642040i
\(107\) −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i \(0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(108\) 0.587785 0.809017i 0.587785 0.809017i
\(109\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(110\) 0 0
\(111\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(112\) 0 0
\(113\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(114\) −1.90211 + 0.618034i −1.90211 + 0.618034i
\(115\) 0 0
\(116\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0.587785 + 0.809017i 0.587785 + 0.809017i 0.994522 0.104528i \(-0.0333333\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(128\) 0 0
\(129\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(130\) 0 0
\(131\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.39680 + 0.221232i 1.39680 + 0.221232i 0.809017 0.587785i \(-0.200000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(138\) 1.39680 + 0.221232i 1.39680 + 0.221232i
\(139\) −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(140\) 0 0
\(141\) 0.221232 + 1.39680i 0.221232 + 1.39680i
\(142\) 2.00000i 2.00000i
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0.618034 1.90211i 0.618034 1.90211i
\(147\) 0.951057 0.309017i 0.951057 0.309017i
\(148\) −0.221232 + 1.39680i −0.221232 + 1.39680i
\(149\) 0.221232 1.39680i 0.221232 1.39680i −0.587785 0.809017i \(-0.700000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(150\) 0.642040 1.26007i 0.642040 1.26007i
\(151\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −0.809017 0.587785i −0.809017 0.587785i
\(157\) −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i \(0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(158\) −1.26007 0.642040i −1.26007 0.642040i
\(159\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(160\) 0 0
\(161\) 0 0
\(162\) −0.642040 1.26007i −0.642040 1.26007i
\(163\) −0.221232 1.39680i −0.221232 1.39680i −0.809017 0.587785i \(-0.800000\pi\)
0.587785 0.809017i \(-0.300000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 2.00000i 2.00000i
\(167\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(168\) 0 0
\(169\) −0.309017 0.951057i −0.309017 0.951057i
\(170\) 0 0
\(171\) 0 0
\(172\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(173\) 0.951057 + 0.309017i 0.951057 + 0.309017i 0.743145 0.669131i \(-0.233333\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(174\) 1.39680 0.221232i 1.39680 0.221232i
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −0.951057 0.309017i −0.951057 0.309017i −0.207912 0.978148i \(-0.566667\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(180\) 0 0
\(181\) 0.587785 + 0.809017i 0.587785 + 0.809017i 0.994522 0.104528i \(-0.0333333\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(182\) 0 0
\(183\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(192\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(193\) 1.39680 + 0.221232i 1.39680 + 0.221232i 0.809017 0.587785i \(-0.200000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(197\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(198\) 0 0
\(199\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −0.642040 + 1.26007i −0.642040 + 1.26007i
\(203\) 0 0
\(204\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(205\) 0 0
\(206\) 1.26007 0.642040i 1.26007 0.642040i
\(207\) 0 0
\(208\) 1.00000i 1.00000i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(212\) −0.951057 0.309017i −0.951057 0.309017i
\(213\) −1.26007 0.642040i −1.26007 0.642040i
\(214\) −0.221232 + 1.39680i −0.221232 + 1.39680i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −1.00000 1.00000i −1.00000 1.00000i
\(220\) 0 0
\(221\) −1.00000 −1.00000
\(222\) 1.61803 + 1.17557i 1.61803 + 1.17557i
\(223\) −0.642040 1.26007i −0.642040 1.26007i −0.951057 0.309017i \(-0.900000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(228\) −1.26007 + 0.642040i −1.26007 + 0.642040i
