Properties

Label 1568.3.c.g.97.4
Level $1568$
Weight $3$
Character 1568.97
Analytic conductor $42.725$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1568,3,Mod(97,1568)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1568, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1568.97"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1568 = 2^{5} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1568.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-80,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-160,0,0, 0,-16,0,0,0,0,0,0,0,-144,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(53)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.7249054517\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 26 x^{14} - 16 x^{13} + 469 x^{12} + 144 x^{11} - 4526 x^{10} + 4440 x^{9} + 32608 x^{8} + \cdots + 208849 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{28}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 224)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 97.4
Root \(-2.79414 - 0.796701i\) of defining polynomial
Character \(\chi\) \(=\) 1568.97
Dual form 1568.3.c.g.97.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.98546i q^{3} +9.01776i q^{5} -6.88390 q^{9} -16.5618 q^{11} -0.446263i q^{13} +35.9399 q^{15} +6.95177i q^{17} -12.7440i q^{19} +26.5742 q^{23} -56.3199 q^{25} -8.43362i q^{27} +26.4655 q^{29} +25.1303i q^{31} +66.0062i q^{33} -63.3984 q^{37} -1.77857 q^{39} -0.519795i q^{41} +25.5364 q^{43} -62.0774i q^{45} -68.6455i q^{47} +27.7060 q^{51} -7.17014 q^{53} -149.350i q^{55} -50.7906 q^{57} -75.4237i q^{59} -46.0559i q^{61} +4.02429 q^{65} -42.8097 q^{67} -105.911i q^{69} -60.0281 q^{71} -46.7938i q^{73} +224.461i q^{75} +54.3077 q^{79} -95.5670 q^{81} -11.4213i q^{83} -62.6894 q^{85} -105.477i q^{87} -61.4132i q^{89} +100.156 q^{93} +114.922 q^{95} -20.3570i q^{97} +114.010 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 80 q^{9} - 160 q^{25} - 16 q^{29} - 144 q^{37} - 80 q^{53} + 368 q^{57} + 336 q^{65} + 768 q^{81} - 1072 q^{85} + 336 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1568\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(1471\) \(1473\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 3.98546i − 1.32849i −0.747516 0.664244i \(-0.768754\pi\)
0.747516 0.664244i \(-0.231246\pi\)
\(4\) 0 0
\(5\) 9.01776i 1.80355i 0.432204 + 0.901776i \(0.357736\pi\)
−0.432204 + 0.901776i \(0.642264\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −6.88390 −0.764878
\(10\) 0 0
\(11\) −16.5618 −1.50561 −0.752807 0.658241i \(-0.771301\pi\)
−0.752807 + 0.658241i \(0.771301\pi\)
\(12\) 0 0
\(13\) − 0.446263i − 0.0343279i −0.999853 0.0171640i \(-0.994536\pi\)
0.999853 0.0171640i \(-0.00546373\pi\)
\(14\) 0 0
\(15\) 35.9399 2.39599
\(16\) 0 0
\(17\) 6.95177i 0.408928i 0.978874 + 0.204464i \(0.0655451\pi\)
−0.978874 + 0.204464i \(0.934455\pi\)
\(18\) 0 0
\(19\) − 12.7440i − 0.670735i −0.942087 0.335367i \(-0.891140\pi\)
0.942087 0.335367i \(-0.108860\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 26.5742 1.15540 0.577701 0.816248i \(-0.303950\pi\)
0.577701 + 0.816248i \(0.303950\pi\)
\(24\) 0 0
\(25\) −56.3199 −2.25280
\(26\) 0 0
\(27\) − 8.43362i − 0.312356i
\(28\) 0 0
\(29\) 26.4655 0.912603 0.456301 0.889825i \(-0.349174\pi\)
0.456301 + 0.889825i \(0.349174\pi\)
\(30\) 0 0
\(31\) 25.1303i 0.810656i 0.914171 + 0.405328i \(0.132843\pi\)
−0.914171 + 0.405328i \(0.867157\pi\)
\(32\) 0 0
\(33\) 66.0062i 2.00019i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −63.3984 −1.71347 −0.856735 0.515757i \(-0.827511\pi\)
−0.856735 + 0.515757i \(0.827511\pi\)
\(38\) 0 0
\(39\) −1.77857 −0.0456042
\(40\) 0 0
\(41\) − 0.519795i − 0.0126779i −0.999980 0.00633896i \(-0.997982\pi\)
0.999980 0.00633896i \(-0.00201777\pi\)
\(42\) 0 0
\(43\) 25.5364 0.593870 0.296935 0.954898i \(-0.404036\pi\)
0.296935 + 0.954898i \(0.404036\pi\)
\(44\) 0 0
\(45\) − 62.0774i − 1.37950i
\(46\) 0 0
\(47\) − 68.6455i − 1.46054i −0.683157 0.730272i \(-0.739393\pi\)
0.683157 0.730272i \(-0.260607\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 27.7060 0.543255
\(52\) 0 0
\(53\) −7.17014 −0.135286 −0.0676429 0.997710i \(-0.521548\pi\)
−0.0676429 + 0.997710i \(0.521548\pi\)
\(54\) 0 0
\(55\) − 149.350i − 2.71545i
\(56\) 0 0
\(57\) −50.7906 −0.891062
\(58\) 0 0
