Properties

Label 1568.3.c.e.97.12
Level $1568$
Weight $3$
Character 1568.97
Analytic conductor $42.725$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1568,3,Mod(97,1568)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1568.97"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1568, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1568 = 2^{5} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1568.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,-36,0,-48,0,0,0,0,0,0,0,0,0,0,0,128,0,-124, 0,0,0,0,0,0,0,0,0,0,0,-128,0,-160,0,0,0,464,0,0,0,0,0,0,0,400,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(53)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.7249054517\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 64x^{10} + 1436x^{8} + 13392x^{6} + 45220x^{4} + 30880x^{2} + 1568 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{5}\cdot 7^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 97.12
Root \(3.86019i\) of defining polynomial
Character \(\chi\) \(=\) 1568.97
Dual form 1568.3.c.e.97.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.94258i q^{3} -0.228417i q^{5} -15.4291 q^{9} -18.3758 q^{11} -13.4283i q^{13} +1.12897 q^{15} -16.5172i q^{17} -12.8838i q^{19} -8.58814 q^{23} +24.9478 q^{25} -31.7765i q^{27} +56.5368 q^{29} +35.5478i q^{31} -90.8237i q^{33} -37.3980 q^{37} +66.3705 q^{39} +30.1061i q^{41} +59.4089 q^{43} +3.52427i q^{45} +69.9424i q^{47} +81.6374 q^{51} +68.6698 q^{53} +4.19733i q^{55} +63.6795 q^{57} -57.9361i q^{59} -88.9801i q^{61} -3.06724 q^{65} +0.939118 q^{67} -42.4476i q^{69} +51.3474 q^{71} -6.64003i q^{73} +123.307i q^{75} -88.4092 q^{79} +18.1960 q^{81} -59.3984i q^{83} -3.77279 q^{85} +279.438i q^{87} +59.5411i q^{89} -175.698 q^{93} -2.94288 q^{95} -49.6639i q^{97} +283.522 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 36 q^{9} - 48 q^{11} + 128 q^{23} - 124 q^{25} - 128 q^{37} - 160 q^{39} + 464 q^{43} + 400 q^{51} + 16 q^{53} + 224 q^{57} - 64 q^{65} - 64 q^{67} + 544 q^{71} + 288 q^{79} - 180 q^{81} - 272 q^{85}+ \cdots + 1328 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1568\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(1471\) \(1473\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.94258i 1.64753i 0.566933 + 0.823764i \(0.308130\pi\)
−0.566933 + 0.823764i \(0.691870\pi\)
\(4\) 0 0
\(5\) − 0.228417i − 0.0456833i −0.999739 0.0228417i \(-0.992729\pi\)
0.999739 0.0228417i \(-0.00727136\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −15.4291 −1.71435
\(10\) 0 0
\(11\) −18.3758 −1.67052 −0.835262 0.549853i \(-0.814684\pi\)
−0.835262 + 0.549853i \(0.814684\pi\)
\(12\) 0 0
\(13\) − 13.4283i − 1.03295i −0.856304 0.516473i \(-0.827245\pi\)
0.856304 0.516473i \(-0.172755\pi\)
\(14\) 0 0
\(15\) 1.12897 0.0752645
\(16\) 0 0
\(17\) − 16.5172i − 0.971597i −0.874071 0.485799i \(-0.838529\pi\)
0.874071 0.485799i \(-0.161471\pi\)
\(18\) 0 0
\(19\) − 12.8838i − 0.678097i −0.940769 0.339048i \(-0.889895\pi\)
0.940769 0.339048i \(-0.110105\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −8.58814 −0.373397 −0.186699 0.982417i \(-0.559779\pi\)
−0.186699 + 0.982417i \(0.559779\pi\)
\(24\) 0 0
\(25\) 24.9478 0.997913
\(26\) 0 0
\(27\) − 31.7765i − 1.17691i
\(28\) 0 0
\(29\) 56.5368 1.94955 0.974773 0.223199i \(-0.0716500\pi\)
0.974773 + 0.223199i \(0.0716500\pi\)
\(30\) 0 0
\(31\) 35.5478i 1.14670i 0.819310 + 0.573351i \(0.194357\pi\)
−0.819310 + 0.573351i \(0.805643\pi\)
\(32\) 0 0
\(33\) − 90.8237i − 2.75223i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −37.3980 −1.01076 −0.505378 0.862898i \(-0.668647\pi\)
−0.505378 + 0.862898i \(0.668647\pi\)
\(38\) 0 0
\(39\) 66.3705 1.70181
\(40\) 0 0
\(41\) 30.1061i 0.734296i 0.930163 + 0.367148i \(0.119666\pi\)
−0.930163 + 0.367148i \(0.880334\pi\)
\(42\) 0 0
\(43\) 59.4089 1.38160 0.690801 0.723045i \(-0.257258\pi\)
0.690801 + 0.723045i \(0.257258\pi\)
\(44\) 0 0
\(45\) 3.52427i 0.0783171i
\(46\) 0 0
\(47\) 69.9424i 1.48814i 0.668103 + 0.744069i \(0.267106\pi\)
−0.668103 + 0.744069i \(0.732894\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 81.6374 1.60073
\(52\) 0 0
\(53\) 68.6698 1.29566 0.647828 0.761786i \(-0.275677\pi\)
0.647828 + 0.761786i \(0.275677\pi\)
\(54\) 0 0
\(55\) 4.19733i 0.0763150i
\(56\) 0 0