\(229\) −0.221232 1.39680i −0.221232 1.39680i −0.809017 0.587785i \(-0.800000\pi\)
0.587785 0.809017i \(-0.300000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.17557 1.61803i 1.17557 1.61803i 0.587785 0.809017i \(-0.300000\pi\)
0.587785 0.809017i \(-0.300000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(238\) 0 0
\(239\) −0.642040 1.26007i −0.642040 1.26007i −0.951057 0.309017i \(-0.900000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(240\) 0 0
\(241\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(245\) 0 0
\(246\) 0 0
\(247\) −1.39680 0.221232i −1.39680 0.221232i
\(248\) 0 0
\(249\) 1.26007 + 0.642040i 1.26007 + 0.642040i
\(250\) 0 0
\(251\) −0.587785 + 0.809017i −0.587785 + 0.809017i −0.994522 0.104528i \(-0.966667\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(255\) 0 0
\(256\) 0.309017 0.951057i 0.309017 0.951057i
\(257\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(258\) 1.39680 + 0.221232i 1.39680 + 0.221232i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −1.39680 + 0.221232i −1.39680 + 0.221232i
\(263\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(270\) 0 0
\(271\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(272\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(273\) 0 0
\(274\) 2.00000 2.00000
\(275\) 0 0
\(276\) 1.00000 1.00000
\(277\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(278\) −0.642040 1.26007i −0.642040 1.26007i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(282\) 0.618034 + 1.90211i 0.618034 + 1.90211i
\(283\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(284\) −0.221232 1.39680i −0.221232 1.39680i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 0 0
\(292\) 0.221232 1.39680i 0.221232 1.39680i
\(293\) −0.642040 + 1.26007i −0.642040 + 1.26007i 0.309017 + 0.951057i \(0.400000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(294\) 1.26007 0.642040i 1.26007 0.642040i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 2.00000i 2.00000i
\(299\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(300\) 0.309017 0.951057i 0.309017 0.951057i
\(301\) 0 0
\(302\) 0 0
\(303\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(304\) 1.26007 + 0.642040i 1.26007 + 0.642040i
\(305\) 0 0
\(306\) 0 0
\(307\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 1.00000i 1.00000i
\(310\) 0 0
\(311\) −0.951057 0.309017i −0.951057 0.309017i −0.207912 0.978148i \(-0.566667\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(312\) 0 0
\(313\) −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i \(-0.866667\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(314\) −0.221232 + 1.39680i −0.221232 + 1.39680i
\(315\) 0 0
\(316\) −0.951057 0.309017i −0.951057 0.309017i
\(317\) −1.39680 + 0.221232i −1.39680 + 0.221232i −0.809017 0.587785i \(-0.800000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(318\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(319\) 0 0
\(320\) 0 0
\(321\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(322\) 0 0
\(323\) −0.642040 + 1.26007i −0.642040 + 1.26007i
\(324\) −0.587785 0.809017i −0.587785 0.809017i
\(325\) 0.809017 0.587785i 0.809017 0.587785i
\(326\) −0.618034 1.90211i −0.618034 1.90211i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(332\) 0.221232 + 1.39680i 0.221232 + 1.39680i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(338\) −0.642040 1.26007i −0.642040 1.26007i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 1.39680 + 0.221232i 1.39680 + 0.221232i
\(347\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(348\) 0.951057 0.309017i 0.951057 0.309017i
\(349\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(350\) 0 0
\(351\) 1.00000i 1.00000i
\(352\) 0 0
\(353\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −1.39680 0.221232i −1.39680 0.221232i
\(359\) −0.642040 + 1.26007i −0.642040 + 1.26007i 0.309017 + 0.951057i \(0.400000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(360\) 0 0