\(59\) − 75.4237i − 1.27837i −0.769054 0.639184i \(-0.779272\pi\)
0.769054 0.639184i \(-0.220728\pi\)
\(60\) 0 0
\(61\) − 46.0559i − 0.755014i −0.926007 0.377507i \(-0.876781\pi\)
0.926007 0.377507i \(-0.123219\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.02429 0.0619122
\(66\) 0 0
\(67\) −42.8097 −0.638951 −0.319476 0.947595i \(-0.603507\pi\)
−0.319476 + 0.947595i \(0.603507\pi\)
\(68\) 0 0
\(69\) − 105.911i − 1.53494i
\(70\) 0 0
\(71\) −60.0281 −0.845466 −0.422733 0.906254i \(-0.638929\pi\)
−0.422733 + 0.906254i \(0.638929\pi\)
\(72\) 0 0
\(73\) − 46.7938i − 0.641011i −0.947247 0.320505i \(-0.896147\pi\)
0.947247 0.320505i \(-0.103853\pi\)
\(74\) 0 0
\(75\) 224.461i 2.99281i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 54.3077 0.687439 0.343720 0.939072i \(-0.388313\pi\)
0.343720 + 0.939072i \(0.388313\pi\)
\(80\) 0 0
\(81\) −95.5670 −1.17984
\(82\) 0 0
\(83\) − 11.4213i − 0.137606i −0.997630 0.0688028i \(-0.978082\pi\)
0.997630 0.0688028i \(-0.0219179\pi\)
\(84\) 0 0
\(85\) −62.6894 −0.737522
\(86\) 0 0
\(87\) − 105.477i − 1.21238i
\(88\) 0 0
\(89\) − 61.4132i − 0.690036i −0.938596 0.345018i \(-0.887873\pi\)
0.938596 0.345018i \(-0.112127\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 100.156 1.07695
\(94\) 0 0
\(95\) 114.922 1.20970
\(96\) 0 0
\(97\) − 20.3570i − 0.209866i −0.994479 0.104933i \(-0.966537\pi\)
0.994479 0.104933i \(-0.0334629\pi\)
\(98\) 0 0
\(99\) 114.010 1.15161
\(100\) 0 0
\(101\) − 179.252i − 1.77477i −0.461027 0.887386i \(-0.652519\pi\)
0.461027 0.887386i \(-0.347481\pi\)
\(102\) 0 0
\(103\) − 68.1553i − 0.661702i −0.943683 0.330851i \(-0.892664\pi\)
0.943683 0.330851i \(-0.107336\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −127.131 −1.18814 −0.594072 0.804412i \(-0.702481\pi\)
−0.594072 + 0.804412i \(0.702481\pi\)
\(108\) 0 0
\(109\) −21.5704 −0.197894 −0.0989468 0.995093i \(-0.531547\pi\)
−0.0989468 + 0.995093i \(0.531547\pi\)
\(110\) 0 0
\(111\) 252.672i 2.27632i
\(112\) 0 0
\(113\) 82.1812 0.727267 0.363634 0.931542i \(-0.381536\pi\)
0.363634 + 0.931542i \(0.381536\pi\)
\(114\) 0 0
\(115\) 239.640i 2.08383i
\(116\) 0 0
\(117\) 3.07203i 0.0262567i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 153.292 1.26687
\(122\) 0 0
\(123\) −2.07162 −0.0168425
\(124\) 0 0
\(125\) − 282.436i − 2.25949i
\(126\) 0 0
\(127\) −42.9545 −0.338225 −0.169112 0.985597i \(-0.554090\pi\)
−0.169112 + 0.985597i \(0.554090\pi\)
\(128\) 0 0
\(129\) − 101.774i − 0.788948i
\(130\) 0 0
\(131\) − 192.812i − 1.47185i −0.677063 0.735925i \(-0.736748\pi\)
0.677063 0.735925i \(-0.263252\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 76.0523 0.563351
\(136\) 0 0
\(137\) 146.249 1.06751 0.533754 0.845640i \(-0.320781\pi\)
0.533754 + 0.845640i \(0.320781\pi\)
\(138\) 0 0
\(139\) 101.042i 0.726921i 0.931610 + 0.363460i \(0.118405\pi\)
−0.931610 + 0.363460i \(0.881595\pi\)
\(140\) 0 0
\(141\) −273.584 −1.94031
\(142\) 0 0
\(143\) 7.39090i 0.0516846i
\(144\) 0 0
\(145\) 238.659i 1.64593i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −191.108 −1.28261 −0.641303 0.767287i \(-0.721606\pi\)
−0.641303 + 0.767287i \(0.721606\pi\)
\(150\) 0 0
\(151\) 28.7170 0.190179 0.0950893 0.995469i \(-0.469686\pi\)
0.0950893 + 0.995469i \(0.469686\pi\)
\(152\) 0 0
\(153\) − 47.8553i − 0.312780i
\(154\) 0 0
\(155\) −226.619 −1.46206
\(156\) 0 0
\(157\) 126.133i 0.803397i 0.915772 + 0.401698i \(0.131580\pi\)
−0.915772 + 0.401698i \(0.868420\pi\)
\(158\) 0 0
\(159\) 28.5763i 0.179725i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −254.251 −1.55982 −0.779911 0.625890i \(-0.784736\pi\)
−0.779911 + 0.625890i \(0.784736\pi\)
\(164\) 0 0
\(165\) −595.228 −3.60744
\(166\) 0 0
\(167\) 1.71028i 0.0102412i 0.999987 + 0.00512059i \(0.00162994\pi\)
−0.999987 + 0.00512059i \(0.998370\pi\)
\(168\) 0 0
\(169\) 168.801 0.998822
\(170\) 0 0
\(171\) 87.7282i 0.513030i
\(172\) 0 0
\(173\) − 100.654i − 0.581815i −0.956751 0.290907i \(-0.906043\pi\)
0.956751 0.290907i \(-0.0939571\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −300.598 −1.69830
\(178\) 0 0
\(179\) −227.284 −1.26974 −0.634872 0.772617i \(-0.718947\pi\)
−0.634872 + 0.772617i \(0.718947\pi\)
\(180\) 0 0
\(181\) 27.1608i 0.150060i 0.997181 + 0.0750298i \(0.0239052\pi\)
−0.997181 + 0.0750298i \(0.976095\pi\)
\(182\) 0 0
\(183\) −183.554 −1.00303
\(184\) 0 0