\(57\) 63.6795 1.11718
\(58\) 0 0
\(59\) − 57.9361i − 0.981967i −0.871169 0.490984i \(-0.836638\pi\)
0.871169 0.490984i \(-0.163362\pi\)
\(60\) 0 0
\(61\) − 88.9801i − 1.45869i −0.684146 0.729345i \(-0.739825\pi\)
0.684146 0.729345i \(-0.260175\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.06724 −0.0471884
\(66\) 0 0
\(67\) 0.939118 0.0140167 0.00700834 0.999975i \(-0.497769\pi\)
0.00700834 + 0.999975i \(0.497769\pi\)
\(68\) 0 0
\(69\) − 42.4476i − 0.615183i
\(70\) 0 0
\(71\) 51.3474 0.723203 0.361602 0.932333i \(-0.382230\pi\)
0.361602 + 0.932333i \(0.382230\pi\)
\(72\) 0 0
\(73\) − 6.64003i − 0.0909594i −0.998965 0.0454797i \(-0.985518\pi\)
0.998965 0.0454797i \(-0.0144816\pi\)
\(74\) 0 0
\(75\) 123.307i 1.64409i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −88.4092 −1.11910 −0.559552 0.828795i \(-0.689027\pi\)
−0.559552 + 0.828795i \(0.689027\pi\)
\(80\) 0 0
\(81\) 18.1960 0.224642
\(82\) 0 0
\(83\) − 59.3984i − 0.715644i −0.933790 0.357822i \(-0.883520\pi\)
0.933790 0.357822i \(-0.116480\pi\)
\(84\) 0 0
\(85\) −3.77279 −0.0443858
\(86\) 0 0
\(87\) 279.438i 3.21193i
\(88\) 0 0
\(89\) 59.5411i 0.669001i 0.942396 + 0.334500i \(0.108568\pi\)
−0.942396 + 0.334500i \(0.891432\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −175.698 −1.88923
\(94\) 0 0
\(95\) −2.94288 −0.0309777
\(96\) 0 0
\(97\) − 49.6639i − 0.511999i −0.966677 0.256000i \(-0.917595\pi\)
0.966677 0.256000i \(-0.0824046\pi\)
\(98\) 0 0
\(99\) 283.522 2.86386
\(100\) 0 0
\(101\) − 167.262i − 1.65606i −0.560683 0.828031i \(-0.689461\pi\)
0.560683 0.828031i \(-0.310539\pi\)
\(102\) 0 0
\(103\) − 67.2970i − 0.653369i −0.945133 0.326684i \(-0.894069\pi\)
0.945133 0.326684i \(-0.105931\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 154.078 1.43998 0.719991 0.693984i \(-0.244146\pi\)
0.719991 + 0.693984i \(0.244146\pi\)
\(108\) 0 0
\(109\) −181.141 −1.66185 −0.830923 0.556387i \(-0.812187\pi\)
−0.830923 + 0.556387i \(0.812187\pi\)
\(110\) 0 0
\(111\) − 184.843i − 1.66525i
\(112\) 0 0
\(113\) −20.2896 −0.179554 −0.0897768 0.995962i \(-0.528615\pi\)
−0.0897768 + 0.995962i \(0.528615\pi\)
\(114\) 0 0
\(115\) 1.96167i 0.0170580i
\(116\) 0 0
\(117\) 207.187i 1.77083i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 216.668 1.79065
\(122\) 0 0
\(123\) −148.802 −1.20977
\(124\) 0 0
\(125\) − 11.4089i − 0.0912713i
\(126\) 0 0
\(127\) −38.7432 −0.305064 −0.152532 0.988299i \(-0.548743\pi\)
−0.152532 + 0.988299i \(0.548743\pi\)
\(128\) 0 0
\(129\) 293.633i 2.27623i
\(130\) 0 0
\(131\) − 108.725i − 0.829961i −0.909830 0.414980i \(-0.863788\pi\)
0.909830 0.414980i \(-0.136212\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −7.25829 −0.0537651
\(136\) 0 0
\(137\) 38.1937 0.278786 0.139393 0.990237i \(-0.455485\pi\)
0.139393 + 0.990237i \(0.455485\pi\)
\(138\) 0 0
\(139\) − 252.096i − 1.81364i −0.421517 0.906820i \(-0.638502\pi\)
0.421517 0.906820i \(-0.361498\pi\)
\(140\) 0 0
\(141\) −345.696 −2.45175
\(142\) 0 0
\(143\) 246.755i 1.72556i
\(144\) 0 0
\(145\) − 12.9139i − 0.0890617i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 181.778 1.21998 0.609992 0.792408i \(-0.291173\pi\)
0.609992 + 0.792408i \(0.291173\pi\)
\(150\) 0 0
\(151\) 156.791 1.03835 0.519176 0.854667i \(-0.326239\pi\)
0.519176 + 0.854667i \(0.326239\pi\)
\(152\) 0 0
\(153\) 254.845i 1.66566i
\(154\) 0 0
\(155\) 8.11970 0.0523852
\(156\) 0 0
\(157\) 14.6817i 0.0935139i 0.998906 + 0.0467569i \(0.0148886\pi\)
−0.998906 + 0.0467569i \(0.985111\pi\)
\(158\) 0 0
\(159\) 339.406i 2.13463i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 26.3021 0.161363 0.0806814 0.996740i \(-0.474290\pi\)
0.0806814 + 0.996740i \(0.474290\pi\)
\(164\) 0 0
\(165\) −20.7456 −0.125731
\(166\) 0 0
\(167\) 12.0409i 0.0721013i 0.999350 + 0.0360507i \(0.0114778\pi\)
−0.999350 + 0.0360507i \(0.988522\pi\)
\(168\) 0 0
\(169\) −11.3190 −0.0669765
\(170\) 0 0
\(171\) 198.787i 1.16249i
\(172\) 0 0
\(173\) 284.151i 1.64249i 0.570575 + 0.821245i \(0.306720\pi\)
−0.570575 + 0.821245i \(0.693280\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 286.354 1.61782
\(178\) 0 0
\(179\) 113.645 0.634886 0.317443 0.948277i \(-0.397176\pi\)
0.317443 + 0.948277i \(0.397176\pi\)
\(180\) 0 0
\(181\) − 59.3265i − 0.327771i −0.986479 0.163885i \(-0.947597\pi\)
