Properties

Label 156.8.a.c.1.3
Level $156$
Weight $8$
Character 156.1
Self dual yes
Analytic conductor $48.732$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [156,8,Mod(1,156)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("156.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(156, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 156 = 2^{2} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 156.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-81] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.7320639755\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 11078x - 379248 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-40.2803\) of defining polynomial
Character \(\chi\) \(=\) 156.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-27.0000 q^{3} +480.358 q^{5} -800.424 q^{7} +729.000 q^{9} +7629.09 q^{11} +2197.00 q^{13} -12969.7 q^{15} -21796.8 q^{17} +33672.2 q^{19} +21611.5 q^{21} -26192.8 q^{23} +152618. q^{25} -19683.0 q^{27} -113083. q^{29} +88423.6 q^{31} -205985. q^{33} -384490. q^{35} -379766. q^{37} -59319.0 q^{39} -399092. q^{41} +849618. q^{43} +350181. q^{45} +939767. q^{47} -182864. q^{49} +588513. q^{51} +1.14570e6 q^{53} +3.66469e6 q^{55} -909150. q^{57} +731851. q^{59} +632912. q^{61} -583509. q^{63} +1.05535e6 q^{65} +1.77055e6 q^{67} +707205. q^{69} +5.46845e6 q^{71} +984549. q^{73} -4.12070e6 q^{75} -6.10651e6 q^{77} +6.31489e6 q^{79} +531441. q^{81} -3.30152e6 q^{83} -1.04703e7 q^{85} +3.05325e6 q^{87} +7.70391e6 q^{89} -1.75853e6 q^{91} -2.38744e6 q^{93} +1.61747e7 q^{95} -1.39202e6 q^{97} +5.56160e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 81 q^{3} + 524 q^{5} + 722 q^{7} + 2187 q^{9} + 6752 q^{11} + 6591 q^{13} - 14148 q^{15} - 15418 q^{17} + 1826 q^{19} - 19494 q^{21} + 16536 q^{23} + 10513 q^{25} - 59049 q^{27} - 151194 q^{29} + 46338 q^{31}+ \cdots + 4922208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −27.0000 −0.577350
\(4\) 0 0
\(5\) 480.358 1.71858 0.859290 0.511489i \(-0.170906\pi\)
0.859290 + 0.511489i \(0.170906\pi\)
\(6\) 0 0
\(7\) −800.424 −0.882017 −0.441009 0.897503i \(-0.645379\pi\)
−0.441009 + 0.897503i \(0.645379\pi\)
\(8\) 0 0
\(9\) 729.000 0.333333
\(10\) 0 0
\(11\) 7629.09 1.72822 0.864108 0.503306i \(-0.167883\pi\)
0.864108 + 0.503306i \(0.167883\pi\)
\(12\) 0 0
\(13\) 2197.00 0.277350
\(14\) 0 0
\(15\) −12969.7 −0.992222
\(16\) 0 0
\(17\) −21796.8 −1.07602 −0.538011 0.842938i \(-0.680824\pi\)
−0.538011 + 0.842938i \(0.680824\pi\)
\(18\) 0 0
\(19\) 33672.2 1.12625 0.563124 0.826372i \(-0.309599\pi\)
0.563124 + 0.826372i \(0.309599\pi\)
\(20\) 0 0
\(21\) 21611.5 0.509233
\(22\) 0 0
\(23\) −26192.8 −0.448884 −0.224442 0.974487i \(-0.572056\pi\)
−0.224442 + 0.974487i \(0.572056\pi\)
\(24\) 0 0
\(25\) 152618. 1.95352
\(26\) 0 0
\(27\) −19683.0 −0.192450
\(28\) 0 0
\(29\) −113083. −0.861004 −0.430502 0.902590i \(-0.641664\pi\)
−0.430502 + 0.902590i \(0.641664\pi\)
\(30\) 0 0
\(31\) 88423.6 0.533092 0.266546 0.963822i \(-0.414118\pi\)
0.266546 + 0.963822i \(0.414118\pi\)
\(32\) 0 0
\(33\) −205985. −0.997786
\(34\) 0 0
\(35\) −384490. −1.51582
\(36\) 0 0
\(37\) −379766. −1.23257 −0.616283 0.787525i \(-0.711362\pi\)
−0.616283 + 0.787525i \(0.711362\pi\)