\(185\) − 571.711i − 3.09033i
\(186\) 0 0
\(187\) − 115.133i − 0.615687i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −55.3123 −0.289593 −0.144797 0.989461i \(-0.546253\pi\)
−0.144797 + 0.989461i \(0.546253\pi\)
\(192\) 0 0
\(193\) −222.565 −1.15319 −0.576594 0.817031i \(-0.695618\pi\)
−0.576594 + 0.817031i \(0.695618\pi\)
\(194\) 0 0
\(195\) − 16.0387i − 0.0822496i
\(196\) 0 0
\(197\) −15.2516 −0.0774191 −0.0387095 0.999251i \(-0.512325\pi\)
−0.0387095 + 0.999251i \(0.512325\pi\)
\(198\) 0 0
\(199\) 44.2879i 0.222552i 0.993790 + 0.111276i \(0.0354938\pi\)
−0.993790 + 0.111276i \(0.964506\pi\)
\(200\) 0 0
\(201\) 170.617i 0.848838i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 4.68738 0.0228653
\(206\) 0 0
\(207\) −182.935 −0.883742
\(208\) 0 0
\(209\) 211.062i 1.00987i
\(210\) 0 0
\(211\) 138.721 0.657446 0.328723 0.944426i \(-0.393382\pi\)
0.328723 + 0.944426i \(0.393382\pi\)
\(212\) 0 0
\(213\) 239.240i 1.12319i
\(214\) 0 0
\(215\) 230.281i 1.07107i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −186.495 −0.851575
\(220\) 0 0
\(221\) 3.10232 0.0140376
\(222\) 0 0
\(223\) 53.1564i 0.238370i 0.992872 + 0.119185i \(0.0380281\pi\)
−0.992872 + 0.119185i \(0.961972\pi\)
\(224\) 0 0
\(225\) 387.701 1.72312
\(226\) 0 0
\(227\) − 400.609i − 1.76480i −0.470501 0.882399i \(-0.655927\pi\)
0.470501 0.882399i \(-0.344073\pi\)
\(228\) 0 0
\(229\) 380.550i 1.66179i 0.556430 + 0.830895i \(0.312171\pi\)
−0.556430 + 0.830895i \(0.687829\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −333.003 −1.42920 −0.714598 0.699535i \(-0.753391\pi\)
−0.714598 + 0.699535i \(0.753391\pi\)
\(234\) 0 0
\(235\) 619.029 2.63417
\(236\) 0 0
\(237\) − 216.441i − 0.913255i
\(238\) 0 0
\(239\) −123.781 −0.517912 −0.258956 0.965889i \(-0.583378\pi\)
−0.258956 + 0.965889i \(0.583378\pi\)
\(240\) 0 0
\(241\) − 83.2837i − 0.345575i −0.984959 0.172788i \(-0.944723\pi\)
0.984959 0.172788i \(-0.0552774\pi\)
\(242\) 0 0
\(243\) 304.976i 1.25505i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −5.68716 −0.0230249
\(248\) 0 0
\(249\) −45.5190 −0.182807
\(250\) 0 0
\(251\) 403.749i 1.60856i 0.594250 + 0.804281i \(0.297449\pi\)
−0.594250 + 0.804281i \(0.702551\pi\)
\(252\) 0 0
\(253\) −440.116 −1.73959
\(254\) 0 0
\(255\) 249.846i 0.979788i
\(256\) 0 0
\(257\) 258.268i 1.00493i 0.864596 + 0.502467i \(0.167574\pi\)
−0.864596 + 0.502467i \(0.832426\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −182.186 −0.698030
\(262\) 0 0
\(263\) 393.857 1.49756 0.748778 0.662821i \(-0.230641\pi\)
0.748778 + 0.662821i \(0.230641\pi\)
\(264\) 0 0
\(265\) − 64.6586i − 0.243995i
\(266\) 0 0
\(267\) −244.760 −0.916704
\(268\) 0 0
\(269\) 53.8363i 0.200135i 0.994981 + 0.100067i \(0.0319059\pi\)
−0.994981 + 0.100067i \(0.968094\pi\)
\(270\) 0 0
\(271\) − 47.5133i − 0.175326i −0.996150 0.0876629i \(-0.972060\pi\)
0.996150 0.0876629i \(-0.0279398\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 932.757 3.39184
\(276\) 0 0
\(277\) −243.918 −0.880569 −0.440285 0.897858i \(-0.645122\pi\)
−0.440285 + 0.897858i \(0.645122\pi\)
\(278\) 0 0
\(279\) − 172.995i − 0.620053i
\(280\) 0 0
\(281\) 173.857 0.618709 0.309355 0.950947i \(-0.399887\pi\)
0.309355 + 0.950947i \(0.399887\pi\)
\(282\) 0 0
\(283\) 52.5435i 0.185666i 0.995682 + 0.0928330i \(0.0295923\pi\)
−0.995682 + 0.0928330i \(0.970408\pi\)
\(284\) 0 0
\(285\) − 458.017i − 1.60708i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 240.673 0.832778
\(290\) 0 0
\(291\) −81.1322 −0.278805
\(292\) 0 0
\(293\) − 321.060i − 1.09577i −0.836554 0.547885i \(-0.815433\pi\)
0.836554 0.547885i \(-0.184567\pi\)
\(294\) 0 0
\(295\) 680.153 2.30560
\(296\) 0 0
\(297\) 139.676i 0.470288i
\(298\) 0 0
\(299\) − 11.8591i − 0.0396626i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −714.402 −2.35776
\(304\) 0 0
\(305\) 415.321 1.36171
\(306\) 0 0
\(307\) − 568.177i − 1.85074i −0.379066 0.925370i \(-0.623755\pi\)
0.379066 0.925370i \(-0.376245\pi\)
\(308\) 0 0
\(309\) −271.630 −0.879063
\(310\) 0 0
\(311\) − 48.1978i − 0.154977i −0.996993 0.0774884i \(-0.975310\pi\)
0.996993 0.0774884i \(-0.0246901\pi\)
\(312\) 0 0
\(313\) − 81.4683i − 0.260282i −0.991495 0.130141i \(-0.958457\pi\)
0.991495 0.130141i \(-0.0415430\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 396.581 1.25104 0.625522 0.780206i \(-0.284886\pi\)