0.986479 0.163885i \(-0.0524027\pi\)
\(182\) 0 0
\(183\) 439.791 2.40323
\(184\) 0 0
\(185\) 8.54231i 0.0461746i
\(186\) 0 0
\(187\) 303.515i 1.62308i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 177.823 0.931011 0.465505 0.885045i \(-0.345873\pi\)
0.465505 + 0.885045i \(0.345873\pi\)
\(192\) 0 0
\(193\) −222.636 −1.15356 −0.576778 0.816901i \(-0.695690\pi\)
−0.576778 + 0.816901i \(0.695690\pi\)
\(194\) 0 0
\(195\) − 15.1601i − 0.0777442i
\(196\) 0 0
\(197\) 33.4090 0.169589 0.0847945 0.996398i \(-0.472977\pi\)
0.0847945 + 0.996398i \(0.472977\pi\)
\(198\) 0 0
\(199\) − 280.456i − 1.40933i −0.709542 0.704664i \(-0.751098\pi\)
0.709542 0.704664i \(-0.248902\pi\)
\(200\) 0 0
\(201\) 4.64167i 0.0230929i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 6.87674 0.0335451
\(206\) 0 0
\(207\) 132.508 0.640133
\(208\) 0 0
\(209\) 236.750i 1.13278i
\(210\) 0 0
\(211\) 243.027 1.15179 0.575894 0.817524i \(-0.304654\pi\)
0.575894 + 0.817524i \(0.304654\pi\)
\(212\) 0 0
\(213\) 253.789i 1.19150i
\(214\) 0 0
\(215\) − 13.5700i − 0.0631161i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 32.8189 0.149858
\(220\) 0 0
\(221\) −221.797 −1.00361
\(222\) 0 0
\(223\) 172.863i 0.775169i 0.921834 + 0.387585i \(0.126691\pi\)
−0.921834 + 0.387585i \(0.873309\pi\)
\(224\) 0 0
\(225\) −384.923 −1.71077
\(226\) 0 0
\(227\) 113.711i 0.500931i 0.968126 + 0.250465i \(0.0805837\pi\)
−0.968126 + 0.250465i \(0.919416\pi\)
\(228\) 0 0
\(229\) 361.301i 1.57773i 0.614565 + 0.788866i \(0.289332\pi\)
−0.614565 + 0.788866i \(0.710668\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 191.895 0.823585 0.411792 0.911278i \(-0.364903\pi\)
0.411792 + 0.911278i \(0.364903\pi\)
\(234\) 0 0
\(235\) 15.9760 0.0679830
\(236\) 0 0
\(237\) − 436.970i − 1.84375i
\(238\) 0 0
\(239\) 16.3527 0.0684212 0.0342106 0.999415i \(-0.489108\pi\)
0.0342106 + 0.999415i \(0.489108\pi\)
\(240\) 0 0
\(241\) − 308.408i − 1.27970i −0.768500 0.639850i \(-0.778996\pi\)
0.768500 0.639850i \(-0.221004\pi\)
\(242\) 0 0
\(243\) − 196.054i − 0.806805i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −173.008 −0.700437
\(248\) 0 0
\(249\) 293.582 1.17904
\(250\) 0 0
\(251\) 159.093i 0.633838i 0.948453 + 0.316919i \(0.102648\pi\)
−0.948453 + 0.316919i \(0.897352\pi\)
\(252\) 0 0
\(253\) 157.814 0.623769
\(254\) 0 0
\(255\) − 18.6473i − 0.0731268i
\(256\) 0 0
\(257\) − 261.398i − 1.01711i −0.861029 0.508556i \(-0.830180\pi\)
0.861029 0.508556i \(-0.169820\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −872.314 −3.34220
\(262\) 0 0
\(263\) −104.087 −0.395769 −0.197885 0.980225i \(-0.563407\pi\)
−0.197885 + 0.980225i \(0.563407\pi\)
\(264\) 0 0
\(265\) − 15.6853i − 0.0591899i
\(266\) 0 0
\(267\) −294.287 −1.10220
\(268\) 0 0
\(269\) − 418.217i − 1.55471i −0.629062 0.777355i \(-0.716561\pi\)
0.629062 0.777355i \(-0.283439\pi\)
\(270\) 0 0
\(271\) 125.684i 0.463779i 0.972742 + 0.231889i \(0.0744907\pi\)
−0.972742 + 0.231889i \(0.925509\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −458.435 −1.66704
\(276\) 0 0
\(277\) 58.3242 0.210557 0.105278 0.994443i \(-0.466427\pi\)
0.105278 + 0.994443i \(0.466427\pi\)
\(278\) 0 0
\(279\) − 548.472i − 1.96585i
\(280\) 0 0
\(281\) 191.806 0.682585 0.341292 0.939957i \(-0.389135\pi\)
0.341292 + 0.939957i \(0.389135\pi\)
\(282\) 0 0
\(283\) 413.545i 1.46129i 0.682758 + 0.730644i \(0.260780\pi\)
−0.682758 + 0.730644i \(0.739220\pi\)
\(284\) 0 0
\(285\) − 14.5454i − 0.0510366i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 16.1836 0.0559986
\(290\) 0 0
\(291\) 245.468 0.843533
\(292\) 0 0
\(293\) − 411.566i − 1.40466i −0.711850 0.702331i \(-0.752142\pi\)
0.711850 0.702331i \(-0.247858\pi\)
\(294\) 0 0
\(295\) −13.2336 −0.0448595
\(296\) 0 0
\(297\) 583.918i 1.96605i
\(298\) 0 0
\(299\) 115.324i 0.385699i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 826.708 2.72841
\(304\) 0 0
\(305\) −20.3245 −0.0666378
\(306\) 0 0
\(307\) − 288.340i − 0.939217i −0.882875 0.469609i \(-0.844395\pi\)
0.882875 0.469609i \(-0.155605\pi\)
\(308\) 0 0
\(309\) 332.621 1.07644
\(310\) 0 0
\(311\) − 191.385i − 0.615385i −0.951486 0.307692i \(-0.900443\pi\)
0.951486 0.307692i \(-0.0995568\pi\)
\(312\) 0 0
\(313\) − 445.975i − 1.42484i −0.701753 0.712420i \(-0.747599\pi\)
