Properties

Label 1568.3.c.d.97.7
Level $1568$
Weight $3$
Character 1568.97
Analytic conductor $42.725$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1568,3,Mod(97,1568)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1568.97"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1568, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1568 = 2^{5} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1568.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,-40,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,96, 0,0,0,0,0,0,0,192,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,144] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(53)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.7249054517\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.132892327936.16
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 16x^{6} + 84x^{4} + 152x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 97.7
Root \(-2.51825i\) of defining polynomial
Character \(\chi\) \(=\) 1568.97
Dual form 1568.3.c.d.97.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.27114i q^{3} -4.77791i q^{5} -9.24264 q^{9} +9.80697 q^{11} -4.14386i q^{13} +20.4071 q^{15} +31.8602i q^{17} -30.9343i q^{19} -13.8691 q^{23} +2.17157 q^{25} -1.03635i q^{27} -16.2843 q^{29} -51.2537i q^{31} +41.8869i q^{33} +9.85786 q^{37} +17.6990 q^{39} -13.5684i q^{41} +29.4209 q^{43} +44.1605i q^{45} -76.8805i q^{47} -136.080 q^{51} +94.3675 q^{53} -46.8568i q^{55} +132.125 q^{57} +52.1643i q^{59} +13.3283i q^{61} -19.7990 q^{65} +106.194 q^{67} -59.2371i q^{69} +122.443 q^{71} -26.1857i q^{73} +9.27509i q^{75} +114.318 q^{79} -78.7574 q^{81} +26.5375i q^{83} +152.225 q^{85} -69.5524i q^{87} +93.8006i q^{89} +218.912 q^{93} -147.801 q^{95} -130.326i q^{97} -90.6423 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 40 q^{9} + 40 q^{25} + 96 q^{29} + 192 q^{37} + 144 q^{53} + 480 q^{57} - 664 q^{81} + 720 q^{85} + 1344 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1568\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(1471\) \(1473\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.27114i 1.42371i 0.702325 + 0.711857i \(0.252145\pi\)
−0.702325 + 0.711857i \(0.747855\pi\)
\(4\) 0 0
\(5\) − 4.77791i − 0.955582i −0.878474 0.477791i \(-0.841438\pi\)
0.878474 0.477791i \(-0.158562\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −9.24264 −1.02696
\(10\) 0 0
\(11\) 9.80697 0.891543 0.445771 0.895147i \(-0.352929\pi\)
0.445771 + 0.895147i \(0.352929\pi\)
\(12\) 0 0
\(13\) − 4.14386i − 0.318758i −0.987217 0.159379i \(-0.949051\pi\)
0.987217 0.159379i \(-0.0509493\pi\)
\(14\) 0 0
\(15\) 20.4071 1.36048
\(16\) 0 0
\(17\) 31.8602i 1.87413i 0.349152 + 0.937066i \(0.386470\pi\)
−0.349152 + 0.937066i \(0.613530\pi\)
\(18\) 0 0
\(19\) − 30.9343i − 1.62812i −0.580779 0.814061i \(-0.697252\pi\)
0.580779 0.814061i \(-0.302748\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −13.8691 −0.603006 −0.301503 0.953465i \(-0.597488\pi\)
−0.301503 + 0.953465i \(0.597488\pi\)
\(24\) 0 0
\(25\) 2.17157 0.0868629
\(26\) 0 0
\(27\) − 1.03635i − 0.0383834i
\(28\) 0 0
\(29\) −16.2843 −0.561527 −0.280763 0.959777i \(-0.590588\pi\)
−0.280763 + 0.959777i \(0.590588\pi\)
\(30\) 0 0
\(31\) − 51.2537i − 1.65334i −0.562684 0.826672i \(-0.690231\pi\)
0.562684 0.826672i \(-0.309769\pi\)
\(32\) 0 0
\(33\) 41.8869i 1.26930i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9.85786 0.266429 0.133214 0.991087i \(-0.457470\pi\)
0.133214 + 0.991087i \(0.457470\pi\)
\(38\) 0 0
\(39\) 17.6990 0.453821
\(40\) 0 0
\(41\) − 13.5684i − 0.330936i −0.986215 0.165468i \(-0.947087\pi\)
0.986215 0.165468i \(-0.0529134\pi\)
\(42\) 0 0
\(43\) 29.4209 0.684207 0.342104 0.939662i \(-0.388861\pi\)
0.342104 + 0.939662i \(0.388861\pi\)
\(44\) 0 0
\(45\) 44.1605i 0.981345i
\(46\) 0 0
\(47\) − 76.8805i − 1.63576i −0.575392 0.817878i \(-0.695150\pi\)
0.575392 0.817878i \(-0.304850\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −136.080 −2.66823
\(52\) 0 0
\(53\) 94.3675 1.78052 0.890260 0.455453i \(-0.150523\pi\)
0.890260 + 0.455453i \(0.150523\pi\)
\(54\) 0 0
\(55\) − 46.8568i − 0.851942i
\(56\) 0 0
\(57\) 132.125 2.31798
\(58\) 0 0
\(59\) 52.1643i 0.884141i 0.896980 + 0.442070i \(0.145756\pi\)