\(38\) 0 0
\(39\) −59319.0 −0.160128
\(40\) 0 0
\(41\) −399092. −0.904336 −0.452168 0.891933i \(-0.649349\pi\)
−0.452168 + 0.891933i \(0.649349\pi\)
\(42\) 0 0
\(43\) 849618. 1.62961 0.814806 0.579733i \(-0.196843\pi\)
0.814806 + 0.579733i \(0.196843\pi\)
\(44\) 0 0
\(45\) 350181. 0.572860
\(46\) 0 0
\(47\) 939767. 1.32032 0.660158 0.751127i \(-0.270489\pi\)
0.660158 + 0.751127i \(0.270489\pi\)
\(48\) 0 0
\(49\) −182864. −0.222046
\(50\) 0 0
\(51\) 588513. 0.621242
\(52\) 0 0
\(53\) 1.14570e6 1.05707 0.528536 0.848911i \(-0.322741\pi\)
0.528536 + 0.848911i \(0.322741\pi\)
\(54\) 0 0
\(55\) 3.66469e6 2.97008
\(56\) 0 0
\(57\) −909150. −0.650240
\(58\) 0 0
\(59\) 731851. 0.463917 0.231959 0.972726i \(-0.425487\pi\)
0.231959 + 0.972726i \(0.425487\pi\)
\(60\) 0 0
\(61\) 632912. 0.357017 0.178508 0.983938i \(-0.442873\pi\)
0.178508 + 0.983938i \(0.442873\pi\)
\(62\) 0 0
\(63\) −583509. −0.294006
\(64\) 0 0
\(65\) 1.05535e6 0.476648
\(66\) 0 0
\(67\) 1.77055e6 0.719196 0.359598 0.933107i \(-0.382914\pi\)
0.359598 + 0.933107i \(0.382914\pi\)
\(68\) 0 0
\(69\) 707205. 0.259163
\(70\) 0 0
\(71\) 5.46845e6 1.81326 0.906629 0.421928i \(-0.138646\pi\)
0.906629 + 0.421928i \(0.138646\pi\)
\(72\) 0 0
\(73\) 984549. 0.296215 0.148108 0.988971i \(-0.452682\pi\)
0.148108 + 0.988971i \(0.452682\pi\)
\(74\) 0 0
\(75\) −4.12070e6 −1.12786
\(76\) 0 0
\(77\) −6.10651e6 −1.52432
\(78\) 0 0
\(79\) 6.31489e6 1.44102 0.720511 0.693443i \(-0.243907\pi\)
0.720511 + 0.693443i \(0.243907\pi\)
\(80\) 0 0
\(81\) 531441. 0.111111
\(82\) 0 0
\(83\) −3.30152e6 −0.633783 −0.316892 0.948462i \(-0.602639\pi\)
−0.316892 + 0.948462i \(0.602639\pi\)
\(84\) 0 0
\(85\) −1.04703e7 −1.84923
\(86\) 0 0
\(87\) 3.05325e6 0.497101
\(88\) 0 0
\(89\) 7.70391e6 1.15837 0.579184 0.815197i \(-0.303371\pi\)
0.579184 + 0.815197i \(0.303371\pi\)
\(90\) 0 0
\(91\) −1.75853e6 −0.244628
\(92\) 0 0
\(93\) −2.38744e6 −0.307781
\(94\) 0 0
\(95\) 1.61747e7 1.93555
\(96\) 0 0
\(97\) −1.39202e6 −0.154862 −0.0774308 0.996998i \(-0.524672\pi\)
−0.0774308 + 0.996998i \(0.524672\pi\)
\(98\) 0 0
\(99\) 5.56160e6 0.576072
\(100\) 0 0
\(101\) 1.56117e7 1.50773 0.753866 0.657028i \(-0.228187\pi\)
0.753866 + 0.657028i \(0.228187\pi\)
\(102\) 0 0
\(103\) −4.93242e6 −0.444764 −0.222382 0.974960i \(-0.571383\pi\)
−0.222382 + 0.974960i \(0.571383\pi\)
\(104\) 0 0
\(105\) 1.03812e7 0.875157
\(106\) 0 0
\(107\) −1.36458e7 −1.07685 −0.538425 0.842673i \(-0.680981\pi\)
−0.538425 + 0.842673i \(0.680981\pi\)
\(108\) 0 0
\(109\) −3.07725e6 −0.227599 −0.113799 0.993504i \(-0.536302\pi\)
−0.113799 + 0.993504i \(0.536302\pi\)
\(110\) 0 0
\(111\) 1.02537e7 0.711622
\(112\) 0 0
\(113\) 1.04413e7 0.680739 0.340369 0.940292i \(-0.389448\pi\)
0.340369 + 0.940292i \(0.389448\pi\)
\(114\) 0 0
\(115\) −1.25819e7 −0.771443
\(116\) 0 0
\(117\) 1.60161e6 0.0924500
\(118\) 0 0
\(119\) 1.74467e7 0.949070
\(120\) 0 0
\(121\) 3.87158e7 1.98673
\(122\) 0 0
\(123\) 1.07755e7 0.522118
\(124\) 0 0
\(125\) 3.57835e7 1.63869
\(126\) 0 0
\(127\) −2.96218e7 −1.28321 −0.641606 0.767035i \(-0.721731\pi\)
−0.641606 + 0.767035i \(0.721731\pi\)
\(128\) 0 0
\(129\) −2.29397e7 −0.940857
\(130\) 0 0
\(131\) −4.74229e7 −1.84306 −0.921529 0.388310i \(-0.873059\pi\)