0.701753 0.712420i \(-0.252401\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −27.9512 −0.0881741 −0.0440871 0.999028i \(-0.514038\pi\)
−0.0440871 + 0.999028i \(0.514038\pi\)
\(318\) 0 0
\(319\) −1038.91 −3.25676
\(320\) 0 0
\(321\) 761.544i 2.37241i
\(322\) 0 0
\(323\) −212.804 −0.658837
\(324\) 0 0
\(325\) − 335.007i − 1.03079i
\(326\) 0 0
\(327\) − 895.306i − 2.73794i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 80.6909 0.243779 0.121890 0.992544i \(-0.461105\pi\)
0.121890 + 0.992544i \(0.461105\pi\)
\(332\) 0 0
\(333\) 577.018 1.73279
\(334\) 0 0
\(335\) − 0.214510i 0 0.000640328i
\(336\) 0 0
\(337\) 486.290 1.44300 0.721498 0.692416i \(-0.243454\pi\)
0.721498 + 0.692416i \(0.243454\pi\)
\(338\) 0 0
\(339\) − 100.283i − 0.295820i
\(340\) 0 0
\(341\) − 653.217i − 1.91559i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −9.69573 −0.0281036
\(346\) 0 0
\(347\) 241.169 0.695011 0.347505 0.937678i \(-0.387029\pi\)
0.347505 + 0.937678i \(0.387029\pi\)
\(348\) 0 0
\(349\) 251.212i 0.719805i 0.932990 + 0.359903i \(0.117190\pi\)
−0.932990 + 0.359903i \(0.882810\pi\)
\(350\) 0 0
\(351\) −426.705 −1.21568
\(352\) 0 0
\(353\) − 25.9644i − 0.0735536i −0.999324 0.0367768i \(-0.988291\pi\)
0.999324 0.0367768i \(-0.0117091\pi\)
\(354\) 0 0
\(355\) − 11.7286i − 0.0330383i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −340.320 −0.947965 −0.473983 0.880534i \(-0.657184\pi\)
−0.473983 + 0.880534i \(0.657184\pi\)
\(360\) 0 0
\(361\) 195.007 0.540184
\(362\) 0 0
\(363\) 1070.90i 2.95014i
\(364\) 0 0
\(365\) −1.51669 −0.00415533
\(366\) 0 0
\(367\) − 287.856i − 0.784349i −0.919891 0.392174i \(-0.871723\pi\)
0.919891 0.392174i \(-0.128277\pi\)
\(368\) 0 0
\(369\) − 464.512i − 1.25884i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 86.6033 0.232180 0.116090 0.993239i \(-0.462964\pi\)
0.116090 + 0.993239i \(0.462964\pi\)
\(374\) 0 0
\(375\) 56.3895 0.150372
\(376\) 0 0
\(377\) − 759.193i − 2.01377i
\(378\) 0 0
\(379\) −635.808 −1.67759 −0.838796 0.544446i \(-0.816740\pi\)
−0.838796 + 0.544446i \(0.816740\pi\)
\(380\) 0 0
\(381\) − 191.491i − 0.502602i
\(382\) 0 0
\(383\) − 30.5799i − 0.0798431i −0.999203 0.0399215i \(-0.987289\pi\)
0.999203 0.0399215i \(-0.0127108\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −916.627 −2.36855
\(388\) 0 0
\(389\) −588.587 −1.51308 −0.756538 0.653949i \(-0.773111\pi\)
−0.756538 + 0.653949i \(0.773111\pi\)
\(390\) 0 0
\(391\) 141.852i 0.362792i
\(392\) 0 0
\(393\) 537.382 1.36738
\(394\) 0 0
\(395\) 20.1941i 0.0511243i
\(396\) 0 0
\(397\) − 317.394i − 0.799482i −0.916628 0.399741i \(-0.869100\pi\)
0.916628 0.399741i \(-0.130900\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 75.8181 0.189072 0.0945362 0.995521i \(-0.469863\pi\)
0.0945362 + 0.995521i \(0.469863\pi\)
\(402\) 0 0
\(403\) 477.346 1.18448
\(404\) 0 0
\(405\) − 4.15627i − 0.0102624i
\(406\) 0 0
\(407\) 687.216 1.68849
\(408\) 0 0
\(409\) 69.4749i 0.169865i 0.996387 + 0.0849326i \(0.0270675\pi\)
−0.996387 + 0.0849326i \(0.972932\pi\)
\(410\) 0 0
\(411\) 188.775i 0.459308i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −13.5676 −0.0326930
\(416\) 0 0
\(417\) 1246.01 2.98802
\(418\) 0 0
\(419\) 29.8461i 0.0712317i 0.999366 + 0.0356158i \(0.0113393\pi\)
−0.999366 + 0.0356158i \(0.988661\pi\)
\(420\) 0 0
\(421\) −28.7671 −0.0683303 −0.0341651 0.999416i \(-0.510877\pi\)
−0.0341651 + 0.999416i \(0.510877\pi\)
\(422\) 0 0
\(423\) − 1079.15i − 2.55119i
\(424\) 0 0
\(425\) − 412.067i − 0.969570i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −1219.61 −2.84291
\(430\) 0 0
\(431\) 180.698 0.419252 0.209626 0.977782i \(-0.432775\pi\)
0.209626 + 0.977782i \(0.432775\pi\)
\(432\) 0 0
\(433\) 124.250i 0.286952i 0.989654 + 0.143476i \(0.0458279\pi\)
−0.989654 + 0.143476i \(0.954172\pi\)
\(434\) 0 0
\(435\) 63.8283 0.146732
\(436\) 0 0
\(437\) 110.648i 0.253200i
\(438\) 0 0
\(439\) 472.310i 1.07588i 0.842984 + 0.537938i \(0.180797\pi\)
−0.842984 + 0.537938i \(0.819203\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 741.905 1.67473 0.837364 0.546646i \(-0.184095\pi\)
0.837364 + 0.546646i \(0.184095\pi\)
\(444\) 0 0
\(445\) 13.6002 0.0305622
\(446\) 0 0
\(447\) 898.451i 2.00996i
\(448\) 0 0
\(449\) 341.817 0.761286 0.380643 0.924722i \(-0.375703\pi\)