−0.896980 + 0.442070i \(0.854244\pi\)
\(60\) 0 0
\(61\) 13.3283i 0.218496i 0.994015 + 0.109248i \(0.0348443\pi\)
−0.994015 + 0.109248i \(0.965156\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −19.7990 −0.304600
\(66\) 0 0
\(67\) 106.194 1.58499 0.792493 0.609881i \(-0.208783\pi\)
0.792493 + 0.609881i \(0.208783\pi\)
\(68\) 0 0
\(69\) − 59.2371i − 0.858508i
\(70\) 0 0
\(71\) 122.443 1.72455 0.862273 0.506444i \(-0.169040\pi\)
0.862273 + 0.506444i \(0.169040\pi\)
\(72\) 0 0
\(73\) − 26.1857i − 0.358708i −0.983785 0.179354i \(-0.942599\pi\)
0.983785 0.179354i \(-0.0574007\pi\)
\(74\) 0 0
\(75\) 9.27509i 0.123668i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 114.318 1.44707 0.723534 0.690289i \(-0.242516\pi\)
0.723534 + 0.690289i \(0.242516\pi\)
\(80\) 0 0
\(81\) −78.7574 −0.972313
\(82\) 0 0
\(83\) 26.5375i 0.319728i 0.987139 + 0.159864i \(0.0511056\pi\)
−0.987139 + 0.159864i \(0.948894\pi\)
\(84\) 0 0
\(85\) 152.225 1.79089
\(86\) 0 0
\(87\) − 69.5524i − 0.799453i
\(88\) 0 0
\(89\) 93.8006i 1.05394i 0.849884 + 0.526969i \(0.176672\pi\)
−0.849884 + 0.526969i \(0.823328\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 218.912 2.35389
\(94\) 0 0
\(95\) −147.801 −1.55581
\(96\) 0 0
\(97\) − 130.326i − 1.34357i −0.740747 0.671784i \(-0.765528\pi\)
0.740747 0.671784i \(-0.234472\pi\)
\(98\) 0 0
\(99\) −90.6423 −0.915579
\(100\) 0 0
\(101\) 146.476i 1.45025i 0.688615 + 0.725127i \(0.258219\pi\)
−0.688615 + 0.725127i \(0.741781\pi\)
\(102\) 0 0
\(103\) − 36.2418i − 0.351862i −0.984402 0.175931i \(-0.943706\pi\)
0.984402 0.175931i \(-0.0562936\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 53.0970 0.496234 0.248117 0.968730i \(-0.420188\pi\)
0.248117 + 0.968730i \(0.420188\pi\)
\(108\) 0 0
\(109\) −131.230 −1.20395 −0.601975 0.798515i \(-0.705619\pi\)
−0.601975 + 0.798515i \(0.705619\pi\)
\(110\) 0 0
\(111\) 42.1043i 0.379318i
\(112\) 0 0
\(113\) 0.124892 0.00110524 0.000552618 1.00000i \(-0.499824\pi\)
0.000552618 1.00000i \(0.499824\pi\)
\(114\) 0 0
\(115\) 66.2655i 0.576222i
\(116\) 0 0
\(117\) 38.3002i 0.327352i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −24.8234 −0.205152
\(122\) 0 0
\(123\) 57.9524 0.471158
\(124\) 0 0
\(125\) − 129.823i − 1.03859i
\(126\) 0 0
\(127\) −128.188 −1.00935 −0.504675 0.863309i \(-0.668388\pi\)
−0.504675 + 0.863309i \(0.668388\pi\)
\(128\) 0 0
\(129\) 125.661i 0.974115i
\(130\) 0 0
\(131\) 68.4640i 0.522626i 0.965254 + 0.261313i \(0.0841554\pi\)
−0.965254 + 0.261313i \(0.915845\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −4.95160 −0.0366785
\(136\) 0 0
\(137\) 27.5563 0.201141 0.100571 0.994930i \(-0.467933\pi\)
0.100571 + 0.994930i \(0.467933\pi\)
\(138\) 0 0
\(139\) 95.9121i 0.690015i 0.938600 + 0.345007i \(0.112124\pi\)
−0.938600 + 0.345007i \(0.887876\pi\)
\(140\) 0 0
\(141\) 328.368 2.32885
\(142\) 0 0
\(143\) − 40.6387i − 0.284187i
\(144\) 0 0
\(145\) 77.8048i 0.536585i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 147.338 0.988846 0.494423 0.869221i \(-0.335379\pi\)
0.494423 + 0.869221i \(0.335379\pi\)
\(150\) 0 0
\(151\) −123.428 −0.817407 −0.408703 0.912667i \(-0.634019\pi\)
−0.408703 + 0.912667i \(0.634019\pi\)
\(152\) 0 0
\(153\) − 294.473i − 1.92466i
\(154\) 0 0
\(155\) −244.886 −1.57991
\(156\) 0 0
\(157\) 149.229i 0.950506i 0.879849 + 0.475253i \(0.157644\pi\)
−0.879849 + 0.475253i \(0.842356\pi\)
\(158\) 0 0
\(159\) 403.057i 2.53495i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 34.1800 0.209694 0.104847 0.994488i \(-0.466565\pi\)
0.104847 + 0.994488i \(0.466565\pi\)
\(164\) 0 0
\(165\) 200.132 1.21292
\(166\) 0 0
\(167\) − 136.928i − 0.819928i −0.912102 0.409964i \(-0.865541\pi\)
0.912102 0.409964i \(-0.134459\pi\)
\(168\) 0 0
\(169\) 151.828 0.898393
\(170\) 0 0
\(171\) 285.915i 1.67202i
\(172\) 0 0
\(173\) − 140.788i − 0.813803i −0.913472 0.406901i \(-0.866609\pi\)
0.913472 0.406901i \(-0.133391\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −222.801 −1.25876
\(178\) 0 0
\(179\) −198.519 −1.10904 −0.554522 0.832169i \(-0.687099\pi\)
−0.554522 + 0.832169i \(0.687099\pi\)
\(180\) 0 0
\(181\) 285.836i 1.57921i 0.613618 + 0.789603i \(0.289713\pi\)
−0.613618 + 0.789603i \(0.710287\pi\)
\(182\) 0 0
\(183\) −56.9269 −0.311076
\(184\) 0 0