\(361\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(362\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0.642040 + 1.26007i 0.642040 + 1.26007i
\(367\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(368\) −0.587785 0.809017i −0.587785 0.809017i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(378\) 0 0
\(379\) 0.221232 1.39680i 0.221232 1.39680i −0.587785 0.809017i \(-0.700000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(380\) 0 0
\(381\) 0.951057 0.309017i 0.951057 0.309017i
\(382\) 0 0
\(383\) 1.39680 0.221232i 1.39680 0.221232i 0.587785 0.809017i \(-0.300000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.00000 2.00000
\(387\) 0 0
\(388\) 0 0
\(389\) 0.951057 0.309017i 0.951057 0.309017i 0.207912 0.978148i \(-0.433333\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(390\) 0 0
\(391\) 0.809017 0.587785i 0.809017 0.587785i
\(392\) 0 0
\(393\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(398\) −0.221232 1.39680i −0.221232 1.39680i
\(399\) 0 0
\(400\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(401\) −1.39680 0.221232i −1.39680 0.221232i −0.587785 0.809017i \(-0.700000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(410\) 0 0
\(411\) 0.642040 1.26007i 0.642040 1.26007i
\(412\) 0.809017 0.587785i 0.809017 0.587785i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0.221232 + 1.39680i 0.221232 + 1.39680i
\(417\) −1.00000 −1.00000
\(418\) 0 0
\(419\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.309017 0.951057i −0.309017 0.951057i
\(426\) −1.90211 0.618034i −1.90211 0.618034i
\(427\) 0 0
\(428\) 1.00000i 1.00000i
\(429\) 0 0
\(430\) 0 0
\(431\) −1.39680 + 0.221232i −1.39680 + 0.221232i −0.809017 0.587785i \(-0.800000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(432\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(433\) −0.951057 + 0.309017i −0.951057 + 0.309017i −0.743145 0.669131i \(-0.766667\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.26007 0.642040i 1.26007 0.642040i
\(438\) −1.61803 1.17557i −1.61803 1.17557i
\(439\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −1.39680 + 0.221232i −1.39680 + 0.221232i
\(443\) 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i \(-0.733333\pi\)
0.978148 0.207912i \(-0.0666667\pi\)
\(444\) 1.26007 + 0.642040i 1.26007 + 0.642040i
\(445\) 0 0
\(446\) −1.17557 1.61803i −1.17557 1.61803i
\(447\) −1.26007 0.642040i −1.26007 0.642040i
\(448\) 0 0
\(449\) 0.221232 + 1.39680i 0.221232 + 1.39680i 0.809017 + 0.587785i \(0.200000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(458\) −0.618034 1.90211i −0.618034 1.90211i
\(459\) −0.951057 0.309017i −0.951057 0.309017i
\(460\) 0 0
\(461\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(462\) 0 0
\(463\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(464\) −0.809017 0.587785i −0.809017 0.587785i
\(465\) 0 0
\(466\) 1.28408 2.52015i 1.28408 2.52015i
\(467\) 0.587785 + 0.809017i 0.587785 + 0.809017i 0.994522 0.104528i \(-0.0333333\pi\)
−0.406737 + 0.913545i \(0.633333\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(472\) 0 0
\(473\) 0 0
\(474\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(475\) −0.221232 1.39680i −0.221232 1.39680i
\(476\) 0 0
\(477\) 0 0
\(478\) −1.17557 1.61803i −1.17557 1.61803i
\(479\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(480\) 0 0
\(481\) 0.642040 + 1.26007i 0.642040 + 1.26007i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0.642040 + 1.26007i 0.642040 + 1.26007i 0.951057 + 0.309017i \(0.100000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(488\) 0 0
\(489\) −1.39680 0.221232i −1.39680 0.221232i
\(490\) 0 0
\(491\) 0.951057 0.309017i 0.951057 0.309017i 0.207912 0.978148i \(-0.433333\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(492\) 0 0
\(493\) 0.587785 0.809017i 0.587785 0.809017i