0.380643 + 0.924722i \(0.375703\pi\)
\(450\) 0 0
\(451\) − 553.223i − 1.22666i
\(452\) 0 0
\(453\) 774.953i 1.71071i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 377.286 0.825571 0.412785 0.910828i \(-0.364556\pi\)
0.412785 + 0.910828i \(0.364556\pi\)
\(458\) 0 0
\(459\) −524.858 −1.14348
\(460\) 0 0
\(461\) 233.771i 0.507095i 0.967323 + 0.253547i \(0.0815974\pi\)
−0.967323 + 0.253547i \(0.918403\pi\)
\(462\) 0 0
\(463\) −528.842 −1.14221 −0.571104 0.820878i \(-0.693485\pi\)
−0.571104 + 0.820878i \(0.693485\pi\)
\(464\) 0 0
\(465\) 40.1323i 0.0863060i
\(466\) 0 0
\(467\) − 686.650i − 1.47034i −0.677881 0.735171i \(-0.737102\pi\)
0.677881 0.735171i \(-0.262898\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −72.5654 −0.154067
\(472\) 0 0
\(473\) −1091.68 −2.30800
\(474\) 0 0
\(475\) − 321.424i − 0.676682i
\(476\) 0 0
\(477\) −1059.52 −2.22121
\(478\) 0 0
\(479\) − 286.317i − 0.597738i −0.954294 0.298869i \(-0.903391\pi\)
0.954294 0.298869i \(-0.0966094\pi\)
\(480\) 0 0
\(481\) 502.191i 1.04406i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −11.3441 −0.0233898
\(486\) 0 0
\(487\) 307.583 0.631588 0.315794 0.948828i \(-0.397729\pi\)
0.315794 + 0.948828i \(0.397729\pi\)
\(488\) 0 0
\(489\) 130.001i 0.265850i
\(490\) 0 0
\(491\) −778.757 −1.58606 −0.793031 0.609181i \(-0.791498\pi\)
−0.793031 + 0.609181i \(0.791498\pi\)
\(492\) 0 0
\(493\) − 933.828i − 1.89417i
\(494\) 0 0
\(495\) − 64.7611i − 0.130831i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −748.074 −1.49915 −0.749573 0.661921i \(-0.769741\pi\)
−0.749573 + 0.661921i \(0.769741\pi\)
\(500\) 0 0
\(501\) −59.5132 −0.118789
\(502\) 0 0
\(503\) 574.649i 1.14244i 0.820796 + 0.571221i \(0.193530\pi\)
−0.820796 + 0.571221i \(0.806470\pi\)
\(504\) 0 0
\(505\) −38.2055 −0.0756544
\(506\) 0 0
\(507\) − 55.9453i − 0.110346i
\(508\) 0 0
\(509\) 435.284i 0.855174i 0.903974 + 0.427587i \(0.140636\pi\)
−0.903974 + 0.427587i \(0.859364\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −409.404 −0.798059
\(514\) 0 0
\(515\) −15.3717 −0.0298480
\(516\) 0 0
\(517\) − 1285.25i − 2.48597i
\(518\) 0 0
\(519\) −1404.44 −2.70605
\(520\) 0 0
\(521\) 256.067i 0.491491i 0.969334 + 0.245746i \(0.0790328\pi\)
−0.969334 + 0.245746i \(0.920967\pi\)
\(522\) 0 0
\(523\) − 96.3409i − 0.184208i −0.995749 0.0921041i \(-0.970641\pi\)
0.995749 0.0921041i \(-0.0293593\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 587.148 1.11413
\(528\) 0 0
\(529\) −455.244 −0.860574
\(530\) 0 0
\(531\) 893.903i 1.68343i
\(532\) 0 0
\(533\) 404.274 0.758488
\(534\) 0 0
\(535\) − 35.1940i − 0.0657831i
\(536\) 0 0
\(537\) 561.698i 1.04599i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 697.203 1.28873 0.644365 0.764718i \(-0.277122\pi\)
0.644365 + 0.764718i \(0.277122\pi\)
\(542\) 0 0
\(543\) 293.226 0.540011
\(544\) 0 0
\(545\) 41.3756i 0.0759186i
\(546\) 0 0
\(547\) −376.839 −0.688920 −0.344460 0.938801i \(-0.611938\pi\)
−0.344460 + 0.938801i \(0.611938\pi\)
\(548\) 0 0
\(549\) 1372.89i 2.50070i
\(550\) 0 0
\(551\) − 728.412i − 1.32198i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −42.2211 −0.0760740
\(556\) 0 0
\(557\) 254.338 0.456621 0.228310 0.973588i \(-0.426680\pi\)
0.228310 + 0.973588i \(0.426680\pi\)
\(558\) 0 0
\(559\) − 797.760i − 1.42712i
\(560\) 0 0
\(561\) −1500.15 −2.67406
\(562\) 0 0
\(563\) − 2.32968i − 0.00413797i −0.999998 0.00206899i \(-0.999341\pi\)
0.999998 0.00206899i \(-0.000658579\pi\)
\(564\) 0 0
\(565\) 4.63447i 0.00820260i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 629.717 1.10671 0.553354 0.832946i \(-0.313348\pi\)
0.553354 + 0.832946i \(0.313348\pi\)
\(570\) 0 0
\(571\) −716.412 −1.25466 −0.627331 0.778753i \(-0.715853\pi\)
−0.627331 + 0.778753i \(0.715853\pi\)
\(572\) 0 0
\(573\) 878.906i 1.53387i
\(574\) 0 0
\(575\) −214.255 −0.372618
\(576\) 0 0
\(577\) − 789.618i − 1.36849i −0.729253 0.684245i \(-0.760132\pi\)
0.729253 0.684245i \(-0.239868\pi\)
\(578\) 0 0
\(579\) − 1100.40i − 1.90051i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1261.86 −2.16442
\(584\) 0 0
\(585\) 47.3249 0.0808973
\(586\) 0 0
\(587\) − 494.461i − 0.842352i −0.906979 0.421176i \(-0.861617\pi\)
0.906979 0.421176i \(-0.138383\pi\)
\(588\) 0 0
\(589\) 457.992 0.777576
\(590\) 0 0
\(591\) 165.127i 0.279403i