\(185\) − 47.1000i − 0.254595i
\(186\) 0 0
\(187\) 312.452i 1.67087i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 295.603 1.54766 0.773830 0.633394i \(-0.218339\pi\)
0.773830 + 0.633394i \(0.218339\pi\)
\(192\) 0 0
\(193\) 188.610 0.977255 0.488627 0.872493i \(-0.337498\pi\)
0.488627 + 0.872493i \(0.337498\pi\)
\(194\) 0 0
\(195\) − 84.5643i − 0.433663i
\(196\) 0 0
\(197\) 34.0000 0.172589 0.0862944 0.996270i \(-0.472497\pi\)
0.0862944 + 0.996270i \(0.472497\pi\)
\(198\) 0 0
\(199\) − 108.725i − 0.546359i −0.961963 0.273180i \(-0.911925\pi\)
0.961963 0.273180i \(-0.0880753\pi\)
\(200\) 0 0
\(201\) 453.570i 2.25657i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −64.8284 −0.316236
\(206\) 0 0
\(207\) 128.188 0.619264
\(208\) 0 0
\(209\) − 303.372i − 1.45154i
\(210\) 0 0
\(211\) 267.865 1.26950 0.634750 0.772717i \(-0.281103\pi\)
0.634750 + 0.772717i \(0.281103\pi\)
\(212\) 0 0
\(213\) 522.970i 2.45526i
\(214\) 0 0
\(215\) − 140.570i − 0.653816i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 111.843 0.510697
\(220\) 0 0
\(221\) 132.024 0.597395
\(222\) 0 0
\(223\) 134.352i 0.602477i 0.953549 + 0.301238i \(0.0974000\pi\)
−0.953549 + 0.301238i \(0.902600\pi\)
\(224\) 0 0
\(225\) −20.0711 −0.0892047
\(226\) 0 0
\(227\) − 313.363i − 1.38045i −0.723593 0.690227i \(-0.757511\pi\)
0.723593 0.690227i \(-0.242489\pi\)
\(228\) 0 0
\(229\) 290.338i 1.26785i 0.773393 + 0.633926i \(0.218558\pi\)
−0.773393 + 0.633926i \(0.781442\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 221.865 0.952210 0.476105 0.879388i \(-0.342048\pi\)
0.476105 + 0.879388i \(0.342048\pi\)
\(234\) 0 0
\(235\) −367.328 −1.56310
\(236\) 0 0
\(237\) 488.270i 2.06021i
\(238\) 0 0
\(239\) −195.154 −0.816543 −0.408271 0.912861i \(-0.633868\pi\)
−0.408271 + 0.912861i \(0.633868\pi\)
\(240\) 0 0
\(241\) 42.9600i 0.178257i 0.996020 + 0.0891286i \(0.0284082\pi\)
−0.996020 + 0.0891286i \(0.971592\pi\)
\(242\) 0 0
\(243\) − 345.711i − 1.42268i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −128.188 −0.518978
\(248\) 0 0
\(249\) −113.345 −0.455202
\(250\) 0 0
\(251\) 21.6072i 0.0860843i 0.999073 + 0.0430422i \(0.0137050\pi\)
−0.999073 + 0.0430422i \(0.986295\pi\)
\(252\) 0 0
\(253\) −136.014 −0.537606
\(254\) 0 0
\(255\) 650.176i 2.54971i
\(256\) 0 0
\(257\) 16.1628i 0.0628904i 0.999505 + 0.0314452i \(0.0100110\pi\)
−0.999505 + 0.0314452i \(0.989989\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 150.510 0.576665
\(262\) 0 0
\(263\) 298.968 1.13676 0.568381 0.822766i \(-0.307570\pi\)
0.568381 + 0.822766i \(0.307570\pi\)
\(264\) 0 0
\(265\) − 450.880i − 1.70143i
\(266\) 0 0
\(267\) −400.635 −1.50051
\(268\) 0 0
\(269\) − 176.854i − 0.657450i −0.944426 0.328725i \(-0.893381\pi\)
0.944426 0.328725i \(-0.106619\pi\)
\(270\) 0 0
\(271\) 6.97250i 0.0257288i 0.999917 + 0.0128644i \(0.00409497\pi\)
−0.999917 + 0.0128644i \(0.995905\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 21.2965 0.0774420
\(276\) 0 0
\(277\) −153.632 −0.554630 −0.277315 0.960779i \(-0.589445\pi\)
−0.277315 + 0.960779i \(0.589445\pi\)
\(278\) 0 0
\(279\) 473.719i 1.69792i
\(280\) 0 0
\(281\) 36.2914 0.129151 0.0645755 0.997913i \(-0.479431\pi\)
0.0645755 + 0.997913i \(0.479431\pi\)
\(282\) 0 0
\(283\) − 447.182i − 1.58015i −0.613011 0.790074i \(-0.710042\pi\)
0.613011 0.790074i \(-0.289958\pi\)
\(284\) 0 0
\(285\) − 631.281i − 2.21502i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −726.075 −2.51237
\(290\) 0 0
\(291\) 556.641 1.91286
\(292\) 0 0
\(293\) − 115.118i − 0.392895i −0.980514 0.196447i \(-0.937059\pi\)
0.980514 0.196447i \(-0.0629405\pi\)
\(294\) 0 0
\(295\) 249.236 0.844869
\(296\) 0 0
\(297\) − 10.1635i − 0.0342205i
\(298\) 0 0
\(299\) 57.4718i 0.192213i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −625.618 −2.06475
\(304\) 0 0
\(305\) 63.6812 0.208791
\(306\) 0 0
\(307\) − 294.709i − 0.959963i −0.877279 0.479982i \(-0.840643\pi\)
0.877279 0.479982i \(-0.159357\pi\)
\(308\) 0 0
\(309\) 154.794 0.500951
\(310\) 0 0
\(311\) − 81.2774i − 0.261342i −0.991426 0.130671i \(-0.958287\pi\)
0.991426 0.130671i \(-0.0417132\pi\)
\(312\) 0 0
\(313\) − 77.5328i − 0.247709i −0.992300 0.123854i \(-0.960474\pi\)
0.992300 0.123854i \(-0.0395256\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 560.926 1.76948 0.884741 0.466082i \(-0.154335\pi\)