\(494\) −2.00000 −2.00000
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 1.90211 + 0.618034i 1.90211 + 0.618034i
\(499\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −0.642040 + 1.26007i −0.642040 + 1.26007i
\(503\) 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i \(-0.733333\pi\)
0.978148 0.207912i \(-0.0666667\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −1.00000 −1.00000
\(508\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(509\) 0.642040 + 1.26007i 0.642040 + 1.26007i 0.951057 + 0.309017i \(0.100000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.221232 1.39680i 0.221232 1.39680i
\(513\) −1.26007 0.642040i −1.26007 0.642040i
\(514\) 0 0
\(515\) 0 0
\(516\) 1.00000 1.00000
\(517\) 0 0
\(518\) 0 0
\(519\) 0.587785 0.809017i 0.587785 0.809017i
\(520\) 0 0
\(521\) 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i \(0.0666667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(522\) 0 0
\(523\) 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(524\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(525\) 0 0
\(526\) 1.39680 0.221232i 1.39680 0.221232i
\(527\) 0 0
\(528\) 0 0
\(529\) 0 0
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(542\) 0 0
\(543\) 0.951057 0.309017i 0.951057 0.309017i
\(544\) 1.39680 + 0.221232i 1.39680 + 0.221232i
\(545\) 0 0
\(546\) 0 0
\(547\) −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i \(0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(548\) 1.39680 0.221232i 1.39680 0.221232i
\(549\) 0 0
\(550\) 0 0
\(551\) 1.00000 1.00000i 1.00000 1.00000i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −0.587785 0.809017i −0.587785 0.809017i
\(557\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(558\) 0 0
\(559\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −0.587785 + 0.809017i −0.587785 + 0.809017i −0.994522 0.104528i \(-0.966667\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(564\) 0.642040 + 1.26007i 0.642040 + 1.26007i
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(570\) 0 0
\(571\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(576\) 0 0
\(577\) 0.221232 1.39680i 0.221232 1.39680i −0.587785 0.809017i \(-0.700000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(578\) 0 0
\(579\) 0.642040 1.26007i 0.642040 1.26007i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −0.618034 + 1.90211i −0.618034 + 1.90211i
\(587\) 1.26007 + 0.642040i 1.26007 + 0.642040i 0.951057 0.309017i \(-0.100000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(588\) 0.809017 0.587785i 0.809017 0.587785i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −0.221232 1.39680i −0.221232 1.39680i
\(593\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −0.221232 1.39680i −0.221232 1.39680i
\(597\) −0.951057 0.309017i −0.951057 0.309017i
\(598\) 1.26007 + 0.642040i 1.26007 + 0.642040i
\(599\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(600\) 0 0
\(601\) −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(607\) 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i \(-0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(608\) 1.90211 + 0.618034i 1.90211 + 0.618034i
\(609\) 0 0
\(610\) 0 0
\(611\) −0.221232 + 1.39680i −0.221232 + 1.39680i
\(612\) 0 0
\(613\) 0.642040 + 1.26007i 0.642040 + 1.26007i 0.951057 + 0.309017i \(0.100000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(614\) −1.61803 1.17557i −1.61803 1.17557i
\(615\) 0 0
\(616\) 0 0
\(617\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(618\) −0.221232 1.39680i −0.221232 1.39680i
\(619\) 1.26007 0.642040i 1.26007 0.642040i 0.309017 0.951057i \(-0.400000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(620\) 0 0
\(621\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(622\) −1.39680 0.221232i −1.39680 0.221232i
\(623\) 0 0