\(592\) 0 0
\(593\) − 70.3602i − 0.118651i −0.998239 0.0593256i \(-0.981105\pi\)
0.998239 0.0593256i \(-0.0188950\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1386.18 2.32191
\(598\) 0 0
\(599\) −492.972 −0.822992 −0.411496 0.911412i \(-0.634994\pi\)
−0.411496 + 0.911412i \(0.634994\pi\)
\(600\) 0 0
\(601\) 596.738i 0.992909i 0.868063 + 0.496454i \(0.165365\pi\)
−0.868063 + 0.496454i \(0.834635\pi\)
\(602\) 0 0
\(603\) −14.4898 −0.0240295
\(604\) 0 0
\(605\) − 49.4906i − 0.0818027i
\(606\) 0 0
\(607\) 313.101i 0.515817i 0.966169 + 0.257909i \(0.0830334\pi\)
−0.966169 + 0.257909i \(0.916967\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 939.208 1.53716
\(612\) 0 0
\(613\) −463.328 −0.755837 −0.377918 0.925839i \(-0.623360\pi\)
−0.377918 + 0.925839i \(0.623360\pi\)
\(614\) 0 0
\(615\) 33.9889i 0.0552664i
\(616\) 0 0
\(617\) −828.523 −1.34283 −0.671413 0.741084i \(-0.734312\pi\)
−0.671413 + 0.741084i \(0.734312\pi\)
\(618\) 0 0
\(619\) − 1010.47i − 1.63242i −0.577756 0.816210i \(-0.696071\pi\)
0.577756 0.816210i \(-0.303929\pi\)
\(620\) 0 0
\(621\) 272.901i 0.439455i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 621.090 0.993743
\(626\) 0 0
\(627\) −1170.16 −1.86628
\(628\) 0 0
\(629\) 617.708i 0.982047i
\(630\) 0 0
\(631\) 815.831 1.29292 0.646458 0.762949i \(-0.276249\pi\)
0.646458 + 0.762949i \(0.276249\pi\)
\(632\) 0 0
\(633\) 1201.18i 1.89760i
\(634\) 0 0
\(635\) 8.84958i 0.0139363i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −792.246 −1.23982
\(640\) 0 0
\(641\) −462.732 −0.721891 −0.360946 0.932587i \(-0.617546\pi\)
−0.360946 + 0.932587i \(0.617546\pi\)
\(642\) 0 0
\(643\) − 293.891i − 0.457062i −0.973537 0.228531i \(-0.926608\pi\)
0.973537 0.228531i \(-0.0733922\pi\)
\(644\) 0 0
\(645\) 67.0707 0.103986
\(646\) 0 0
\(647\) 944.250i 1.45943i 0.683753 + 0.729714i \(0.260347\pi\)
−0.683753 + 0.729714i \(0.739653\pi\)
\(648\) 0 0
\(649\) 1064.62i 1.64040i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 386.170 0.591379 0.295689 0.955284i \(-0.404451\pi\)
0.295689 + 0.955284i \(0.404451\pi\)
\(654\) 0 0
\(655\) −24.8346 −0.0379153
\(656\) 0 0
\(657\) 102.450i 0.155936i
\(658\) 0 0
\(659\) 480.966 0.729843 0.364921 0.931038i \(-0.381096\pi\)
0.364921 + 0.931038i \(0.381096\pi\)
\(660\) 0 0
\(661\) 922.865i 1.39617i 0.716017 + 0.698083i \(0.245963\pi\)
−0.716017 + 0.698083i \(0.754037\pi\)
\(662\) 0 0
\(663\) − 1096.25i − 1.65347i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −485.546 −0.727955
\(668\) 0 0
\(669\) −854.389 −1.27711
\(670\) 0 0
\(671\) 1635.08i 2.43677i
\(672\) 0 0
\(673\) −939.147 −1.39546 −0.697732 0.716359i \(-0.745807\pi\)
−0.697732 + 0.716359i \(0.745807\pi\)
\(674\) 0 0
\(675\) − 792.756i − 1.17445i
\(676\) 0 0
\(677\) 724.693i 1.07045i 0.844710 + 0.535224i \(0.179773\pi\)
−0.844710 + 0.535224i \(0.820227\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −562.028 −0.825298
\(682\) 0 0
\(683\) 385.228 0.564023 0.282011 0.959411i \(-0.408998\pi\)
0.282011 + 0.959411i \(0.408998\pi\)
\(684\) 0 0
\(685\) − 8.72407i − 0.0127359i
\(686\) 0 0
\(687\) −1785.76 −2.59936
\(688\) 0 0
\(689\) − 922.118i − 1.33834i
\(690\) 0 0
\(691\) 643.566i 0.931354i 0.884955 + 0.465677i \(0.154189\pi\)
−0.884955 + 0.465677i \(0.845811\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −57.5829 −0.0828531
\(696\) 0 0
\(697\) 497.268 0.713440
\(698\) 0 0
\(699\) 948.459i 1.35688i
\(700\) 0 0
\(701\) −314.892 −0.449204 −0.224602 0.974451i \(-0.572108\pi\)
−0.224602 + 0.974451i \(0.572108\pi\)
\(702\) 0 0
\(703\) 481.829i 0.685390i
\(704\) 0 0
\(705\) 78.9628i 0.112004i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −226.316 −0.319204 −0.159602 0.987181i \(-0.551021\pi\)
−0.159602 + 0.987181i \(0.551021\pi\)
\(710\) 0 0
\(711\) 1364.08 1.91853
\(712\) 0 0
\(713\) − 305.289i − 0.428176i
\(714\) 0 0
\(715\) 56.3629 0.0788293
\(716\) 0 0
\(717\) 80.8245i 0.112726i
\(718\) 0 0
\(719\) 571.504i 0.794860i 0.917633 + 0.397430i \(0.130098\pi\)
−0.917633 + 0.397430i \(0.869902\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 1524.33 2.10834
\(724\) 0 0
\(725\) 1410.47 1.94548
\(726\) 0 0
\(727\) 270.254i 0.371739i 0.982574 + 0.185869i \(0.0595101\pi\)
−0.982574 + 0.185869i \(0.940490\pi\)
\(728\) 0 0