0.625522 + 0.780206i \(0.284886\pi\)
\(318\) 0 0
\(319\) −438.315 −1.37403
\(320\) 0 0
\(321\) 506.678i 1.57844i
\(322\) 0 0
\(323\) 88.5930 0.274282
\(324\) 0 0
\(325\) 25.1335i 0.0773339i
\(326\) 0 0
\(327\) 85.9680i 0.262899i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 474.236 1.43274 0.716369 0.697722i \(-0.245803\pi\)
0.716369 + 0.697722i \(0.245803\pi\)
\(332\) 0 0
\(333\) 436.428 1.31060
\(334\) 0 0
\(335\) − 386.048i − 1.15238i
\(336\) 0 0
\(337\) 234.392 0.695526 0.347763 0.937583i \(-0.386941\pi\)
0.347763 + 0.937583i \(0.386941\pi\)
\(338\) 0 0
\(339\) − 327.530i − 0.966165i
\(340\) 0 0
\(341\) − 416.203i − 1.22054i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 955.076 2.76834
\(346\) 0 0
\(347\) −224.989 −0.648384 −0.324192 0.945991i \(-0.605092\pi\)
−0.324192 + 0.945991i \(0.605092\pi\)
\(348\) 0 0
\(349\) 414.621i 1.18802i 0.804456 + 0.594012i \(0.202457\pi\)
−0.804456 + 0.594012i \(0.797543\pi\)
\(350\) 0 0
\(351\) −3.76362 −0.0107226
\(352\) 0 0
\(353\) 200.599i 0.568268i 0.958785 + 0.284134i \(0.0917060\pi\)
−0.958785 + 0.284134i \(0.908294\pi\)
\(354\) 0 0
\(355\) − 541.319i − 1.52484i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 149.929 0.417630 0.208815 0.977955i \(-0.433039\pi\)
0.208815 + 0.977955i \(0.433039\pi\)
\(360\) 0 0
\(361\) 198.591 0.550115
\(362\) 0 0
\(363\) − 610.939i − 1.68303i
\(364\) 0 0
\(365\) 421.975 1.15610
\(366\) 0 0
\(367\) − 485.835i − 1.32380i −0.749592 0.661900i \(-0.769750\pi\)
0.749592 0.661900i \(-0.230250\pi\)
\(368\) 0 0
\(369\) 3.57822i 0.00969706i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −162.047 −0.434442 −0.217221 0.976122i \(-0.569699\pi\)
−0.217221 + 0.976122i \(0.569699\pi\)
\(374\) 0 0
\(375\) −1125.64 −3.00170
\(376\) 0 0
\(377\) − 11.8106i − 0.0313278i
\(378\) 0 0
\(379\) −388.817 −1.02590 −0.512951 0.858418i \(-0.671448\pi\)
−0.512951 + 0.858418i \(0.671448\pi\)
\(380\) 0 0
\(381\) 171.194i 0.449327i
\(382\) 0 0
\(383\) − 28.2666i − 0.0738031i −0.999319 0.0369015i \(-0.988251\pi\)
0.999319 0.0369015i \(-0.0117488\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −175.790 −0.454238
\(388\) 0 0
\(389\) 606.292 1.55859 0.779296 0.626656i \(-0.215577\pi\)
0.779296 + 0.626656i \(0.215577\pi\)
\(390\) 0 0
\(391\) 184.738i 0.472476i
\(392\) 0 0
\(393\) −768.446 −1.95533
\(394\) 0 0
\(395\) 489.734i 1.23983i
\(396\) 0 0
\(397\) − 610.769i − 1.53846i −0.638971 0.769231i \(-0.720640\pi\)
0.638971 0.769231i \(-0.279360\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −214.109 −0.533938 −0.266969 0.963705i \(-0.586022\pi\)
−0.266969 + 0.963705i \(0.586022\pi\)
\(402\) 0 0
\(403\) 11.2148 0.0278282
\(404\) 0 0
\(405\) − 861.800i − 2.12790i
\(406\) 0 0
\(407\) 1049.99 2.57983
\(408\) 0 0
\(409\) 238.496i 0.583120i 0.956553 + 0.291560i \(0.0941742\pi\)
−0.956553 + 0.291560i \(0.905826\pi\)
\(410\) 0 0
\(411\) − 582.869i − 1.41817i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 102.994 0.248179
\(416\) 0 0
\(417\) 402.699 0.965705
\(418\) 0 0
\(419\) − 126.446i − 0.301779i −0.988551 0.150890i \(-0.951786\pi\)
0.988551 0.150890i \(-0.0482138\pi\)
\(420\) 0 0
\(421\) −113.097 −0.268639 −0.134319 0.990938i \(-0.542885\pi\)
−0.134319 + 0.990938i \(0.542885\pi\)
\(422\) 0 0
\(423\) 472.549i 1.11714i
\(424\) 0 0
\(425\) − 391.523i − 0.921231i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 29.4562 0.0686624
\(430\) 0 0
\(431\) 689.184 1.59903 0.799517 0.600643i \(-0.205089\pi\)
0.799517 + 0.600643i \(0.205089\pi\)
\(432\) 0 0
\(433\) 600.031i 1.38575i 0.721057 + 0.692876i \(0.243657\pi\)
−0.721057 + 0.692876i \(0.756343\pi\)
\(434\) 0 0
\(435\) 951.167 2.18659
\(436\) 0 0
\(437\) − 338.661i − 0.774968i
\(438\) 0 0
\(439\) − 165.206i − 0.376324i −0.982138 0.188162i \(-0.939747\pi\)
0.982138 0.188162i \(-0.0602530\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 204.833 0.462377 0.231189 0.972909i \(-0.425739\pi\)
0.231189 + 0.972909i \(0.425739\pi\)
\(444\) 0 0
\(445\) 553.810 1.24452
\(446\) 0 0
\(447\) 761.655i 1.70393i
\(448\) 0 0
\(449\) −112.007 −0.249458 −0.124729 0.992191i \(-0.539806\pi\)
−0.124729 + 0.992191i \(0.539806\pi\)
\(450\) 0 0
\(451\) 8.60871i 0.0190881i
\(452\) 0 0
\(453\) − 114.450i − 0.252650i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 165.235 0.361564 0.180782 0.983523i \(-0.442137\pi\)