\(624\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(625\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(626\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(627\) 0 0
\(628\) 1.00000i 1.00000i
\(629\) 1.39680 0.221232i 1.39680 0.221232i
\(630\) 0 0
\(631\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −1.90211 + 0.618034i −1.90211 + 0.618034i
\(635\) 0 0
\(636\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(637\) 1.00000 1.00000
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −0.951057 0.309017i −0.951057 0.309017i −0.207912 0.978148i \(-0.566667\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(642\) 1.26007 + 0.642040i 1.26007 + 0.642040i
\(643\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −0.618034 + 1.90211i −0.618034 + 1.90211i
\(647\) 0.587785 0.809017i 0.587785 0.809017i −0.406737 0.913545i \(-0.633333\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 1.00000 1.00000i 1.00000 1.00000i
\(651\) 0 0
\(652\) −0.642040 1.26007i −0.642040 1.26007i
\(653\) 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i \(0.0666667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(660\) 0 0
\(661\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(668\) 0 0
\(669\) −1.39680 + 0.221232i −1.39680 + 0.221232i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(674\) 0 0
\(675\) 0.951057 0.309017i 0.951057 0.309017i
\(676\) −0.587785 0.809017i −0.587785 0.809017i
\(677\) −1.61803 + 1.17557i −1.61803 + 1.17557i −0.809017 + 0.587785i \(0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −1.39680 0.221232i −1.39680 0.221232i
\(688\) −0.587785 0.809017i −0.587785 0.809017i
\(689\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(690\) 0 0
\(691\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(692\) 1.00000 1.00000
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −1.17557 1.61803i −1.17557 1.61803i
\(700\) 0 0
\(701\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(702\) −0.221232 1.39680i −0.221232 1.39680i
\(703\) 2.00000 2.00000
\(704\) 0 0
\(705\) 0 0
\(706\) 1.17557 1.61803i 1.17557 1.61803i
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −1.00000 −1.00000
\(717\) −1.39680 + 0.221232i −1.39680 + 0.221232i
\(718\) −0.618034 + 1.90211i −0.618034 + 1.90211i
\(719\) −0.951057 + 0.309017i −0.951057 + 0.309017i −0.743145 0.669131i \(-0.766667\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −0.642040 + 1.26007i −0.642040 + 1.26007i
\(723\) 0 0
\(724\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(725\) 1.00000i 1.00000i
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 0.309017 0.951057i 0.309017 0.951057i
\(730\) 0 0
\(731\) 0.809017 0.587785i 0.809017 0.587785i
\(732\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(733\) 1.26007 + 0.642040i 1.26007 + 0.642040i 0.951057 0.309017i \(-0.100000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −1.00000 1.00000i −1.00000 1.00000i
\(737\) 0 0
\(738\) 0 0
\(739\) 0.221232 + 1.39680i 0.221232 + 1.39680i 0.809017 + 0.587785i \(0.200000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(740\) 0 0
\(741\) −0.642040 + 1.26007i −0.642040 + 1.26007i
\(742\) 0 0
\(743\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(752\) 0.642040 1.26007i 0.642040 1.26007i
\(753\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(754\) 1.39680 + 0.221232i 1.39680 + 0.221232i
\(755\) 0 0
\(756\) 0 0
\(757\) 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i \(-0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(758\) 2.00000i 2.00000i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(762\) 1.26007 0.642040i 1.26007 0.642040i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 1.90211 0.618034i 1.90211 0.618034i
\(767\) 0 0
\(768\) −0.809017 0.587785i −0.809017 0.587785i
\(769\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.39680 0.221232i 1.39680 0.221232i