0.884741 + 0.466082i \(0.154335\pi\)
\(318\) 0 0
\(319\) −159.699 −0.500625
\(320\) 0 0
\(321\) 226.785i 0.706495i
\(322\) 0 0
\(323\) 985.576 3.05132
\(324\) 0 0
\(325\) − 8.99869i − 0.0276883i
\(326\) 0 0
\(327\) − 560.504i − 1.71408i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 264.788 0.799964 0.399982 0.916523i \(-0.369016\pi\)
0.399982 + 0.916523i \(0.369016\pi\)
\(332\) 0 0
\(333\) −91.1127 −0.273612
\(334\) 0 0
\(335\) − 507.386i − 1.51458i
\(336\) 0 0
\(337\) −256.887 −0.762277 −0.381138 0.924518i \(-0.624468\pi\)
−0.381138 + 0.924518i \(0.624468\pi\)
\(338\) 0 0
\(339\) 0.533430i 0.00157354i
\(340\) 0 0
\(341\) − 502.643i − 1.47403i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −283.029 −0.820375
\(346\) 0 0
\(347\) −200.610 −0.578126 −0.289063 0.957310i \(-0.593344\pi\)
−0.289063 + 0.957310i \(0.593344\pi\)
\(348\) 0 0
\(349\) − 30.0575i − 0.0861248i −0.999072 0.0430624i \(-0.986289\pi\)
0.999072 0.0430624i \(-0.0137114\pi\)
\(350\) 0 0
\(351\) −4.29450 −0.0122350
\(352\) 0 0
\(353\) − 544.609i − 1.54280i −0.636350 0.771400i \(-0.719557\pi\)
0.636350 0.771400i \(-0.280443\pi\)
\(354\) 0 0
\(355\) − 585.021i − 1.64795i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −567.819 −1.58167 −0.790834 0.612031i \(-0.790353\pi\)
−0.790834 + 0.612031i \(0.790353\pi\)
\(360\) 0 0
\(361\) −595.933 −1.65078
\(362\) 0 0
\(363\) − 106.024i − 0.292077i
\(364\) 0 0
\(365\) −125.113 −0.342775
\(366\) 0 0
\(367\) − 181.964i − 0.495813i −0.968784 0.247907i \(-0.920257\pi\)
0.968784 0.247907i \(-0.0797426\pi\)
\(368\) 0 0
\(369\) 125.408i 0.339858i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 384.926 1.03197 0.515987 0.856597i \(-0.327425\pi\)
0.515987 + 0.856597i \(0.327425\pi\)
\(374\) 0 0
\(375\) 554.494 1.47865
\(376\) 0 0
\(377\) 67.4797i 0.178991i
\(378\) 0 0
\(379\) 471.840 1.24496 0.622480 0.782636i \(-0.286125\pi\)
0.622480 + 0.782636i \(0.286125\pi\)
\(380\) 0 0
\(381\) − 547.507i − 1.43703i
\(382\) 0 0
\(383\) 360.597i 0.941507i 0.882265 + 0.470753i \(0.156018\pi\)
−0.882265 + 0.470753i \(0.843982\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −271.927 −0.702653
\(388\) 0 0
\(389\) 85.8924 0.220803 0.110401 0.993887i \(-0.464786\pi\)
0.110401 + 0.993887i \(0.464786\pi\)
\(390\) 0 0
\(391\) − 441.874i − 1.13011i
\(392\) 0 0
\(393\) −292.419 −0.744069
\(394\) 0 0
\(395\) − 546.203i − 1.38279i
\(396\) 0 0
\(397\) 426.194i 1.07354i 0.843729 + 0.536769i \(0.180355\pi\)
−0.843729 + 0.536769i \(0.819645\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 192.759 0.480697 0.240348 0.970687i \(-0.422738\pi\)
0.240348 + 0.970687i \(0.422738\pi\)
\(402\) 0 0
\(403\) −212.388 −0.527018
\(404\) 0 0
\(405\) 376.296i 0.929125i
\(406\) 0 0
\(407\) 96.6758 0.237533
\(408\) 0 0
\(409\) − 613.813i − 1.50076i −0.661004 0.750382i \(-0.729869\pi\)
0.661004 0.750382i \(-0.270131\pi\)
\(410\) 0 0
\(411\) 117.697i 0.286367i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 126.794 0.305527
\(416\) 0 0
\(417\) −409.654 −0.982383
\(418\) 0 0
\(419\) 457.797i 1.09259i 0.837592 + 0.546297i \(0.183963\pi\)
−0.837592 + 0.546297i \(0.816037\pi\)
\(420\) 0 0
\(421\) −215.103 −0.510933 −0.255466 0.966818i \(-0.582229\pi\)
−0.255466 + 0.966818i \(0.582229\pi\)
\(422\) 0 0
\(423\) 710.579i 1.67986i
\(424\) 0 0
\(425\) 69.1868i 0.162793i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 173.574 0.404600
\(430\) 0 0
\(431\) 157.897 0.366351 0.183175 0.983080i \(-0.441362\pi\)
0.183175 + 0.983080i \(0.441362\pi\)
\(432\) 0 0
\(433\) 679.390i 1.56903i 0.620110 + 0.784515i \(0.287088\pi\)
−0.620110 + 0.784515i \(0.712912\pi\)
\(434\) 0 0
\(435\) −332.315 −0.763943
\(436\) 0 0
\(437\) 429.033i 0.981769i
\(438\) 0 0
\(439\) − 617.932i − 1.40759i −0.710403 0.703795i \(-0.751487\pi\)
0.710403 0.703795i \(-0.248513\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 240.126 0.542046 0.271023 0.962573i \(-0.412638\pi\)
0.271023 + 0.962573i \(0.412638\pi\)
\(444\) 0 0
\(445\) 448.171 1.00713
\(446\) 0 0
\(447\) 629.302i 1.40783i
\(448\) 0 0
\(449\) −641.823 −1.42945 −0.714725 0.699405i \(-0.753448\pi\)
−0.714725 + 0.699405i \(0.753448\pi\)
\(450\) 0 0
\(451\) − 133.065i − 0.295043i
\(452\) 0 0