0.180782 + 0.983523i \(0.442137\pi\)
\(458\) 0 0
\(459\) 58.6286 0.127731
\(460\) 0 0
\(461\) 187.790i 0.407353i 0.979038 + 0.203677i \(0.0652891\pi\)
−0.979038 + 0.203677i \(0.934711\pi\)
\(462\) 0 0
\(463\) −678.682 −1.46584 −0.732918 0.680317i \(-0.761842\pi\)
−0.732918 + 0.680317i \(0.761842\pi\)
\(464\) 0 0
\(465\) 903.183i 1.94233i
\(466\) 0 0
\(467\) − 15.9116i − 0.0340720i −0.999855 0.0170360i \(-0.994577\pi\)
0.999855 0.0170360i \(-0.00542299\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 502.699 1.06730
\(472\) 0 0
\(473\) −422.928 −0.894139
\(474\) 0 0
\(475\) 717.739i 1.51103i
\(476\) 0 0
\(477\) 49.3586 0.103477
\(478\) 0 0
\(479\) 553.743i 1.15604i 0.816023 + 0.578020i \(0.196174\pi\)
−0.816023 + 0.578020i \(0.803826\pi\)
\(480\) 0 0
\(481\) 28.2924i 0.0588199i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 183.575 0.378505
\(486\) 0 0
\(487\) 393.559 0.808129 0.404065 0.914730i \(-0.367597\pi\)
0.404065 + 0.914730i \(0.367597\pi\)
\(488\) 0 0
\(489\) 1013.31i 2.07220i
\(490\) 0 0
\(491\) 96.8828 0.197317 0.0986586 0.995121i \(-0.468545\pi\)
0.0986586 + 0.995121i \(0.468545\pi\)
\(492\) 0 0
\(493\) 183.982i 0.373188i
\(494\) 0 0
\(495\) 1028.11i 2.07699i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 154.872 0.310366 0.155183 0.987886i \(-0.450403\pi\)
0.155183 + 0.987886i \(0.450403\pi\)
\(500\) 0 0
\(501\) 6.81624 0.0136053
\(502\) 0 0
\(503\) − 710.432i − 1.41239i −0.708018 0.706194i \(-0.750410\pi\)
0.708018 0.706194i \(-0.249590\pi\)
\(504\) 0 0
\(505\) 1616.45 3.20089
\(506\) 0 0
\(507\) − 672.749i − 1.32692i
\(508\) 0 0
\(509\) 85.0058i 0.167005i 0.996508 + 0.0835027i \(0.0266107\pi\)
−0.996508 + 0.0835027i \(0.973389\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −107.478 −0.209508
\(514\) 0 0
\(515\) 614.608 1.19341
\(516\) 0 0
\(517\) 1136.89i 2.19902i
\(518\) 0 0
\(519\) −401.152 −0.772933
\(520\) 0 0
\(521\) 480.680i 0.922610i 0.887242 + 0.461305i \(0.152619\pi\)
−0.887242 + 0.461305i \(0.847381\pi\)
\(522\) 0 0
\(523\) 532.458i 1.01808i 0.860742 + 0.509042i \(0.170000\pi\)
−0.860742 + 0.509042i \(0.830000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −174.700 −0.331500
\(528\) 0 0
\(529\) 177.190 0.334954
\(530\) 0 0
\(531\) 519.210i 0.977796i
\(532\) 0 0
\(533\) −0.231965 −0.000435207 0
\(534\) 0 0
\(535\) − 1146.44i − 2.14288i
\(536\) 0 0
\(537\) 905.832i 1.68684i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −827.485 −1.52955 −0.764774 0.644299i \(-0.777149\pi\)
−0.764774 + 0.644299i \(0.777149\pi\)
\(542\) 0 0
\(543\) 108.248 0.199352
\(544\) 0 0
\(545\) − 194.517i − 0.356911i
\(546\) 0 0
\(547\) −665.687 −1.21698 −0.608489 0.793562i \(-0.708224\pi\)
−0.608489 + 0.793562i \(0.708224\pi\)
\(548\) 0 0
\(549\) 317.044i 0.577494i
\(550\) 0 0
\(551\) − 337.275i − 0.612114i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −2278.53 −4.10547
\(556\) 0 0
\(557\) −18.8463 −0.0338353 −0.0169177 0.999857i \(-0.505385\pi\)
−0.0169177 + 0.999857i \(0.505385\pi\)
\(558\) 0 0
\(559\) − 11.3960i − 0.0203863i
\(560\) 0 0
\(561\) −458.860 −0.817932
\(562\) 0 0
\(563\) 512.440i 0.910196i 0.890441 + 0.455098i \(0.150396\pi\)
−0.890441 + 0.455098i \(0.849604\pi\)
\(564\) 0 0
\(565\) 741.090i 1.31166i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −631.779 −1.11033 −0.555166 0.831740i \(-0.687345\pi\)
−0.555166 + 0.831740i \(0.687345\pi\)
\(570\) 0 0
\(571\) −916.717 −1.60546 −0.802729 0.596344i \(-0.796620\pi\)
−0.802729 + 0.596344i \(0.796620\pi\)
\(572\) 0 0
\(573\) 220.445i 0.384721i
\(574\) 0 0
\(575\) −1496.66 −2.60289
\(576\) 0 0
\(577\) 184.769i 0.320223i 0.987099 + 0.160111i \(0.0511854\pi\)
−0.987099 + 0.160111i \(0.948815\pi\)
\(578\) 0 0
\(579\) 887.025i 1.53199i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 118.750 0.203688
\(584\) 0 0
\(585\) −27.7029 −0.0473553
\(586\) 0 0
\(587\) − 141.805i − 0.241575i −0.992678 0.120788i \(-0.961458\pi\)
0.992678 0.120788i \(-0.0385420\pi\)
\(588\) 0 0
\(589\) 320.260 0.543735
\(590\) 0 0
\(591\) 60.7845i 0.102850i
\(592\) 0 0
\(593\) − 567.422i − 0.956867i −0.878124 0.478433i \(-0.841205\pi\)
0.878124 0.478433i \(-0.158795\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 176.508 0.295658
\(598\) 0 0
\(599\) −448.906 −0.749426 −0.374713 0.927141i \(-0.622259\pi\)
−0.374713 + 0.927141i \(0.622259\pi\)