\(773\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 1.26007 0.642040i 1.26007 0.642040i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 1.00000 1.00000i 1.00000 1.00000i
\(783\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(784\) −0.951057 0.309017i −0.951057 0.309017i
\(785\) 0 0
\(786\) −0.221232 + 1.39680i −0.221232 + 1.39680i
\(787\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(788\) 0 0
\(789\) 0.309017 0.951057i 0.309017 0.951057i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1.00000i 1.00000i
\(794\) 0 0
\(795\) 0 0
\(796\) −0.309017 0.951057i −0.309017 0.951057i
\(797\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(798\) 0 0
\(799\) 1.26007 + 0.642040i 1.26007 + 0.642040i
\(800\) −1.26007 + 0.642040i −1.26007 + 0.642040i
\(801\) 0 0
\(802\) −2.00000 −2.00000
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(810\) 0 0
\(811\) −0.642040 1.26007i −0.642040 1.26007i −0.951057 0.309017i \(-0.900000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0.587785 0.809017i 0.587785 0.809017i
\(817\) 1.26007 0.642040i 1.26007 0.642040i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(822\) 0.618034 1.90211i 0.618034 1.90211i
\(823\) 0.587785 0.809017i 0.587785 0.809017i −0.406737 0.913545i \(-0.633333\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0.221232 + 1.39680i 0.221232 + 1.39680i 0.809017 + 0.587785i \(0.200000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(828\) 0 0
\(829\) 0.951057 0.309017i 0.951057 0.309017i 0.207912 0.978148i \(-0.433333\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(833\) 0.309017 0.951057i 0.309017 0.951057i
\(834\) −1.39680 + 0.221232i −1.39680 + 0.221232i
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −2.79360 + 0.442463i −2.79360 + 0.442463i
\(839\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 1.00000 1.00000
\(849\) 0 0
\(850\) −0.642040 1.26007i −0.642040 1.26007i
\(851\) −1.26007 0.642040i −1.26007 0.642040i
\(852\) −1.39680 0.221232i −1.39680 0.221232i
\(853\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(858\) 0 0
\(859\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −1.90211 + 0.618034i −1.90211 + 0.618034i
\(863\) −0.221232 + 1.39680i −0.221232 + 1.39680i 0.587785 + 0.809017i \(0.300000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(864\) −0.221232 + 1.39680i −0.221232 + 1.39680i
\(865\) 0 0
\(866\) −1.26007 + 0.642040i −1.26007 + 0.642040i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 1.61803 1.17557i 1.61803 1.17557i
\(875\) 0 0
\(876\) −1.26007 0.642040i −1.26007 0.642040i
\(877\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(878\) 0.221232 + 1.39680i 0.221232 + 1.39680i
\(879\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(884\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(885\) 0 0
\(886\) 0.221232 1.39680i 0.221232 1.39680i
\(887\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) −1.00000 1.00000i −1.00000 1.00000i
\(893\) 1.61803 + 1.17557i 1.61803 + 1.17557i
\(894\) −1.90211 0.618034i −1.90211 0.618034i
\(895\) 0 0
\(896\) 0 0
\(897\) 0.809017 0.587785i 0.809017 0.587785i
\(898\) 0.618034 + 1.90211i 0.618034 + 1.90211i
\(899\) 0 0
\(900\) 0 0
\(901\) 1.00000i 1.00000i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −0.587785 0.809017i −0.587785 0.809017i 0.406737 0.913545i \(-0.366667\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −0.809017 0.587785i −0.809017 0.587785i 0.104528 0.994522i \(-0.466667\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(912\) 1.00000 1.00000i 1.00000 1.00000i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −0.642040 1.26007i −0.642040 1.26007i
\(917\) 0 0
\(918\) −1.39680 0.221232i −1.39680 0.221232i
\(919\) 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(920\) 0 0
\(921\) −1.26007 + 0.642040i −1.26007 + 0.642040i
\(922\) 0 0
\(923\) −1.00000 1.00000i −1.00000 1.00000i
\(924\) 0 0
\(925\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(926\) 0 0