\(453\) − 527.180i − 1.16375i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −641.698 −1.40415 −0.702077 0.712101i \(-0.747744\pi\)
−0.702077 + 0.712101i \(0.747744\pi\)
\(458\) 0 0
\(459\) 33.0184 0.0719356
\(460\) 0 0
\(461\) 597.836i 1.29682i 0.761290 + 0.648412i \(0.224566\pi\)
−0.761290 + 0.648412i \(0.775434\pi\)
\(462\) 0 0
\(463\) −617.550 −1.33380 −0.666901 0.745146i \(-0.732380\pi\)
−0.666901 + 0.745146i \(0.732380\pi\)
\(464\) 0 0
\(465\) − 1045.94i − 2.24933i
\(466\) 0 0
\(467\) − 566.522i − 1.21311i −0.795042 0.606555i \(-0.792551\pi\)
0.795042 0.606555i \(-0.207449\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −637.380 −1.35325
\(472\) 0 0
\(473\) 288.530 0.610000
\(474\) 0 0
\(475\) − 67.1762i − 0.141424i
\(476\) 0 0
\(477\) −872.205 −1.82852
\(478\) 0 0
\(479\) − 326.176i − 0.680953i −0.940253 0.340476i \(-0.889412\pi\)
0.940253 0.340476i \(-0.110588\pi\)
\(480\) 0 0
\(481\) − 40.8496i − 0.0849264i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −622.686 −1.28389
\(486\) 0 0
\(487\) 629.448 1.29250 0.646251 0.763125i \(-0.276336\pi\)
0.646251 + 0.763125i \(0.276336\pi\)
\(488\) 0 0
\(489\) 145.988i 0.298543i
\(490\) 0 0
\(491\) −48.7462 −0.0992793 −0.0496397 0.998767i \(-0.515807\pi\)
−0.0496397 + 0.998767i \(0.515807\pi\)
\(492\) 0 0
\(493\) − 518.821i − 1.05238i
\(494\) 0 0
\(495\) 433.081i 0.874911i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −112.924 −0.226302 −0.113151 0.993578i \(-0.536094\pi\)
−0.113151 + 0.993578i \(0.536094\pi\)
\(500\) 0 0
\(501\) 584.839 1.16734
\(502\) 0 0
\(503\) 424.287i 0.843513i 0.906709 + 0.421756i \(0.138586\pi\)
−0.906709 + 0.421756i \(0.861414\pi\)
\(504\) 0 0
\(505\) 699.848 1.38584
\(506\) 0 0
\(507\) 648.481i 1.27905i
\(508\) 0 0
\(509\) − 622.871i − 1.22372i −0.790968 0.611858i \(-0.790422\pi\)
0.790968 0.611858i \(-0.209578\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −32.0589 −0.0624929
\(514\) 0 0
\(515\) −173.160 −0.336233
\(516\) 0 0
\(517\) − 753.965i − 1.45835i
\(518\) 0 0
\(519\) 601.325 1.15862
\(520\) 0 0
\(521\) 733.863i 1.40857i 0.709920 + 0.704283i \(0.248731\pi\)
−0.709920 + 0.704283i \(0.751269\pi\)
\(522\) 0 0
\(523\) 655.306i 1.25297i 0.779432 + 0.626487i \(0.215508\pi\)
−0.779432 + 0.626487i \(0.784492\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1632.96 3.09859
\(528\) 0 0
\(529\) −336.647 −0.636383
\(530\) 0 0
\(531\) − 482.136i − 0.907977i
\(532\) 0 0
\(533\) −56.2254 −0.105489
\(534\) 0 0
\(535\) − 253.693i − 0.474192i
\(536\) 0 0
\(537\) − 847.902i − 1.57896i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −460.794 −0.851745 −0.425872 0.904783i \(-0.640033\pi\)
−0.425872 + 0.904783i \(0.640033\pi\)
\(542\) 0 0
\(543\) −1220.85 −2.24834
\(544\) 0 0
\(545\) 627.007i 1.15047i
\(546\) 0 0
\(547\) −556.449 −1.01727 −0.508637 0.860981i \(-0.669850\pi\)
−0.508637 + 0.860981i \(0.669850\pi\)
\(548\) 0 0
\(549\) − 123.188i − 0.224387i
\(550\) 0 0
\(551\) 503.743i 0.914234i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 201.171 0.362470
\(556\) 0 0
\(557\) −301.294 −0.540922 −0.270461 0.962731i \(-0.587176\pi\)
−0.270461 + 0.962731i \(0.587176\pi\)
\(558\) 0 0
\(559\) − 121.916i − 0.218097i
\(560\) 0 0
\(561\) −1334.53 −2.37884
\(562\) 0 0
\(563\) 160.356i 0.284825i 0.989807 + 0.142412i \(0.0454859\pi\)
−0.989807 + 0.142412i \(0.954514\pi\)
\(564\) 0 0
\(565\) − 0.596721i − 0.00105614i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −392.818 −0.690366 −0.345183 0.938535i \(-0.612183\pi\)
−0.345183 + 0.938535i \(0.612183\pi\)
\(570\) 0 0
\(571\) −596.254 −1.04423 −0.522114 0.852876i \(-0.674856\pi\)
−0.522114 + 0.852876i \(0.674856\pi\)
\(572\) 0 0
\(573\) 1262.56i 2.20342i
\(574\) 0 0
\(575\) −30.1179 −0.0523789
\(576\) 0 0
\(577\) − 134.056i − 0.232332i −0.993230 0.116166i \(-0.962939\pi\)
0.993230 0.116166i \(-0.0370605\pi\)
\(578\) 0 0
\(579\) 805.581i 1.39133i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 925.459 1.58741
\(584\) 0 0
\(585\) 182.995 0.312812
\(586\) 0 0
\(587\) − 493.505i − 0.840725i −0.907356 0.420362i \(-0.861903\pi\)
0.907356 0.420362i \(-0.138097\pi\)
\(588\) 0 0
\(589\) −1585.50 −2.69185
\(590\) 0 0
\(591\) 145.219i 0.245717i
\(592\) 0 0
\(593\) 183.742i 0.309852i 0.987926 + 0.154926i \(0.0495140\pi\)