\(729\) 1132.78 1.55388
\(730\) 0 0
\(731\) − 981.265i − 1.34236i
\(732\) 0 0
\(733\) − 767.053i − 1.04646i −0.852192 0.523229i \(-0.824727\pi\)
0.852192 0.523229i \(-0.175273\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −17.2570 −0.0234152
\(738\) 0 0
\(739\) 982.844 1.32996 0.664982 0.746859i \(-0.268439\pi\)
0.664982 + 0.746859i \(0.268439\pi\)
\(740\) 0 0
\(741\) − 855.107i − 1.15399i
\(742\) 0 0
\(743\) −440.189 −0.592449 −0.296224 0.955118i \(-0.595728\pi\)
−0.296224 + 0.955118i \(0.595728\pi\)
\(744\) 0 0
\(745\) − 41.5210i − 0.0557329i
\(746\) 0 0
\(747\) 916.466i 1.22686i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −1091.22 −1.45302 −0.726509 0.687157i \(-0.758858\pi\)
−0.726509 + 0.687157i \(0.758858\pi\)
\(752\) 0 0
\(753\) −786.332 −1.04427
\(754\) 0 0
\(755\) − 35.8137i − 0.0474353i
\(756\) 0 0
\(757\) −482.625 −0.637550 −0.318775 0.947830i \(-0.603271\pi\)
−0.318775 + 0.947830i \(0.603271\pi\)
\(758\) 0 0
\(759\) 780.007i 1.02768i
\(760\) 0 0
\(761\) 405.089i 0.532311i 0.963930 + 0.266156i \(0.0857535\pi\)
−0.963930 + 0.266156i \(0.914246\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 58.2109 0.0760927
\(766\) 0 0
\(767\) −777.982 −1.01432
\(768\) 0 0
\(769\) − 35.3891i − 0.0460196i −0.999735 0.0230098i \(-0.992675\pi\)
0.999735 0.0230098i \(-0.00732490\pi\)
\(770\) 0 0
\(771\) 1291.98 1.67572
\(772\) 0 0
\(773\) − 929.071i − 1.20190i −0.799286 0.600951i \(-0.794789\pi\)
0.799286 0.600951i \(-0.205211\pi\)
\(774\) 0 0
\(775\) 886.840i 1.14431i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 387.883 0.497924
\(780\) 0 0
\(781\) −943.548 −1.20813
\(782\) 0 0
\(783\) − 1796.55i − 2.29444i
\(784\) 0 0
\(785\) 3.35354 0.00427202
\(786\) 0 0
\(787\) − 1232.01i − 1.56545i −0.622369 0.782724i \(-0.713830\pi\)
0.622369 0.782724i \(-0.286170\pi\)
\(788\) 0 0
\(789\) − 514.460i − 0.652041i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −1194.85 −1.50675
\(794\) 0 0
\(795\) 77.5260 0.0975170
\(796\) 0 0
\(797\) 155.667i 0.195317i 0.995220 + 0.0976583i \(0.0311352\pi\)
−0.995220 + 0.0976583i \(0.968865\pi\)
\(798\) 0 0
\(799\) 1155.25 1.44587
\(800\) 0 0
\(801\) − 918.667i − 1.14690i
\(802\) 0 0
\(803\) 122.016i 0.151950i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 2067.07 2.56143
\(808\) 0 0
\(809\) −162.214 −0.200512 −0.100256 0.994962i \(-0.531966\pi\)
−0.100256 + 0.994962i \(0.531966\pi\)
\(810\) 0 0
\(811\) − 1257.67i − 1.55076i −0.631495 0.775380i \(-0.717558\pi\)
0.631495 0.775380i \(-0.282442\pi\)
\(812\) 0 0
\(813\) −621.204 −0.764088
\(814\) 0 0
\(815\) − 6.00784i − 0.00737159i
\(816\) 0 0
\(817\) − 765.414i − 0.936860i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 110.853 0.135022 0.0675109 0.997719i \(-0.478494\pi\)
0.0675109 + 0.997719i \(0.478494\pi\)
\(822\) 0 0
\(823\) 33.0230 0.0401251 0.0200626 0.999799i \(-0.493613\pi\)
0.0200626 + 0.999799i \(0.493613\pi\)
\(824\) 0 0
\(825\) − 2265.85i − 2.74649i
\(826\) 0 0
\(827\) 588.109 0.711136 0.355568 0.934650i \(-0.384288\pi\)
0.355568 + 0.934650i \(0.384288\pi\)
\(828\) 0 0
\(829\) 566.067i 0.682831i 0.939912 + 0.341415i \(0.110906\pi\)
−0.939912 + 0.341415i \(0.889094\pi\)
\(830\) 0 0
\(831\) 288.272i 0.346898i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 2.75034 0.00329383
\(836\) 0 0
\(837\) 1129.59 1.34957
\(838\) 0 0
\(839\) 411.575i 0.490554i 0.969453 + 0.245277i \(0.0788790\pi\)
−0.969453 + 0.245277i \(0.921121\pi\)
\(840\) 0 0
\(841\) 2355.41 2.80073
\(842\) 0 0
\(843\) 948.019i 1.12458i
\(844\) 0 0
\(845\) 2.58545i 0.00305971i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −2043.98 −2.40751
\(850\) 0 0
\(851\) 321.179 0.377413
\(852\) 0 0
\(853\) 1489.13i 1.74576i 0.487934 + 0.872881i \(0.337751\pi\)
−0.487934 + 0.872881i \(0.662249\pi\)
\(854\) 0 0
\(855\) 45.4061 0.0531066
\(856\) 0 0
\(857\) − 435.577i − 0.508258i −0.967170 0.254129i \(-0.918211\pi\)
0.967170 0.254129i \(-0.0817888\pi\)
\(858\) 0 0
\(859\) − 896.123i − 1.04322i −0.853185 0.521608i \(-0.825332\pi\)
0.853185 0.521608i \(-0.174668\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1633.84 −1.89321 −0.946605 0.322395i \(-0.895512\pi\)
−0.946605 + 0.322395i \(0.895512\pi\)
\(864\) 0 0
\(865\) 64.9048 0.0750344
\(866\) 0 0
\(867\) 79.9888i 0.0922592i
\(868\) 0 0
