Properties

Label 1573.1.s.b
Level $1573$
Weight $1$
Character orbit 1573.s
Analytic conductor $0.785$
Analytic rank $0$
Dimension $8$
Projective image $S_{4}$
CM/RM no
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1573,1,Mod(148,1573)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1573, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([8, 15])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1573.148"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1573 = 11^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1573.s (of order \(20\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.785029264872\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(S_{4}\)
Projective field: Galois closure of 4.0.265837.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + (\zeta_{20}^{7} + \zeta_{20}^{2}) q^{2} - \zeta_{20}^{6} q^{3} + \zeta_{20}^{9} q^{4} + ( - \zeta_{20}^{8} + \zeta_{20}^{3}) q^{6} + \zeta_{20}^{5} q^{12} + \zeta_{20}^{7} q^{13} + \zeta_{20}^{8} q^{16} + \cdots + ( - \zeta_{20}^{5} + 1) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 2 q^{3} + 2 q^{6} - 2 q^{16} - 2 q^{19} + 2 q^{26} + 2 q^{27} - 2 q^{29} - 8 q^{32} - 8 q^{34} - 2 q^{37} + 2 q^{46} + 2 q^{47} - 2 q^{48} + 2 q^{50} - 2 q^{52} - 2 q^{53} + 8 q^{54} - 2 q^{57}+ \cdots + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1573\mathbb{Z}\right)^\times\).

\(n\) \(365\) \(1211\)
\(\chi(n)\) \(\zeta_{20}^{4}\) \(\zeta_{20}^{5}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
148.1
−0.587785 + 0.809017i
−0.587785 0.809017i
0.587785 0.809017i
0.951057 0.309017i
−0.951057 0.309017i
−0.951057 + 0.309017i
0.951057 + 0.309017i
0.587785 + 0.809017i
−1.26007 0.642040i −0.809017 0.587785i 0.587785 + 0.809017i 0 0.642040 + 1.26007i 0 0 0 0
372.1 −1.26007 + 0.642040i −0.809017 + 0.587785i 0.587785 0.809017i 0 0.642040 1.26007i 0 0 0 0
632.1 0.642040 1.26007i −0.809017 0.587785i −0.587785 0.809017i 0 −1.26007 + 0.642040i 0 0 0 0
850.1 0.221232 1.39680i 0.309017 + 0.951057i −0.951057 0.309017i 0 1.39680 0.221232i 0 0 0 0
928.1 1.39680 0.221232i 0.309017 0.951057i 0.951057 0.309017i 0 0.221232 1.39680i 0 0 0 0
1334.1 1.39680 + 0.221232i 0.309017 + 0.951057i 0.951057 + 0.309017i 0 0.221232 + 1.39680i 0 0 0 0
1412.1 0.221232 + 1.39680i 0.309017 0.951057i −0.951057 + 0.309017i 0 1.39680 + 0.221232i 0 0 0 0
1461.1 0.642040 + 1.26007i −0.809017 + 0.587785i −0.587785 + 0.809017i 0 −1.26007 0.642040i 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 148.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 3 inner
13.d odd 4 1 inner
143.r odd 20 3 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1573.1.s.b 8
11.b odd 2 1 1573.1.s.a 8
11.c even 5 1 1573.1.f.a 2
11.c even 5 3 inner 1573.1.s.b 8
11.d odd 10 1 1573.1.f.b yes 2
11.d odd 10 3 1573.1.s.a 8
13.d odd 4 1 inner 1573.1.s.b 8
143.g even 4 1 1573.1.s.a 8
143.r odd 20 1 1573.1.f.a 2
143.r odd 20 3 inner 1573.1.s.b 8
143.s even 20 1 1573.1.f.b yes 2
143.s even 20 3 1573.1.s.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1573.1.f.a 2 11.c even 5 1
1573.1.f.a 2 143.r odd 20 1
1573.1.f.b yes 2 11.d odd 10 1
1573.1.f.b yes 2 143.s even 20 1
1573.1.s.a 8 11.b odd 2 1
1573.1.s.a 8 11.d odd 10 3
1573.1.s.a 8 143.g even 4 1
1573.1.s.a 8 143.s even 20 3
1573.1.s.b 8 1.a even 1 1 trivial
1573.1.s.b 8 11.c even 5 3 inner
1573.1.s.b 8 13.d odd 4 1 inner
1573.1.s.b 8 143.r odd 20 3 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} - 2T_{2}^{7} + 2T_{2}^{6} - 4T_{2}^{4} + 8T_{2}^{2} - 16T_{2} + 16 \) acting on \(S_{1}^{\mathrm{new}}(1573, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - 2 T^{7} + \cdots + 16 \) Copy content Toggle raw display
$3$ \( (T^{4} + T^{3} + T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( T^{8} - T^{6} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{8} - T^{6} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{8} + 2 T^{7} + \cdots + 16 \) Copy content Toggle raw display
$23$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$29$ \( (T^{4} + T^{3} + T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( T^{8} + 2 T^{7} + \cdots + 16 \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$47$ \( T^{8} - 2 T^{7} + \cdots + 16 \) Copy content Toggle raw display
$53$ \( (T^{4} + T^{3} + T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( (T^{4} + T^{3} + T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( T^{8} - 2 T^{7} + \cdots + 16 \) Copy content Toggle raw display
$73$ \( T^{8} - 2 T^{7} + \cdots + 16 \) Copy content Toggle raw display
$79$ \( (T^{4} + T^{3} + T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + 2 T^{7} + \cdots + 16 \) Copy content Toggle raw display
$89$ \( T^{8} \) Copy content Toggle raw display
$97$ \( T^{8} \) Copy content Toggle raw display
show more
show less