−0.921529 + 0.388310i \(0.873059\pi\)
\(132\) 0 0
\(133\) −2.69521e7 −0.993371
\(134\) 0 0
\(135\) −9.45488e6 −0.330741
\(136\) 0 0
\(137\) −2.73115e7 −0.907452 −0.453726 0.891141i \(-0.649905\pi\)
−0.453726 + 0.891141i \(0.649905\pi\)
\(138\) 0 0
\(139\) 2.91049e7 0.919209 0.459605 0.888124i \(-0.347991\pi\)
0.459605 + 0.888124i \(0.347991\pi\)
\(140\) 0 0
\(141\) −2.53737e7 −0.762284
\(142\) 0 0
\(143\) 1.67611e7 0.479321
\(144\) 0 0
\(145\) −5.43204e7 −1.47970
\(146\) 0 0
\(147\) 4.93733e6 0.128198
\(148\) 0 0
\(149\) −6.81525e7 −1.68783 −0.843917 0.536474i \(-0.819756\pi\)
−0.843917 + 0.536474i \(0.819756\pi\)
\(150\) 0 0
\(151\) 5.30712e7 1.25441 0.627205 0.778854i \(-0.284199\pi\)
0.627205 + 0.778854i \(0.284199\pi\)
\(152\) 0 0
\(153\) −1.58899e7 −0.358674
\(154\) 0 0
\(155\) 4.24749e7 0.916161
\(156\) 0 0
\(157\) 3.34739e7 0.690331 0.345166 0.938542i \(-0.387823\pi\)
0.345166 + 0.938542i \(0.387823\pi\)
\(158\) 0 0
\(159\) −3.09338e7 −0.610300
\(160\) 0 0
\(161\) 2.09653e7 0.395924
\(162\) 0 0
\(163\) −4.33468e7 −0.783973 −0.391986 0.919971i \(-0.628212\pi\)
−0.391986 + 0.919971i \(0.628212\pi\)
\(164\) 0 0
\(165\) −9.89466e7 −1.71478
\(166\) 0 0
\(167\) 2.64651e7 0.439710 0.219855 0.975533i \(-0.429442\pi\)
0.219855 + 0.975533i \(0.429442\pi\)
\(168\) 0 0
\(169\) 4.82681e6 0.0769231
\(170\) 0 0
\(171\) 2.45471e7 0.375416
\(172\) 0 0
\(173\) 6.24515e7 0.917025 0.458513 0.888688i \(-0.348382\pi\)
0.458513 + 0.888688i \(0.348382\pi\)
\(174\) 0 0
\(175\) −1.22160e8 −1.72303
\(176\) 0 0
\(177\) −1.97600e7 −0.267843
\(178\) 0 0
\(179\) 4.26317e7 0.555581 0.277790 0.960642i \(-0.410398\pi\)
0.277790 + 0.960642i \(0.410398\pi\)
\(180\) 0 0
\(181\) 1.43389e8 1.79738 0.898689 0.438587i \(-0.144521\pi\)
0.898689 + 0.438587i \(0.144521\pi\)
\(182\) 0 0
\(183\) −1.70886e7 −0.206124
\(184\) 0 0
\(185\) −1.82423e8 −2.11826
\(186\) 0 0
\(187\) −1.66290e8 −1.85960
\(188\) 0 0
\(189\) 1.57547e7 0.169744
\(190\) 0 0
\(191\) 1.29924e7 0.134918 0.0674592 0.997722i \(-0.478511\pi\)
0.0674592 + 0.997722i \(0.478511\pi\)
\(192\) 0 0
\(193\) 7.26618e7 0.727538 0.363769 0.931489i \(-0.381490\pi\)
0.363769 + 0.931489i \(0.381490\pi\)
\(194\) 0 0
\(195\) −2.84943e7 −0.275193
\(196\) 0 0
\(197\) −1.48236e8 −1.38141 −0.690705 0.723137i \(-0.742700\pi\)
−0.690705 + 0.723137i \(0.742700\pi\)
\(198\) 0 0
\(199\) −6.62122e7 −0.595597 −0.297799 0.954629i \(-0.596252\pi\)
−0.297799 + 0.954629i \(0.596252\pi\)
\(200\) 0 0
\(201\) −4.78049e7 −0.415228
\(202\) 0 0
\(203\) 9.05146e7 0.759421
\(204\) 0 0
\(205\) −1.91707e8 −1.55417
\(206\) 0 0
\(207\) −1.90945e7 −0.149628
\(208\) 0 0
\(209\) 2.56888e8 1.94640
\(210\) 0 0
\(211\) −1.76246e8 −1.29160 −0.645802 0.763505i \(-0.723477\pi\)
−0.645802 + 0.763505i \(0.723477\pi\)
\(212\) 0 0
\(213\) −1.47648e8 −1.04689
\(214\) 0 0
\(215\) 4.08121e8 2.80062
\(216\) 0 0
\(217\) −7.07763e7 −0.470196
\(218\) 0 0
\(219\) −2.65828e7 −0.171020
\(220\) 0 0
\(221\) −4.78875e7 −0.298435
\(222\) 0 0
\(223\) −1.08567e8 −0.655587 −0.327793 0.944749i \(-0.606305\pi\)
−0.327793 + 0.944749i \(0.606305\pi\)
\(224\) 0 0
\(225\) 1.11259e8 0.651172
\(226\) 0 0
\(227\) −1.84826e8 −1.04875 −0.524377 0.851486i \(-0.675702\pi\)