\(600\) 0 0
\(601\) − 939.633i − 1.56345i −0.623623 0.781725i \(-0.714340\pi\)
0.623623 0.781725i \(-0.285660\pi\)
\(602\) 0 0
\(603\) 294.698 0.488720
\(604\) 0 0
\(605\) 1382.35i 2.28487i
\(606\) 0 0
\(607\) − 218.704i − 0.360303i −0.983639 0.180151i \(-0.942341\pi\)
0.983639 0.180151i \(-0.0576588\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −30.6340 −0.0501375
\(612\) 0 0
\(613\) 283.223 0.462028 0.231014 0.972950i \(-0.425796\pi\)
0.231014 + 0.972950i \(0.425796\pi\)
\(614\) 0 0
\(615\) − 18.6814i − 0.0303762i
\(616\) 0 0
\(617\) −1099.79 −1.78247 −0.891236 0.453539i \(-0.850161\pi\)
−0.891236 + 0.453539i \(0.850161\pi\)
\(618\) 0 0
\(619\) 598.401i 0.966722i 0.875421 + 0.483361i \(0.160584\pi\)
−0.875421 + 0.483361i \(0.839416\pi\)
\(620\) 0 0
\(621\) − 224.117i − 0.360897i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1138.94 1.82230
\(626\) 0 0
\(627\) 841.181 1.34160
\(628\) 0 0
\(629\) − 440.731i − 0.700685i
\(630\) 0 0
\(631\) −1056.45 −1.67425 −0.837127 0.547008i \(-0.815767\pi\)
−0.837127 + 0.547008i \(0.815767\pi\)
\(632\) 0 0
\(633\) − 552.868i − 0.873409i
\(634\) 0 0
\(635\) − 387.353i − 0.610005i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 413.228 0.646679
\(640\) 0 0
\(641\) 598.958 0.934412 0.467206 0.884149i \(-0.345261\pi\)
0.467206 + 0.884149i \(0.345261\pi\)
\(642\) 0 0
\(643\) − 707.781i − 1.10075i −0.834918 0.550374i \(-0.814485\pi\)
0.834918 0.550374i \(-0.185515\pi\)
\(644\) 0 0
\(645\) 917.776 1.42291
\(646\) 0 0
\(647\) − 488.067i − 0.754353i −0.926141 0.377177i \(-0.876895\pi\)
0.926141 0.377177i \(-0.123105\pi\)
\(648\) 0 0
\(649\) 1249.15i 1.92473i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 355.995 0.545168 0.272584 0.962132i \(-0.412122\pi\)
0.272584 + 0.962132i \(0.412122\pi\)
\(654\) 0 0
\(655\) 1738.74 2.65456
\(656\) 0 0
\(657\) 322.124i 0.490295i
\(658\) 0 0
\(659\) −1182.36 −1.79418 −0.897088 0.441852i \(-0.854322\pi\)
−0.897088 + 0.441852i \(0.854322\pi\)
\(660\) 0 0
\(661\) − 87.8710i − 0.132936i −0.997789 0.0664682i \(-0.978827\pi\)
0.997789 0.0664682i \(-0.0211731\pi\)
\(662\) 0 0
\(663\) − 12.3642i − 0.0186488i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 703.300 1.05442
\(668\) 0 0
\(669\) 211.853 0.316671
\(670\) 0 0
\(671\) 762.766i 1.13676i
\(672\) 0 0
\(673\) 939.720 1.39631 0.698157 0.715944i \(-0.254004\pi\)
0.698157 + 0.715944i \(0.254004\pi\)
\(674\) 0 0
\(675\) 474.981i 0.703676i
\(676\) 0 0
\(677\) − 84.8451i − 0.125325i −0.998035 0.0626626i \(-0.980041\pi\)
0.998035 0.0626626i \(-0.0199592\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −1596.61 −2.34451
\(682\) 0 0
\(683\) −303.080 −0.443748 −0.221874 0.975075i \(-0.571217\pi\)
−0.221874 + 0.975075i \(0.571217\pi\)
\(684\) 0 0
\(685\) 1318.84i 1.92531i
\(686\) 0 0
\(687\) 1516.67 2.20767
\(688\) 0 0
\(689\) 3.19977i 0.00464408i
\(690\) 0 0
\(691\) 255.450i 0.369682i 0.982768 + 0.184841i \(0.0591770\pi\)
−0.982768 + 0.184841i \(0.940823\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −911.172 −1.31104
\(696\) 0 0
\(697\) 3.61349 0.00518435
\(698\) 0 0
\(699\) 1327.17i 1.89867i
\(700\) 0 0
\(701\) −560.333 −0.799333 −0.399667 0.916661i \(-0.630874\pi\)
−0.399667 + 0.916661i \(0.630874\pi\)
\(702\) 0 0
\(703\) 807.947i 1.14928i
\(704\) 0 0
\(705\) − 2467.12i − 3.49945i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 822.738 1.16042 0.580210 0.814467i \(-0.302970\pi\)
0.580210 + 0.814467i \(0.302970\pi\)
\(710\) 0 0
\(711\) −373.849 −0.525807
\(712\) 0 0
\(713\) 667.820i 0.936634i
\(714\) 0 0
\(715\) −66.6494 −0.0932159
\(716\) 0 0
\(717\) 493.324i 0.688039i
\(718\) 0 0
\(719\) − 1242.96i − 1.72874i −0.502859 0.864368i \(-0.667719\pi\)
0.502859 0.864368i \(-0.332281\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −331.924 −0.459092
\(724\) 0 0
\(725\) −1490.53 −2.05591
\(726\) 0 0
\(727\) 1025.14i 1.41010i 0.709156 + 0.705052i \(0.249076\pi\)
−0.709156 + 0.705052i \(0.750924\pi\)
\(728\) 0 0
\(729\) 355.367 0.487472
\(730\) 0 0
\(731\) 177.523i 0.242850i
\(732\) 0 0
\(733\) 768.426i 1.04833i 0.851617 + 0.524165i \(0.175622\pi\)
−0.851617 + 0.524165i \(0.824378\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 709.004 0.962014
\(738\) 0 0
\(739\) −880.474 −1.19144 −0.595720 0.803192i \(-0.703133\pi\)
−0.595720 + 0.803192i \(0.703133\pi\)
\(740\) 0 0