−0.987926 + 0.154926i \(0.950486\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 464.382 0.777859
\(598\) 0 0
\(599\) −852.918 −1.42390 −0.711951 0.702229i \(-0.752188\pi\)
−0.711951 + 0.702229i \(0.752188\pi\)
\(600\) 0 0
\(601\) − 733.964i − 1.22124i −0.791925 0.610619i \(-0.790921\pi\)
0.791925 0.610619i \(-0.209079\pi\)
\(602\) 0 0
\(603\) −981.513 −1.62772
\(604\) 0 0
\(605\) 118.604i 0.196039i
\(606\) 0 0
\(607\) 450.981i 0.742966i 0.928440 + 0.371483i \(0.121151\pi\)
−0.928440 + 0.371483i \(0.878849\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −318.582 −0.521411
\(612\) 0 0
\(613\) −1109.53 −1.81001 −0.905003 0.425406i \(-0.860131\pi\)
−0.905003 + 0.425406i \(0.860131\pi\)
\(614\) 0 0
\(615\) − 276.891i − 0.450230i
\(616\) 0 0
\(617\) −445.799 −0.722527 −0.361263 0.932464i \(-0.617654\pi\)
−0.361263 + 0.932464i \(0.617654\pi\)
\(618\) 0 0
\(619\) 775.713i 1.25317i 0.779353 + 0.626586i \(0.215548\pi\)
−0.779353 + 0.626586i \(0.784452\pi\)
\(620\) 0 0
\(621\) 14.3733i 0.0231455i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −565.995 −0.905592
\(626\) 0 0
\(627\) 1295.74 2.06658
\(628\) 0 0
\(629\) 314.074i 0.499323i
\(630\) 0 0
\(631\) −16.2487 −0.0257507 −0.0128754 0.999917i \(-0.504098\pi\)
−0.0128754 + 0.999917i \(0.504098\pi\)
\(632\) 0 0
\(633\) 1144.09i 1.80741i
\(634\) 0 0
\(635\) 612.469i 0.964517i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −1131.69 −1.77104
\(640\) 0 0
\(641\) 638.642 0.996321 0.498160 0.867085i \(-0.334009\pi\)
0.498160 + 0.867085i \(0.334009\pi\)
\(642\) 0 0
\(643\) 863.209i 1.34247i 0.741244 + 0.671235i \(0.234236\pi\)
−0.741244 + 0.671235i \(0.765764\pi\)
\(644\) 0 0
\(645\) 600.396 0.930847
\(646\) 0 0
\(647\) − 567.433i − 0.877022i −0.898726 0.438511i \(-0.855506\pi\)
0.898726 0.438511i \(-0.144494\pi\)
\(648\) 0 0
\(649\) 511.574i 0.788249i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −575.460 −0.881256 −0.440628 0.897690i \(-0.645244\pi\)
−0.440628 + 0.897690i \(0.645244\pi\)
\(654\) 0 0
\(655\) 327.115 0.499412
\(656\) 0 0
\(657\) 242.025i 0.368378i
\(658\) 0 0
\(659\) 1.68261 0.00255328 0.00127664 0.999999i \(-0.499594\pi\)
0.00127664 + 0.999999i \(0.499594\pi\)
\(660\) 0 0
\(661\) − 1034.33i − 1.56480i −0.622778 0.782399i \(-0.713996\pi\)
0.622778 0.782399i \(-0.286004\pi\)
\(662\) 0 0
\(663\) 563.895i 0.850520i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 225.849 0.338604
\(668\) 0 0
\(669\) −573.838 −0.857754
\(670\) 0 0
\(671\) 130.710i 0.194799i
\(672\) 0 0
\(673\) −22.6488 −0.0336536 −0.0168268 0.999858i \(-0.505356\pi\)
−0.0168268 + 0.999858i \(0.505356\pi\)
\(674\) 0 0
\(675\) − 2.25051i − 0.00333410i
\(676\) 0 0
\(677\) 88.5067i 0.130734i 0.997861 + 0.0653669i \(0.0208218\pi\)
−0.997861 + 0.0653669i \(0.979178\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 1338.42 1.96537
\(682\) 0 0
\(683\) −129.173 −0.189126 −0.0945631 0.995519i \(-0.530145\pi\)
−0.0945631 + 0.995519i \(0.530145\pi\)
\(684\) 0 0
\(685\) − 131.662i − 0.192207i
\(686\) 0 0
\(687\) −1240.08 −1.80506
\(688\) 0 0
\(689\) − 391.046i − 0.567556i
\(690\) 0 0
\(691\) 47.9884i 0.0694477i 0.999397 + 0.0347239i \(0.0110552\pi\)
−0.999397 + 0.0347239i \(0.988945\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 458.259 0.659366
\(696\) 0 0
\(697\) 432.291 0.620217
\(698\) 0 0
\(699\) 947.617i 1.35567i
\(700\) 0 0
\(701\) 244.701 0.349074 0.174537 0.984651i \(-0.444157\pi\)
0.174537 + 0.984651i \(0.444157\pi\)
\(702\) 0 0
\(703\) − 304.946i − 0.433779i
\(704\) 0 0
\(705\) − 1568.91i − 2.22541i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −384.270 −0.541989 −0.270994 0.962581i \(-0.587352\pi\)
−0.270994 + 0.962581i \(0.587352\pi\)
\(710\) 0 0
\(711\) −1056.60 −1.48608
\(712\) 0 0
\(713\) 710.845i 0.996977i
\(714\) 0 0
\(715\) −194.168 −0.271564
\(716\) 0 0
\(717\) − 833.529i − 1.16252i
\(718\) 0 0
\(719\) − 814.153i − 1.13234i −0.824288 0.566171i \(-0.808424\pi\)
0.824288 0.566171i \(-0.191576\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −183.488 −0.253787
\(724\) 0 0
\(725\) −35.3625 −0.0487758
\(726\) 0 0
\(727\) − 1287.87i − 1.77149i −0.464173 0.885745i \(-0.653648\pi\)
0.464173 0.885745i \(-0.346352\pi\)
\(728\) 0 0
\(729\) 767.764 1.05317