−0.524377 + 0.851486i \(0.675702\pi\)
\(228\) 0 0
\(229\) 2.69737e7 0.148428 0.0742142 0.997242i \(-0.476355\pi\)
0.0742142 + 0.997242i \(0.476355\pi\)
\(230\) 0 0
\(231\) 1.64876e8 0.880065
\(232\) 0 0
\(233\) 2.14981e8 1.11341 0.556705 0.830710i \(-0.312065\pi\)
0.556705 + 0.830710i \(0.312065\pi\)
\(234\) 0 0
\(235\) 4.51424e8 2.26907
\(236\) 0 0
\(237\) −1.70502e8 −0.831975
\(238\) 0 0
\(239\) −1.06247e8 −0.503413 −0.251706 0.967804i \(-0.580992\pi\)
−0.251706 + 0.967804i \(0.580992\pi\)
\(240\) 0 0
\(241\) −4.26426e8 −1.96238 −0.981192 0.193035i \(-0.938167\pi\)
−0.981192 + 0.193035i \(0.938167\pi\)
\(242\) 0 0
\(243\) −1.43489e7 −0.0641500
\(244\) 0 0
\(245\) −8.78402e7 −0.381603
\(246\) 0 0
\(247\) 7.39779e7 0.312365
\(248\) 0 0
\(249\) 8.91411e7 0.365915
\(250\) 0 0
\(251\) 4.84674e8 1.93460 0.967300 0.253634i \(-0.0816260\pi\)
0.967300 + 0.253634i \(0.0816260\pi\)
\(252\) 0 0
\(253\) −1.99827e8 −0.775769
\(254\) 0 0
\(255\) 2.82697e8 1.06765
\(256\) 0 0
\(257\) 2.21477e8 0.813883 0.406942 0.913454i \(-0.366595\pi\)
0.406942 + 0.913454i \(0.366595\pi\)
\(258\) 0 0
\(259\) 3.03974e8 1.08714
\(260\) 0 0
\(261\) −8.24377e7 −0.287001
\(262\) 0 0
\(263\) −6.77193e7 −0.229545 −0.114772 0.993392i \(-0.536614\pi\)
−0.114772 + 0.993392i \(0.536614\pi\)
\(264\) 0 0
\(265\) 5.50344e8 1.81666
\(266\) 0 0
\(267\) −2.08006e8 −0.668784
\(268\) 0 0
\(269\) −2.68963e8 −0.842481 −0.421240 0.906949i \(-0.638405\pi\)
−0.421240 + 0.906949i \(0.638405\pi\)
\(270\) 0 0
\(271\) −5.32945e8 −1.62663 −0.813316 0.581822i \(-0.802340\pi\)
−0.813316 + 0.581822i \(0.802340\pi\)
\(272\) 0 0
\(273\) 4.74804e7 0.141236
\(274\) 0 0
\(275\) 1.16434e9 3.37610
\(276\) 0 0
\(277\) −3.93629e7 −0.111278 −0.0556388 0.998451i \(-0.517720\pi\)
−0.0556388 + 0.998451i \(0.517720\pi\)
\(278\) 0 0
\(279\) 6.44608e7 0.177697
\(280\) 0 0
\(281\) 5.25113e8 1.41182 0.705912 0.708299i \(-0.250537\pi\)
0.705912 + 0.708299i \(0.250537\pi\)
\(282\) 0 0
\(283\) 2.40271e8 0.630158 0.315079 0.949065i \(-0.397969\pi\)
0.315079 + 0.949065i \(0.397969\pi\)
\(284\) 0 0
\(285\) −4.36717e8 −1.11749
\(286\) 0 0
\(287\) 3.19443e8 0.797640
\(288\) 0 0
\(289\) 6.47612e7 0.157824
\(290\) 0 0
\(291\) 3.75845e7 0.0894094
\(292\) 0 0
\(293\) 4.00851e8 0.930993 0.465497 0.885050i \(-0.345876\pi\)
0.465497 + 0.885050i \(0.345876\pi\)
\(294\) 0 0
\(295\) 3.51550e8 0.797279
\(296\) 0 0
\(297\) −1.50163e8 −0.332595
\(298\) 0 0
\(299\) −5.75456e7 −0.124498
\(300\) 0 0
\(301\) −6.80055e8 −1.43735
\(302\) 0 0
\(303\) −4.21515e8 −0.870490
\(304\) 0 0
\(305\) 3.04024e8 0.613562
\(306\) 0 0
\(307\) −4.37804e8 −0.863565 −0.431782 0.901978i \(-0.642115\pi\)
−0.431782 + 0.901978i \(0.642115\pi\)
\(308\) 0 0
\(309\) 1.33175e8 0.256785
\(310\) 0 0
\(311\) −7.39551e7 −0.139414 −0.0697070 0.997568i \(-0.522206\pi\)
−0.0697070 + 0.997568i \(0.522206\pi\)
\(312\) 0 0
\(313\) −1.22974e8 −0.226677 −0.113338 0.993556i \(-0.536154\pi\)
−0.113338 + 0.993556i \(0.536154\pi\)
\(314\) 0 0
\(315\) −2.80293e8 −0.505272
\(316\) 0 0
\(317\) −3.43640e8 −0.605893 −0.302946 0.953008i \(-0.597970\pi\)
−0.302946 + 0.953008i \(0.597970\pi\)
\(318\) 0 0
\(319\) −8.62722e8 −1.48800
\(320\) 0 0
\(321\) 3.68436e8 0.621720