\(741\) 22.6660i 0.0305883i
\(742\) 0 0
\(743\) 984.949 1.32564 0.662819 0.748780i \(-0.269360\pi\)
0.662819 + 0.748780i \(0.269360\pi\)
\(744\) 0 0
\(745\) − 1723.37i − 2.31325i
\(746\) 0 0
\(747\) 78.6228i 0.105251i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 333.968 0.444697 0.222349 0.974967i \(-0.428628\pi\)
0.222349 + 0.974967i \(0.428628\pi\)
\(752\) 0 0
\(753\) 1609.13 2.13695
\(754\) 0 0
\(755\) 258.963i 0.342997i
\(756\) 0 0
\(757\) −964.869 −1.27460 −0.637298 0.770617i \(-0.719948\pi\)
−0.637298 + 0.770617i \(0.719948\pi\)
\(758\) 0 0
\(759\) 1754.07i 2.31102i
\(760\) 0 0
\(761\) − 885.964i − 1.16421i −0.813113 0.582105i \(-0.802229\pi\)
0.813113 0.582105i \(-0.197771\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 431.547 0.564114
\(766\) 0 0
\(767\) −33.6588 −0.0438838
\(768\) 0 0
\(769\) − 416.779i − 0.541976i −0.962583 0.270988i \(-0.912650\pi\)
0.962583 0.270988i \(-0.0873503\pi\)
\(770\) 0 0
\(771\) 1029.32 1.33504
\(772\) 0 0
\(773\) − 66.9101i − 0.0865590i −0.999063 0.0432795i \(-0.986219\pi\)
0.999063 0.0432795i \(-0.0137806\pi\)
\(774\) 0 0
\(775\) − 1415.34i − 1.82624i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −6.62424 −0.00850352
\(780\) 0 0
\(781\) 994.171 1.27295
\(782\) 0 0
\(783\) − 223.200i − 0.285057i
\(784\) 0 0
\(785\) −1137.44 −1.44897
\(786\) 0 0
\(787\) − 1223.31i − 1.55439i −0.629258 0.777196i \(-0.716641\pi\)
0.629258 0.777196i \(-0.283359\pi\)
\(788\) 0 0
\(789\) − 1569.70i − 1.98948i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −20.5530 −0.0259181
\(794\) 0 0
\(795\) −257.694 −0.324144
\(796\) 0 0
\(797\) − 578.768i − 0.726184i −0.931753 0.363092i \(-0.881721\pi\)
0.931753 0.363092i \(-0.118279\pi\)
\(798\) 0 0
\(799\) 477.208 0.597256
\(800\) 0 0
\(801\) 422.763i 0.527794i
\(802\) 0 0
\(803\) 774.987i 0.965115i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 214.562 0.265877
\(808\) 0 0
\(809\) −892.128 −1.10275 −0.551377 0.834256i \(-0.685897\pi\)
−0.551377 + 0.834256i \(0.685897\pi\)
\(810\) 0 0
\(811\) − 200.724i − 0.247502i −0.992313 0.123751i \(-0.960508\pi\)
0.992313 0.123751i \(-0.0394925\pi\)
\(812\) 0 0
\(813\) −189.362 −0.232918
\(814\) 0 0
\(815\) − 2292.77i − 2.81322i
\(816\) 0 0
\(817\) − 325.435i − 0.398329i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 632.629 0.770559 0.385280 0.922800i \(-0.374105\pi\)
0.385280 + 0.922800i \(0.374105\pi\)
\(822\) 0 0
\(823\) 3.81646 0.00463726 0.00231863 0.999997i \(-0.499262\pi\)
0.00231863 + 0.999997i \(0.499262\pi\)
\(824\) 0 0
\(825\) − 3717.47i − 4.50602i
\(826\) 0 0
\(827\) 1174.97 1.42076 0.710382 0.703817i \(-0.248522\pi\)
0.710382 + 0.703817i \(0.248522\pi\)
\(828\) 0 0
\(829\) − 744.824i − 0.898461i −0.893416 0.449230i \(-0.851698\pi\)
0.893416 0.449230i \(-0.148302\pi\)
\(830\) 0 0
\(831\) 972.125i 1.16983i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −15.4229 −0.0184705
\(836\) 0 0
\(837\) 211.940 0.253214
\(838\) 0 0
\(839\) − 1124.03i − 1.33973i −0.742485 0.669863i \(-0.766353\pi\)
0.742485 0.669863i \(-0.233647\pi\)
\(840\) 0 0
\(841\) −140.579 −0.167156
\(842\) 0 0
\(843\) − 692.902i − 0.821947i
\(844\) 0 0
\(845\) 1522.21i 1.80143i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 209.410 0.246655
\(850\) 0 0
\(851\) −1684.76 −1.97975
\(852\) 0 0
\(853\) 96.2021i 0.112781i 0.998409 + 0.0563905i \(0.0179592\pi\)
−0.998409 + 0.0563905i \(0.982041\pi\)
\(854\) 0 0
\(855\) −791.112 −0.925277
\(856\) 0 0
\(857\) 856.417i 0.999319i 0.866222 + 0.499660i \(0.166542\pi\)
−0.866222 + 0.499660i \(0.833458\pi\)
\(858\) 0 0
\(859\) 1676.12i 1.95125i 0.219443 + 0.975625i \(0.429576\pi\)
−0.219443 + 0.975625i \(0.570424\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 283.249 0.328215 0.164107 0.986442i \(-0.447526\pi\)
0.164107 + 0.986442i \(0.447526\pi\)
\(864\) 0 0
\(865\) 907.672 1.04933
\(866\) 0 0
\(867\) − 959.193i − 1.10634i
\(868\) 0 0
\(869\) −899.431 −1.03502
\(870\) 0 0
\(871\) 19.1044i 0.0219339i
\(872\) 0 0
\(873\) 140.136i 0.160522i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −832.492 −0.949250 −0.474625 0.880188i \(-0.657416\pi\)
−0.474625 + 0.880188i \(0.657416\pi\)
\(878\) 0 0
\(879\) −1279.57 −1.45572
\(880\) 0 0
\(881\) 890.282i 1.01054i 0.862962 + 0.505268i \(0.168606\pi\)
−0.862962 + 0.505268i \(0.831394\pi\)
\(882\) 0 0