\(730\) 0 0
\(731\) 937.357i 1.28229i
\(732\) 0 0
\(733\) 328.280i 0.447858i 0.974605 + 0.223929i \(0.0718885\pi\)
−0.974605 + 0.223929i \(0.928112\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1041.44 1.41308
\(738\) 0 0
\(739\) −729.609 −0.987292 −0.493646 0.869663i \(-0.664336\pi\)
−0.493646 + 0.869663i \(0.664336\pi\)
\(740\) 0 0
\(741\) − 547.507i − 0.738876i
\(742\) 0 0
\(743\) −334.423 −0.450098 −0.225049 0.974347i \(-0.572254\pi\)
−0.225049 + 0.974347i \(0.572254\pi\)
\(744\) 0 0
\(745\) − 703.968i − 0.944924i
\(746\) 0 0
\(747\) − 245.276i − 0.328348i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1239.69 1.65072 0.825360 0.564607i \(-0.190972\pi\)
0.825360 + 0.564607i \(0.190972\pi\)
\(752\) 0 0
\(753\) −92.2872 −0.122559
\(754\) 0 0
\(755\) 589.730i 0.781099i
\(756\) 0 0
\(757\) 827.710 1.09341 0.546704 0.837326i \(-0.315882\pi\)
0.546704 + 0.837326i \(0.315882\pi\)
\(758\) 0 0
\(759\) − 580.936i − 0.765397i
\(760\) 0 0
\(761\) 425.191i 0.558726i 0.960186 + 0.279363i \(0.0901233\pi\)
−0.960186 + 0.279363i \(0.909877\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −1406.96 −1.83917
\(766\) 0 0
\(767\) 216.162 0.281827
\(768\) 0 0
\(769\) − 869.454i − 1.13063i −0.824875 0.565315i \(-0.808755\pi\)
0.824875 0.565315i \(-0.191245\pi\)
\(770\) 0 0
\(771\) −69.0337 −0.0895379
\(772\) 0 0
\(773\) 423.918i 0.548406i 0.961672 + 0.274203i \(0.0884140\pi\)
−0.961672 + 0.274203i \(0.911586\pi\)
\(774\) 0 0
\(775\) − 111.301i − 0.143614i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −419.728 −0.538804
\(780\) 0 0
\(781\) 1200.79 1.53751
\(782\) 0 0
\(783\) 16.8762i 0.0215533i
\(784\) 0 0
\(785\) 713.005 0.908287
\(786\) 0 0
\(787\) − 225.647i − 0.286717i −0.989671 0.143359i \(-0.954210\pi\)
0.989671 0.143359i \(-0.0457903\pi\)
\(788\) 0 0
\(789\) 1276.94i 1.61842i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 55.2304 0.0696475
\(794\) 0 0
\(795\) 1925.77 2.42235
\(796\) 0 0
\(797\) 323.178i 0.405493i 0.979231 + 0.202747i \(0.0649868\pi\)
−0.979231 + 0.202747i \(0.935013\pi\)
\(798\) 0 0
\(799\) 2449.43 3.06562
\(800\) 0 0
\(801\) − 866.965i − 1.08235i
\(802\) 0 0
\(803\) − 256.802i − 0.319803i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 755.369 0.936021
\(808\) 0 0
\(809\) −17.0669 −0.0210963 −0.0105481 0.999944i \(-0.503358\pi\)
−0.0105481 + 0.999944i \(0.503358\pi\)
\(810\) 0 0
\(811\) 890.878i 1.09849i 0.835660 + 0.549246i \(0.185085\pi\)
−0.835660 + 0.549246i \(0.814915\pi\)
\(812\) 0 0
\(813\) −29.7805 −0.0366304
\(814\) 0 0
\(815\) − 163.309i − 0.200379i
\(816\) 0 0
\(817\) − 910.116i − 1.11397i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1194.03 1.45436 0.727179 0.686447i \(-0.240831\pi\)
0.727179 + 0.686447i \(0.240831\pi\)
\(822\) 0 0
\(823\) −572.409 −0.695515 −0.347757 0.937585i \(-0.613057\pi\)
−0.347757 + 0.937585i \(0.613057\pi\)
\(824\) 0 0
\(825\) 90.9605i 0.110255i
\(826\) 0 0
\(827\) 126.794 0.153318 0.0766588 0.997057i \(-0.475575\pi\)
0.0766588 + 0.997057i \(0.475575\pi\)
\(828\) 0 0
\(829\) 254.978i 0.307572i 0.988104 + 0.153786i \(0.0491467\pi\)
−0.988104 + 0.153786i \(0.950853\pi\)
\(830\) 0 0
\(831\) − 656.186i − 0.789634i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −654.229 −0.783508
\(836\) 0 0
\(837\) −53.1169 −0.0634610
\(838\) 0 0
\(839\) − 247.475i − 0.294964i −0.989065 0.147482i \(-0.952883\pi\)
0.989065 0.147482i \(-0.0471168\pi\)
\(840\) 0 0
\(841\) −575.823 −0.684688
\(842\) 0 0
\(843\) 155.006i 0.183874i
\(844\) 0 0
\(845\) − 725.423i − 0.858488i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 1909.98 2.24968
\(850\) 0 0
\(851\) −136.720 −0.160658
\(852\) 0 0
\(853\) − 1493.89i − 1.75133i −0.482915 0.875667i \(-0.660422\pi\)
0.482915 0.875667i \(-0.339578\pi\)
\(854\) 0 0
\(855\) 1366.08 1.59775
\(856\) 0 0
\(857\) 691.307i 0.806660i 0.915055 + 0.403330i \(0.132147\pi\)
−0.915055 + 0.403330i \(0.867853\pi\)
\(858\) 0 0
\(859\) − 777.755i − 0.905419i −0.891658 0.452710i \(-0.850457\pi\)
0.891658 0.452710i \(-0.149543\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −925.459 −1.07237 −0.536187 0.844099i \(-0.680136\pi\)
−0.536187 + 0.844099i \(0.680136\pi\)
\(864\) 0 0
\(865\) −672.672 −0.777655
\(866\) 0 0
\(867\) − 3101.17i − 3.57690i
\(868\) 0 0
