Properties

Label 1568.3.c
Level $1568$
Weight $3$
Character orbit 1568.c
Rep. character $\chi_{1568}(97,\cdot)$
Character field $\Q$
Dimension $80$
Newform subspaces $8$
Sturm bound $672$
Trace bound $53$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1568 = 2^{5} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1568.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(672\)
Trace bound: \(53\)
Distinguishing \(T_p\): \(3\), \(5\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(1568, [\chi])\).

Total New Old
Modular forms 480 80 400
Cusp forms 416 80 336
Eisenstein series 64 0 64

Trace form

\( 80 q - 240 q^{9} - 432 q^{25} + 96 q^{29} - 160 q^{37} - 32 q^{53} - 32 q^{57} - 32 q^{65} + 496 q^{81} - 224 q^{85} + 416 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(1568, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1568.3.c.a 1568.c 7.b $4$ $42.725$ 4.0.2048.2 \(\Q(\sqrt{-1}) \) 1568.3.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(4\beta _{1}+3\beta _{3})q^{5}+9q^{9}+(-5\beta _{1}-12\beta _{3})q^{13}+\cdots\)
1568.3.c.b 1568.c 7.b $4$ $42.725$ 4.0.2048.2 \(\Q(\sqrt{-1}) \) 1568.3.c.b \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(3\beta _{1}+4\beta _{3})q^{5}+9q^{9}+(12\beta _{1}+5\beta _{3})q^{13}+\cdots\)
1568.3.c.c 1568.c 7.b $8$ $42.725$ 8.0.\(\cdots\).26 None 1568.3.c.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{3}+(-\beta _{1}-\beta _{4})q^{5}+(-13-5\beta _{3}+\cdots)q^{9}+\cdots\)
1568.3.c.d 1568.c 7.b $8$ $42.725$ 8.0.\(\cdots\).16 None 1568.3.c.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{3}+(-\beta _{1}-3\beta _{3})q^{5}+(-5+3\beta _{5}+\cdots)q^{9}+\cdots\)
1568.3.c.e 1568.c 7.b $12$ $42.725$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 1568.3.c.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{6}q^{3}+\beta _{11}q^{5}+(-3+\beta _{1}+\beta _{3}+\cdots)q^{9}+\cdots\)
1568.3.c.f 1568.c 7.b $12$ $42.725$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 1568.3.c.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{6}q^{3}-\beta _{11}q^{5}+(-3+\beta _{1}+\beta _{3}+\cdots)q^{9}+\cdots\)
1568.3.c.g 1568.c 7.b $16$ $42.725$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 224.3.s.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{6}q^{3}+\beta _{1}q^{5}+(-5-\beta _{4})q^{9}+(\beta _{5}+\cdots)q^{11}+\cdots\)
1568.3.c.h 1568.c 7.b $16$ $42.725$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 224.3.s.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}-\beta _{12}q^{5}+(-1+\beta _{3})q^{9}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(1568, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(1568, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(98, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(196, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(224, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(392, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(784, [\chi])\)\(^{\oplus 2}\)