\(883\) −322.429 −0.365152 −0.182576 0.983192i \(-0.558444\pi\)
−0.182576 + 0.983192i \(0.558444\pi\)
\(884\) 0 0
\(885\) − 2710.72i − 3.06296i
\(886\) 0 0
\(887\) − 542.546i − 0.611665i −0.952085 0.305832i \(-0.901065\pi\)
0.952085 0.305832i \(-0.0989347\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1582.76 1.77638
\(892\) 0 0
\(893\) −874.816 −0.979637
\(894\) 0 0
\(895\) − 2049.59i − 2.29005i
\(896\) 0 0
\(897\) −47.2640 −0.0526912
\(898\) 0 0
\(899\) 665.087i 0.739807i
\(900\) 0 0
\(901\) − 49.8452i − 0.0553221i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −244.929 −0.270640
\(906\) 0 0
\(907\) 1455.95 1.60524 0.802619 0.596493i \(-0.203440\pi\)
0.802619 + 0.596493i \(0.203440\pi\)
\(908\) 0 0
\(909\) 1233.95i 1.35748i
\(910\) 0 0
\(911\) 336.756 0.369655 0.184828 0.982771i \(-0.440827\pi\)
0.184828 + 0.982771i \(0.440827\pi\)
\(912\) 0 0
\(913\) 189.156i 0.207181i
\(914\) 0 0
\(915\) − 1655.24i − 1.80901i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 980.740 1.06718 0.533591 0.845743i \(-0.320842\pi\)
0.533591 + 0.845743i \(0.320842\pi\)
\(920\) 0 0
\(921\) −2264.45 −2.45868
\(922\) 0 0
\(923\) 26.7883i 0.0290231i
\(924\) 0 0
\(925\) 3570.59 3.86010
\(926\) 0 0
\(927\) 469.175i 0.506121i
\(928\) 0 0
\(929\) 414.270i 0.445931i 0.974826 + 0.222965i \(0.0715737\pi\)
−0.974826 + 0.222965i \(0.928426\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −192.090 −0.205885
\(934\) 0 0
\(935\) 1038.25 1.11042
\(936\) 0 0
\(937\) 1323.89i 1.41290i 0.707764 + 0.706449i \(0.249704\pi\)
−0.707764 + 0.706449i \(0.750296\pi\)
\(938\) 0 0
\(939\) −324.689 −0.345781
\(940\) 0 0
\(941\) 950.630i 1.01023i 0.863051 + 0.505117i \(0.168551\pi\)
−0.863051 + 0.505117i \(0.831449\pi\)
\(942\) 0 0
\(943\) − 13.8132i − 0.0146481i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1160.49 −1.22543 −0.612717 0.790302i \(-0.709923\pi\)
−0.612717 + 0.790302i \(0.709923\pi\)
\(948\) 0 0
\(949\) −20.8823 −0.0220046
\(950\) 0 0
\(951\) − 1580.56i − 1.66200i
\(952\) 0 0
\(953\) −1025.81 −1.07640 −0.538201 0.842816i \(-0.680896\pi\)
−0.538201 + 0.842816i \(0.680896\pi\)
\(954\) 0 0
\(955\) − 498.793i − 0.522297i
\(956\) 0 0
\(957\) 1746.89i 1.82538i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 329.466 0.342836
\(962\) 0 0
\(963\) 875.161 0.908786
\(964\) 0 0
\(965\) − 2007.04i − 2.07983i
\(966\) 0 0
\(967\) 648.379 0.670505 0.335253 0.942128i \(-0.391178\pi\)
0.335253 + 0.942128i \(0.391178\pi\)
\(968\) 0 0
\(969\) − 353.084i − 0.364380i
\(970\) 0 0
\(971\) − 731.698i − 0.753551i −0.926305 0.376776i \(-0.877033\pi\)
0.926305 0.376776i \(-0.122967\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 100.169 0.102737
\(976\) 0 0
\(977\) −777.446 −0.795749 −0.397874 0.917440i \(-0.630252\pi\)
−0.397874 + 0.917440i \(0.630252\pi\)
\(978\) 0 0
\(979\) 1017.11i 1.03893i
\(980\) 0 0
\(981\) 148.489 0.151364
\(982\) 0 0
\(983\) 1359.09i 1.38260i 0.722570 + 0.691298i \(0.242961\pi\)
−0.722570 + 0.691298i \(0.757039\pi\)
\(984\) 0 0
\(985\) − 137.535i − 0.139629i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 678.611 0.686158
\(990\) 0 0
\(991\) −705.097 −0.711500 −0.355750 0.934581i \(-0.615775\pi\)
−0.355750 + 0.934581i \(0.615775\pi\)
\(992\) 0 0
\(993\) − 1890.05i − 1.90337i
\(994\) 0 0
\(995\) −399.377 −0.401384
\(996\) 0 0
\(997\) − 1245.74i − 1.24949i −0.780829 0.624745i \(-0.785203\pi\)
0.780829 0.624745i \(-0.214797\pi\)
\(998\) 0 0
\(999\) 534.678i 0.535213i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1568.3.c.g.97.4 16
4.3 odd 2 inner 1568.3.c.g.97.14 16
7.4 even 3 224.3.s.b.33.2 16
7.5 odd 6 224.3.s.b.129.2 yes 16
7.6 odd 2 inner 1568.3.c.g.97.13 16
28.11 odd 6 224.3.s.b.33.7 yes 16
28.19 even 6 224.3.s.b.129.7 yes 16
28.27 even 2 inner 1568.3.c.g.97.3 16
56.5 odd 6 448.3.s.h.129.7 16
56.11 odd 6 448.3.s.h.257.2 16
56.19 even 6 448.3.s.h.129.2 16
56.53 even 6 448.3.s.h.257.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
224.3.s.b.33.2 16 7.4 even 3
224.3.s.b.33.7 yes 16 28.11 odd 6
224.3.s.b.129.2 yes 16 7.5 odd 6
224.3.s.b.129.7 yes 16 28.19 even 6
448.3.s.h.129.2 16 56.19 even 6
448.3.s.h.129.7 16 56.5 odd 6
448.3.s.h.257.2 16 56.11 odd 6
448.3.s.h.257.7 16 56.53 even 6
1568.3.c.g.97.3 16 28.27 even 2 inner
1568.3.c.g.97.4 16 1.1 even 1 trivial
1568.3.c.g.97.13 16 7.6 odd 2 inner
1568.3.c.g.97.14 16 4.3 odd 2 inner