\(322\) 0 0
\(323\) −7.33947e8 −1.21187
\(324\) 0 0
\(325\) 3.35303e8 0.541808
\(326\) 0 0
\(327\) 8.30858e7 0.131404
\(328\) 0 0
\(329\) −7.52212e8 −1.16454
\(330\) 0 0
\(331\) 1.24712e8 0.189020 0.0945102 0.995524i \(-0.469871\pi\)
0.0945102 + 0.995524i \(0.469871\pi\)
\(332\) 0 0
\(333\) −2.76849e8 −0.410855
\(334\) 0 0
\(335\) 8.50499e8 1.23600
\(336\) 0 0
\(337\) 1.97813e8 0.281547 0.140773 0.990042i \(-0.455041\pi\)
0.140773 + 0.990042i \(0.455041\pi\)
\(338\) 0 0
\(339\) −2.81915e8 −0.393025
\(340\) 0 0
\(341\) 6.74591e8 0.921298
\(342\) 0 0
\(343\) 8.05553e8 1.07787
\(344\) 0 0
\(345\) 3.39711e8 0.445393
\(346\) 0 0
\(347\) 6.43590e8 0.826906 0.413453 0.910526i \(-0.364323\pi\)
0.413453 + 0.910526i \(0.364323\pi\)
\(348\) 0 0
\(349\) 5.79925e8 0.730270 0.365135 0.930955i \(-0.381023\pi\)
0.365135 + 0.930955i \(0.381023\pi\)
\(350\) 0 0
\(351\) −4.32436e7 −0.0533761
\(352\) 0 0
\(353\) −1.41627e9 −1.71369 −0.856847 0.515571i \(-0.827580\pi\)
−0.856847 + 0.515571i \(0.827580\pi\)
\(354\) 0 0
\(355\) 2.62681e9 3.11623
\(356\) 0 0
\(357\) −4.71060e8 −0.547946
\(358\) 0 0
\(359\) 1.38549e8 0.158042 0.0790210 0.996873i \(-0.474821\pi\)
0.0790210 + 0.996873i \(0.474821\pi\)
\(360\) 0 0
\(361\) 2.39948e8 0.268437
\(362\) 0 0
\(363\) −1.04533e9 −1.14704
\(364\) 0 0
\(365\) 4.72936e8 0.509069
\(366\) 0 0
\(367\) 1.29015e9 1.36241 0.681207 0.732090i \(-0.261455\pi\)
0.681207 + 0.732090i \(0.261455\pi\)
\(368\) 0 0
\(369\) −2.90938e8 −0.301445
\(370\) 0 0
\(371\) −9.17044e8 −0.932355
\(372\) 0 0
\(373\) −1.64979e9 −1.64607 −0.823034 0.567993i \(-0.807720\pi\)
−0.823034 + 0.567993i \(0.807720\pi\)
\(374\) 0 0
\(375\) −9.66155e8 −0.946100
\(376\) 0 0
\(377\) −2.48444e8 −0.238800
\(378\) 0 0
\(379\) −3.88541e7 −0.0366606 −0.0183303 0.999832i \(-0.505835\pi\)
−0.0183303 + 0.999832i \(0.505835\pi\)
\(380\) 0 0
\(381\) 7.99788e8 0.740863
\(382\) 0 0
\(383\) −1.13507e9 −1.03235 −0.516177 0.856482i \(-0.672645\pi\)
−0.516177 + 0.856482i \(0.672645\pi\)
\(384\) 0 0
\(385\) −2.93331e9 −2.61966
\(386\) 0 0
\(387\) 6.19372e8 0.543204
\(388\) 0 0
\(389\) −1.56751e9 −1.35017 −0.675083 0.737742i \(-0.735892\pi\)
−0.675083 + 0.737742i \(0.735892\pi\)
\(390\) 0 0
\(391\) 5.70919e8 0.483009
\(392\) 0 0
\(393\) 1.28042e9 1.06409
\(394\) 0 0
\(395\) 3.03340e9 2.47651
\(396\) 0 0
\(397\) −6.92611e8 −0.555550 −0.277775 0.960646i \(-0.589597\pi\)
−0.277775 + 0.960646i \(0.589597\pi\)
\(398\) 0 0
\(399\) 7.27706e8 0.573523
\(400\) 0 0
\(401\) 1.78673e9 1.38374 0.691870 0.722022i \(-0.256787\pi\)
0.691870 + 0.722022i \(0.256787\pi\)
\(402\) 0 0
\(403\) 1.94267e8 0.147853
\(404\) 0 0
\(405\) 2.55282e8 0.190953
\(406\) 0 0
\(407\) −2.89727e9 −2.13014
\(408\) 0 0
\(409\) −3.45334e8 −0.249579 −0.124790 0.992183i \(-0.539826\pi\)
−0.124790 + 0.992183i \(0.539826\pi\)
\(410\) 0 0
\(411\) 7.37411e8 0.523918
\(412\) 0 0
\(413\) −5.85791e8 −0.409183
\(414\) 0 0
\(415\) −1.58591e9 −1.08921
\(416\) 0 0
\(417\) −7.85833e8 −0.530706
\(418\) 0 0
\(419\) −9.49769e8 −0.630767 −0.315384 0.948964i \(-0.602133\pi\)
−0.315384 + 0.948964i \(0.602133\pi\)
\(420\) 0 0
\(421\) −2.49548e9 −1.62992 −0.814960 0.579517i \(-0.803241\pi\)
−0.814960 + 0.579517i \(0.803241\pi\)
\(422\) 0 0