\(927\) 0 0
\(928\) −1.26007 0.642040i −1.26007 0.642040i
\(929\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(930\) 0 0
\(931\) 0.642040 1.26007i 0.642040 1.26007i
\(932\) 0.618034 1.90211i 0.618034 1.90211i
\(933\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(934\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(935\) 0 0
\(936\) 0 0
\(937\) −0.809017 0.587785i −0.809017 0.587785i 0.104528 0.994522i \(-0.466667\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(938\) 0 0
\(939\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(940\) 0 0
\(941\) 0.221232 1.39680i 0.221232 1.39680i −0.587785 0.809017i \(-0.700000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(942\) 1.26007 + 0.642040i 1.26007 + 0.642040i
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(948\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(949\) −0.642040 1.26007i −0.642040 1.26007i
\(950\) −0.618034 1.90211i −0.618034 1.90211i
\(951\) −0.221232 + 1.39680i −0.221232 + 1.39680i
\(952\) 0 0
\(953\) 0.951057 0.309017i 0.951057 0.309017i 0.207912 0.978148i \(-0.433333\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −1.00000 1.00000i −1.00000 1.00000i
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(962\) 1.17557 + 1.61803i 1.17557 + 1.61803i
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(968\) 0 0
\(969\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(970\) 0 0
\(971\) 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i \(-0.733333\pi\)
0.978148 0.207912i \(-0.0666667\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 1.17557 + 1.61803i 1.17557 + 1.61803i
\(975\) −0.309017 0.951057i −0.309017 0.951057i
\(976\) 0.309017 0.951057i 0.309017 0.951057i
\(977\) 1.39680 0.221232i 1.39680 0.221232i 0.587785 0.809017i \(-0.300000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(978\) −2.00000 −2.00000
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 1.26007 0.642040i 1.26007 0.642040i
\(983\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0.642040 1.26007i 0.642040 1.26007i
\(987\) 0 0
\(988\) −1.39680 + 0.221232i −1.39680 + 0.221232i
\(989\) −1.00000 −1.00000
\(990\) 0 0
\(991\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 1.39680 + 0.221232i 1.39680 + 0.221232i
\(997\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(998\) 0 0
\(999\) 0.221232 + 1.39680i 0.221232 + 1.39680i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1573.1.s.b.928.1 8
11.2 odd 10 1573.1.s.a.148.1 8
11.3 even 5 inner 1573.1.s.b.850.1 8
11.4 even 5 inner 1573.1.s.b.1461.1 8
11.5 even 5 1573.1.f.a.122.1 2
11.6 odd 10 1573.1.f.b.122.1 yes 2
11.7 odd 10 1573.1.s.a.1461.1 8
11.8 odd 10 1573.1.s.a.850.1 8
11.9 even 5 inner 1573.1.s.b.148.1 8
11.10 odd 2 1573.1.s.a.928.1 8
13.8 odd 4 inner 1573.1.s.b.1412.1 8
143.8 even 20 1573.1.s.a.1334.1 8
143.21 even 4 1573.1.s.a.1412.1 8
143.47 odd 20 inner 1573.1.s.b.1334.1 8
143.60 odd 20 1573.1.f.a.606.1 yes 2
143.73 even 20 1573.1.s.a.372.1 8
143.86 odd 20 inner 1573.1.s.b.632.1 8
143.112 even 20 1573.1.s.a.632.1 8
143.125 odd 20 inner 1573.1.s.b.372.1 8
143.138 even 20 1573.1.f.b.606.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1573.1.f.a.122.1 2 11.5 even 5
1573.1.f.a.606.1 yes 2 143.60 odd 20
1573.1.f.b.122.1 yes 2 11.6 odd 10
1573.1.f.b.606.1 yes 2 143.138 even 20
1573.1.s.a.148.1 8 11.2 odd 10
1573.1.s.a.372.1 8 143.73 even 20
1573.1.s.a.632.1 8 143.112 even 20
1573.1.s.a.850.1 8 11.8 odd 10
1573.1.s.a.928.1 8 11.10 odd 2
1573.1.s.a.1334.1 8 143.8 even 20
1573.1.s.a.1412.1 8 143.21 even 4
1573.1.s.a.1461.1 8 11.7 odd 10
1573.1.s.b.148.1 8 11.9 even 5 inner
1573.1.s.b.372.1 8 143.125 odd 20 inner
1573.1.s.b.632.1 8 143.86 odd 20 inner
1573.1.s.b.850.1 8 11.3 even 5 inner
1573.1.s.b.928.1 8 1.1 even 1 trivial
1573.1.s.b.1334.1 8 143.47 odd 20 inner
1573.1.s.b.1412.1 8 13.8 odd 4 inner
1573.1.s.b.1461.1 8 11.4 even 5 inner