\(869\) 1624.59 1.86949
\(870\) 0 0
\(871\) − 12.6107i − 0.0144785i
\(872\) 0 0
\(873\) 766.272i 0.877745i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −65.1657 −0.0743053 −0.0371526 0.999310i \(-0.511829\pi\)
−0.0371526 + 0.999310i \(0.511829\pi\)
\(878\) 0 0
\(879\) 2034.20 2.31422
\(880\) 0 0
\(881\) − 456.877i − 0.518590i −0.965798 0.259295i \(-0.916510\pi\)
0.965798 0.259295i \(-0.0834901\pi\)
\(882\) 0 0
\(883\) −1292.73 −1.46402 −0.732012 0.681291i \(-0.761419\pi\)
−0.732012 + 0.681291i \(0.761419\pi\)
\(884\) 0 0
\(885\) − 65.4079i − 0.0739073i
\(886\) 0 0
\(887\) − 223.900i − 0.252424i −0.992003 0.126212i \(-0.959718\pi\)
0.992003 0.126212i \(-0.0402820\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −334.366 −0.375270
\(892\) 0 0
\(893\) 901.127 1.00910
\(894\) 0 0
\(895\) − 25.9583i − 0.0290037i
\(896\) 0 0
\(897\) −569.999 −0.635450
\(898\) 0 0
\(899\) 2009.76i 2.23555i
\(900\) 0 0
\(901\) − 1134.23i − 1.25886i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −13.5512 −0.0149737
\(906\) 0 0
\(907\) −1631.06 −1.79830 −0.899150 0.437641i \(-0.855814\pi\)
−0.899150 + 0.437641i \(0.855814\pi\)
\(908\) 0 0
\(909\) 2580.71i 2.83907i
\(910\) 0 0
\(911\) 367.755 0.403682 0.201841 0.979418i \(-0.435307\pi\)
0.201841 + 0.979418i \(0.435307\pi\)
\(912\) 0 0
\(913\) 1091.49i 1.19550i
\(914\) 0 0
\(915\) − 100.456i − 0.109788i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −437.228 −0.475765 −0.237882 0.971294i \(-0.576453\pi\)
−0.237882 + 0.971294i \(0.576453\pi\)
\(920\) 0 0
\(921\) 1425.14 1.54739
\(922\) 0 0
\(923\) − 689.508i − 0.747030i
\(924\) 0 0
\(925\) −932.998 −1.00865
\(926\) 0 0
\(927\) 1038.33i 1.12010i
\(928\) 0 0
\(929\) − 1398.75i − 1.50565i −0.658222 0.752824i \(-0.728691\pi\)
0.658222 0.752824i \(-0.271309\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 945.935 1.01386
\(934\) 0 0
\(935\) 69.3279 0.0741475
\(936\) 0 0
\(937\) − 1377.17i − 1.46976i −0.678196 0.734881i \(-0.737238\pi\)
0.678196 0.734881i \(-0.262762\pi\)
\(938\) 0 0
\(939\) 2204.27 2.34746
\(940\) 0 0
\(941\) − 102.598i − 0.109030i −0.998513 0.0545152i \(-0.982639\pi\)
0.998513 0.0545152i \(-0.0173613\pi\)
\(942\) 0 0
\(943\) − 258.556i − 0.274184i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 629.056 0.664262 0.332131 0.943233i \(-0.392232\pi\)
0.332131 + 0.943233i \(0.392232\pi\)
\(948\) 0 0
\(949\) −89.1643 −0.0939561
\(950\) 0 0
\(951\) − 138.151i − 0.145269i
\(952\) 0 0
\(953\) 1284.44 1.34779 0.673895 0.738827i \(-0.264620\pi\)
0.673895 + 0.738827i \(0.264620\pi\)
\(954\) 0 0
\(955\) − 40.6177i − 0.0425317i
\(956\) 0 0
\(957\) − 5134.88i − 5.36561i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −302.645 −0.314927
\(962\) 0 0
\(963\) −2377.29 −2.46863
\(964\) 0 0
\(965\) 50.8538i 0.0526982i
\(966\) 0 0
\(967\) 522.809 0.540650 0.270325 0.962769i \(-0.412869\pi\)
0.270325 + 0.962769i \(0.412869\pi\)
\(968\) 0 0
\(969\) − 1051.80i − 1.08545i
\(970\) 0 0
\(971\) − 345.493i − 0.355812i −0.984048 0.177906i \(-0.943068\pi\)
0.984048 0.177906i \(-0.0569323\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 1655.80 1.69826
\(976\) 0 0
\(977\) 876.774 0.897415 0.448707 0.893679i \(-0.351885\pi\)
0.448707 + 0.893679i \(0.351885\pi\)
\(978\) 0 0
\(979\) − 1094.11i − 1.11758i
\(980\) 0 0
\(981\) 2794.85 2.84898
\(982\) 0 0
\(983\) 632.697i 0.643639i 0.946801 + 0.321819i \(0.104294\pi\)
−0.946801 + 0.321819i \(0.895706\pi\)
\(984\) 0 0
\(985\) − 7.63118i − 0.00774739i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −510.212 −0.515886
\(990\) 0 0
\(991\) −1467.06 −1.48038 −0.740190 0.672398i \(-0.765265\pi\)
−0.740190 + 0.672398i \(0.765265\pi\)
\(992\) 0 0
\(993\) 398.821i 0.401633i
\(994\) 0 0
\(995\) −64.0608 −0.0643827
\(996\) 0 0
\(997\) 13.1748i 0.0132144i 0.999978 + 0.00660720i \(0.00210315\pi\)
−0.999978 + 0.00660720i \(0.997897\pi\)
\(998\) 0 0
\(999\) 1188.38i 1.18957i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1568.3.c.e.97.12 yes 12
4.3 odd 2 1568.3.c.f.97.1 yes 12
7.6 odd 2 inner 1568.3.c.e.97.1 12
28.27 even 2 1568.3.c.f.97.12 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1568.3.c.e.97.1 12 7.6 odd 2 inner
1568.3.c.e.97.12 yes 12 1.1 even 1 trivial
1568.3.c.f.97.1 yes 12 4.3 odd 2
1568.3.c.f.97.12 yes 12 28.27 even 2