\(423\) 6.85090e8 0.440105
\(424\) 0 0
\(425\) −3.32659e9 −2.10203
\(426\) 0 0
\(427\) −5.06598e8 −0.314895
\(428\) 0 0
\(429\) −4.52550e8 −0.276736
\(430\) 0 0
\(431\) 9.09506e8 0.547186 0.273593 0.961846i \(-0.411788\pi\)
0.273593 + 0.961846i \(0.411788\pi\)
\(432\) 0 0
\(433\) −3.17167e9 −1.87750 −0.938752 0.344594i \(-0.888017\pi\)
−0.938752 + 0.344594i \(0.888017\pi\)
\(434\) 0 0
\(435\) 1.46665e9 0.854308
\(436\) 0 0
\(437\) −8.81970e8 −0.505555
\(438\) 0 0
\(439\) −1.47389e9 −0.831458 −0.415729 0.909489i \(-0.636474\pi\)
−0.415729 + 0.909489i \(0.636474\pi\)
\(440\) 0 0
\(441\) −1.33308e8 −0.0740152
\(442\) 0 0
\(443\) −2.63296e9 −1.43890 −0.719450 0.694545i \(-0.755606\pi\)
−0.719450 + 0.694545i \(0.755606\pi\)
\(444\) 0 0
\(445\) 3.70063e9 1.99075
\(446\) 0 0
\(447\) 1.84012e9 0.974471
\(448\) 0 0
\(449\) 1.72268e9 0.898137 0.449069 0.893497i \(-0.351756\pi\)
0.449069 + 0.893497i \(0.351756\pi\)
\(450\) 0 0
\(451\) −3.04471e9 −1.56289
\(452\) 0 0
\(453\) −1.43292e9 −0.724234
\(454\) 0 0
\(455\) −8.44724e8 −0.420412
\(456\) 0 0
\(457\) −2.85445e9 −1.39899 −0.699497 0.714635i \(-0.746593\pi\)
−0.699497 + 0.714635i \(0.746593\pi\)
\(458\) 0 0
\(459\) 4.29026e8 0.207081
\(460\) 0 0
\(461\) −4.16130e8 −0.197822 −0.0989112 0.995096i \(-0.531536\pi\)
−0.0989112 + 0.995096i \(0.531536\pi\)
\(462\) 0 0
\(463\) 1.20291e9 0.563246 0.281623 0.959525i \(-0.409127\pi\)
0.281623 + 0.959525i \(0.409127\pi\)
\(464\) 0 0
\(465\) −1.14682e9 −0.528946
\(466\) 0 0
\(467\) 1.78997e9 0.813276 0.406638 0.913589i \(-0.366701\pi\)
0.406638 + 0.913589i \(0.366701\pi\)
\(468\) 0 0
\(469\) −1.41719e9 −0.634343
\(470\) 0 0
\(471\) −9.03795e8 −0.398563
\(472\) 0 0
\(473\) 6.48181e9 2.81632
\(474\) 0 0
\(475\) 5.13901e9 2.20015
\(476\) 0 0
\(477\) 8.35213e8 0.352357
\(478\) 0 0
\(479\) −1.09621e9 −0.455742 −0.227871 0.973691i \(-0.573176\pi\)
−0.227871 + 0.973691i \(0.573176\pi\)
\(480\) 0 0
\(481\) −8.34346e8 −0.341852
\(482\) 0 0
\(483\) −5.66064e8 −0.228587
\(484\) 0 0
\(485\) −6.68666e8 −0.266142
\(486\) 0 0
\(487\) 4.23704e9 1.66231 0.831154 0.556042i \(-0.187681\pi\)
0.831154 + 0.556042i \(0.187681\pi\)
\(488\) 0 0
\(489\) 1.17036e9 0.452627
\(490\) 0 0
\(491\) −3.77577e9 −1.43953 −0.719763 0.694219i \(-0.755750\pi\)
−0.719763 + 0.694219i \(0.755750\pi\)
\(492\) 0 0
\(493\) 2.46485e9 0.926460
\(494\) 0 0
\(495\) 2.67156e9 0.990026
\(496\) 0 0
\(497\) −4.37708e9 −1.59933
\(498\) 0 0
\(499\) 4.09554e9 1.47557 0.737784 0.675037i \(-0.235872\pi\)
0.737784 + 0.675037i \(0.235872\pi\)
\(500\) 0 0
\(501\) −7.14559e8 −0.253867
\(502\) 0 0
\(503\) 3.00181e9 1.05171 0.525854 0.850575i \(-0.323746\pi\)
0.525854 + 0.850575i \(0.323746\pi\)
\(504\) 0 0
\(505\) 7.49918e9 2.59116
\(506\) 0 0
\(507\) −1.30324e8 −0.0444116
\(508\) 0 0
\(509\) 2.35466e9 0.791435 0.395718 0.918372i \(-0.370496\pi\)
0.395718 + 0.918372i \(0.370496\pi\)
\(510\) 0 0
\(511\) −7.88057e8 −0.261267
\(512\) 0 0
\(513\) −6.62771e8 −0.216747
\(514\) 0 0
\(515\) −2.36933e9 −0.764363
\(516\) 0 0
\(517\) 7.16956e9 2.28179
\(518\) 0 0
\(519\) −1.68619e9 −0.529445
\(520\) 0 0
\(521\) −3.51002e9 −1.08737 −0.543685 0.839289i \(-0.682971\pi\)
−0.543685 + 0.839289i \(0.682971\pi\)
\(522\) 0 0