\(869\) 1121.12 1.29012
\(870\) 0 0
\(871\) − 440.053i − 0.505228i
\(872\) 0 0
\(873\) 1204.56i 1.37979i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1143.54 −1.30392 −0.651960 0.758254i \(-0.726053\pi\)
−0.651960 + 0.758254i \(0.726053\pi\)
\(878\) 0 0
\(879\) 491.686 0.559370
\(880\) 0 0
\(881\) 1165.65i 1.32310i 0.749902 + 0.661549i \(0.230101\pi\)
−0.749902 + 0.661549i \(0.769899\pi\)
\(882\) 0 0
\(883\) 874.911 0.990839 0.495420 0.868654i \(-0.335014\pi\)
0.495420 + 0.868654i \(0.335014\pi\)
\(884\) 0 0
\(885\) 1064.52i 1.20285i
\(886\) 0 0
\(887\) − 924.388i − 1.04215i −0.853511 0.521075i \(-0.825531\pi\)
0.853511 0.521075i \(-0.174469\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −772.371 −0.866858
\(892\) 0 0
\(893\) −2378.25 −2.66321
\(894\) 0 0
\(895\) 948.506i 1.05978i
\(896\) 0 0
\(897\) −245.470 −0.273657
\(898\) 0 0
\(899\) 834.629i 0.928397i
\(900\) 0 0
\(901\) 3006.57i 3.33693i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1365.70 1.50906
\(906\) 0 0
\(907\) 1099.61 1.21235 0.606177 0.795330i \(-0.292702\pi\)
0.606177 + 0.795330i \(0.292702\pi\)
\(908\) 0 0
\(909\) − 1353.82i − 1.48935i
\(910\) 0 0
\(911\) −349.277 −0.383400 −0.191700 0.981454i \(-0.561400\pi\)
−0.191700 + 0.981454i \(0.561400\pi\)
\(912\) 0 0
\(913\) 260.252i 0.285052i
\(914\) 0 0
\(915\) 271.992i 0.297258i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −1693.77 −1.84306 −0.921528 0.388312i \(-0.873058\pi\)
−0.921528 + 0.388312i \(0.873058\pi\)
\(920\) 0 0
\(921\) 1258.74 1.36671
\(922\) 0 0
\(923\) − 507.386i − 0.549714i
\(924\) 0 0
\(925\) 21.4071 0.0231428
\(926\) 0 0
\(927\) 334.970i 0.361349i
\(928\) 0 0
\(929\) − 1203.10i − 1.29504i −0.762047 0.647522i \(-0.775805\pi\)
0.762047 0.647522i \(-0.224195\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 347.147 0.372076
\(934\) 0 0
\(935\) 1492.87 1.59665
\(936\) 0 0
\(937\) − 1305.21i − 1.39297i −0.717571 0.696486i \(-0.754746\pi\)
0.717571 0.696486i \(-0.245254\pi\)
\(938\) 0 0
\(939\) 331.154 0.352666
\(940\) 0 0
\(941\) − 140.120i − 0.148905i −0.997225 0.0744526i \(-0.976279\pi\)
0.997225 0.0744526i \(-0.0237209\pi\)
\(942\) 0 0
\(943\) 188.182i 0.199556i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −219.646 −0.231939 −0.115970 0.993253i \(-0.536998\pi\)
−0.115970 + 0.993253i \(0.536998\pi\)
\(948\) 0 0
\(949\) −108.510 −0.114341
\(950\) 0 0
\(951\) 2395.79i 2.51924i
\(952\) 0 0
\(953\) 1733.15 1.81862 0.909310 0.416119i \(-0.136610\pi\)
0.909310 + 0.416119i \(0.136610\pi\)
\(954\) 0 0
\(955\) − 1412.36i − 1.47892i
\(956\) 0 0
\(957\) − 682.098i − 0.712746i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −1665.94 −1.73355
\(962\) 0 0
\(963\) −490.757 −0.509612
\(964\) 0 0
\(965\) − 901.162i − 0.933847i
\(966\) 0 0
\(967\) −1863.97 −1.92758 −0.963791 0.266660i \(-0.914080\pi\)
−0.963791 + 0.266660i \(0.914080\pi\)
\(968\) 0 0
\(969\) 4209.53i 4.34420i
\(970\) 0 0
\(971\) − 1050.54i − 1.08192i −0.841048 0.540960i \(-0.818061\pi\)
0.841048 0.540960i \(-0.181939\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 38.4347 0.0394202
\(976\) 0 0
\(977\) −633.233 −0.648141 −0.324070 0.946033i \(-0.605051\pi\)
−0.324070 + 0.946033i \(0.605051\pi\)
\(978\) 0 0
\(979\) 919.899i 0.939631i
\(980\) 0 0
\(981\) 1212.92 1.23641
\(982\) 0 0
\(983\) − 125.246i − 0.127412i −0.997969 0.0637061i \(-0.979708\pi\)
0.997969 0.0637061i \(-0.0202920\pi\)
\(984\) 0 0
\(985\) − 162.449i − 0.164923i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −408.043 −0.412581
\(990\) 0 0
\(991\) 169.795 0.171337 0.0856685 0.996324i \(-0.472697\pi\)
0.0856685 + 0.996324i \(0.472697\pi\)
\(992\) 0 0
\(993\) 1130.95i 1.13892i
\(994\) 0 0
\(995\) −519.481 −0.522091
\(996\) 0 0
\(997\) 21.1203i 0.0211839i 0.999944 + 0.0105919i \(0.00337158\pi\)
−0.999944 + 0.0105919i \(0.996628\pi\)
\(998\) 0 0
\(999\) − 10.2162i − 0.0102264i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1568.3.c.d.97.7 yes 8
4.3 odd 2 inner 1568.3.c.d.97.1 8
7.6 odd 2 inner 1568.3.c.d.97.2 yes 8
28.27 even 2 inner 1568.3.c.d.97.8 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1568.3.c.d.97.1 8 4.3 odd 2 inner
1568.3.c.d.97.2 yes 8 7.6 odd 2 inner
1568.3.c.d.97.7 yes 8 1.1 even 1 trivial
1568.3.c.d.97.8 yes 8 28.27 even 2 inner