\(523\) 2.45850e9 0.751474 0.375737 0.926726i \(-0.377390\pi\)
0.375737 + 0.926726i \(0.377390\pi\)
\(524\) 0 0
\(525\) 3.29831e9 0.994795
\(526\) 0 0
\(527\) −1.92735e9 −0.573619
\(528\) 0 0
\(529\) −2.71876e9 −0.798503
\(530\) 0 0
\(531\) 5.33519e8 0.154639
\(532\) 0 0
\(533\) −8.76805e8 −0.250818
\(534\) 0 0
\(535\) −6.55486e9 −1.85065
\(536\) 0 0
\(537\) −1.15106e9 −0.320765
\(538\) 0 0
\(539\) −1.39509e9 −0.383743
\(540\) 0 0
\(541\) 3.51448e9 0.954267 0.477134 0.878831i \(-0.341676\pi\)
0.477134 + 0.878831i \(0.341676\pi\)
\(542\) 0 0
\(543\) −3.87149e9 −1.03772
\(544\) 0 0
\(545\) −1.47818e9 −0.391147
\(546\) 0 0
\(547\) 3.24109e9 0.846712 0.423356 0.905963i \(-0.360852\pi\)
0.423356 + 0.905963i \(0.360852\pi\)
\(548\) 0 0
\(549\) 4.61393e8 0.119006
\(550\) 0 0
\(551\) −3.80777e9 −0.969705
\(552\) 0 0
\(553\) −5.05459e9 −1.27101
\(554\) 0 0
\(555\) 4.92543e9 1.22298
\(556\) 0 0
\(557\) 3.67574e9 0.901263 0.450632 0.892710i \(-0.351199\pi\)
0.450632 + 0.892710i \(0.351199\pi\)
\(558\) 0 0
\(559\) 1.86661e9 0.451973
\(560\) 0 0
\(561\) 4.48982e9 1.07364
\(562\) 0 0
\(563\) 7.07829e8 0.167166 0.0835831 0.996501i \(-0.473364\pi\)
0.0835831 + 0.996501i \(0.473364\pi\)
\(564\) 0 0
\(565\) 5.01556e9 1.16990
\(566\) 0 0
\(567\) −4.25378e8 −0.0980019
\(568\) 0 0
\(569\) −1.20435e9 −0.274069 −0.137034 0.990566i \(-0.543757\pi\)
−0.137034 + 0.990566i \(0.543757\pi\)
\(570\) 0 0
\(571\) −8.05515e9 −1.81070 −0.905351 0.424663i \(-0.860392\pi\)
−0.905351 + 0.424663i \(0.860392\pi\)
\(572\) 0 0
\(573\) −3.50794e8 −0.0778952
\(574\) 0 0
\(575\) −3.99750e9 −0.876903
\(576\) 0 0
\(577\) −1.02226e9 −0.221538 −0.110769 0.993846i \(-0.535331\pi\)
−0.110769 + 0.993846i \(0.535331\pi\)
\(578\) 0 0
\(579\) −1.96187e9 −0.420044
\(580\) 0 0
\(581\) 2.64262e9 0.559008
\(582\) 0 0
\(583\) 8.74062e9 1.82685
\(584\) 0 0
\(585\) 7.69347e8 0.158883
\(586\) 0 0
\(587\) −6.83523e9 −1.39483 −0.697413 0.716670i \(-0.745665\pi\)
−0.697413 + 0.716670i \(0.745665\pi\)
\(588\) 0 0
\(589\) 2.97742e9 0.600394
\(590\) 0 0
\(591\) 4.00238e9 0.797558
\(592\) 0 0
\(593\) −9.50693e8 −0.187219 −0.0936093 0.995609i \(-0.529840\pi\)
−0.0936093 + 0.995609i \(0.529840\pi\)
\(594\) 0 0
\(595\) 8.38064e9 1.63105
\(596\) 0 0
\(597\) 1.78773e9 0.343868
\(598\) 0 0
\(599\) 3.01345e9 0.572889 0.286444 0.958097i \(-0.407527\pi\)
0.286444 + 0.958097i \(0.407527\pi\)
\(600\) 0 0
\(601\) 4.27628e9 0.803537 0.401768 0.915741i \(-0.368396\pi\)
0.401768 + 0.915741i \(0.368396\pi\)
\(602\) 0 0
\(603\) 1.29073e9 0.239732
\(604\) 0 0
\(605\) 1.85974e10 3.41436
\(606\) 0 0
\(607\) −6.64232e9 −1.20548 −0.602739 0.797938i \(-0.705924\pi\)
−0.602739 + 0.797938i \(0.705924\pi\)
\(608\) 0 0
\(609\) −2.44389e9 −0.438452
\(610\) 0 0
\(611\) 2.06467e9 0.366190
\(612\) 0 0
\(613\) −4.75171e9 −0.833178 −0.416589 0.909095i \(-0.636775\pi\)
−0.416589 + 0.909095i \(0.636775\pi\)
\(614\) 0 0
\(615\) 5.17609e9 0.897302
\(616\) 0 0
\(617\) −6.33786e9 −1.08629 −0.543143 0.839640i \(-0.682766\pi\)
−0.543143 + 0.839640i \(0.682766\pi\)
\(618\) 0 0
\(619\) 1.06126e10 1.79848 0.899241 0.437454i \(-0.144120\pi\)
0.899241 + 0.437454i \(0.144120\pi\)
\(620\) 0 0
\(621\) 5.15553e8 0.0863878
\(622\) 0 0
\(623\) −6.16640e9 −1.02170
\(624\) 0 0
\(625\) 5.26556e9 0.862710
\(626\) 0 0
\(627\) −6.93599e9 −1.12376
\(628\) 0 0
\(629\) 8.27768e9 1.32627
\(630\) 0 0
\(631\) −8.73323e9 −1.38380 −0.691898 0.721995i \(-0.743225\pi\)
−0.691898 + 0.721995i \(0.743225\pi\)
\(632\) 0 0
\(633\) 4.75863e9 0.745708
\(634\) 0 0
\(635\) −1.42291e10 −2.20530
\(636\) 0 0
\(637\) −4.01753e8 −0.0615844
\(638\) 0 0
\(639\) 3.98650e9 0.604420
\(640\) 0 0
\(641\) −6.68290e9 −1.00222 −0.501109 0.865384i \(-0.667074\pi\)
−0.501109 + 0.865384i \(0.667074\pi\)
\(642\) 0 0
\(643\) −6.08421e9 −0.902539 −0.451269 0.892388i \(-0.649029\pi\)
−0.451269 + 0.892388i \(0.649029\pi\)
\(644\) 0 0
\(645\) −1.10193e10 −1.61694
\(646\) 0 0
\(647\) −3.35194e9 −0.486554 −0.243277 0.969957i \(-0.578222\pi\)
−0.243277 + 0.969957i \(0.578222\pi\)
\(648\) 0 0
\(649\) 5.58335e9 0.801749
\(650\) 0 0
\(651\) 1.91096e9 0.271468
\(652\) 0 0
\(653\) 5.17471e9 0.727261 0.363630 0.931543i \(-0.381537\pi\)
0.363630 + 0.931543i \(0.381537\pi\)
\(654\) 0 0
\(655\) −2.27800e10 −3.16744
\(656\) 0 0
\(657\) 7.17736e8 0.0987384
\(658\) 0 0
\(659\) 9.38741e9 1.27775 0.638876 0.769309i \(-0.279400\pi\)
0.638876 + 0.769309i \(0.279400\pi\)
\(660\) 0 0
\(661\) −1.30856e10 −1.76233 −0.881165 0.472809i \(-0.843240\pi\)
−0.881165 + 0.472809i \(0.843240\pi\)
\(662\) 0 0
\(663\) 1.29296e9 0.172301
\(664\) 0 0
\(665\) −1.29466e10 −1.70719
\(666\) 0 0
\(667\) 2.96197e9 0.386491
\(668\) 0 0
\(669\) 2.93131e9 0.378503
\(670\) 0 0
\(671\) 4.82854e9 0.617003
\(672\) 0 0
\(673\) 4.10451e9 0.519049 0.259524 0.965737i \(-0.416434\pi\)
0.259524 + 0.965737i \(0.416434\pi\)
\(674\) 0 0
\(675\) −3.00399e9 −0.375954
\(676\) 0 0
\(677\) 1.12936e10 1.39885 0.699424 0.714707i \(-0.253440\pi\)
0.699424 + 0.714707i \(0.253440\pi\)
\(678\) 0 0
\(679\) 1.11420e9 0.136591
\(680\) 0 0
\(681\) 4.99031e9 0.605498
\(682\) 0 0
\(683\) −6.54596e9 −0.786142 −0.393071 0.919508i \(-0.628587\pi\)
−0.393071 + 0.919508i \(0.628587\pi\)
\(684\) 0 0
\(685\) −1.31193e10 −1.55953
\(686\) 0 0
\(687\) −7.28291e8 −0.0856952
\(688\) 0 0
\(689\) 2.51710e9 0.293179
\(690\) 0 0
\(691\) −1.47731e10 −1.70333 −0.851664 0.524089i \(-0.824406\pi\)
−0.851664 + 0.524089i \(0.824406\pi\)
\(692\) 0 0
\(693\) −4.45164e9 −0.508106
\(694\) 0 0
\(695\) 1.39808e10 1.57973
\(696\) 0 0
\(697\) 8.69893e9 0.973085
\(698\) 0 0
\(699\) −5.80450e9 −0.642827
\(700\) 0 0
\(701\) −1.02539e9 −0.112429 −0.0562143 0.998419i \(-0.517903\pi\)
−0.0562143 + 0.998419i \(0.517903\pi\)
\(702\) 0 0
\(703\) −1.27876e10 −1.38818
\(704\) 0 0
\(705\) −1.21885e10 −1.31005
\(706\) 0 0
\(707\) −1.24959e10 −1.32985
\(708\) 0 0
\(709\) 1.66619e10 1.75575 0.877877 0.478887i \(-0.158959\pi\)
0.877877 + 0.478887i \(0.158959\pi\)
\(710\) 0 0
\(711\) 4.60355e9 0.480341
\(712\) 0 0
\(713\) −2.31606e9 −0.239296
\(714\) 0 0
\(715\) 8.05132e9 0.823751
\(716\) 0 0
\(717\) 2.86867e9 0.290645
\(718\) 0 0
\(719\) 5.70558e9 0.572465 0.286232 0.958160i \(-0.407597\pi\)
0.286232 + 0.958160i \(0.407597\pi\)
\(720\) 0 0
\(721\) 3.94803e9 0.392290
\(722\) 0 0
\(723\) 1.15135e10 1.13298
\(724\) 0 0
\(725\) −1.72586e10 −1.68199
\(726\) 0 0
\(727\) −5.74555e9 −0.554576 −0.277288 0.960787i \(-0.589436\pi\)
−0.277288 + 0.960787i \(0.589436\pi\)
\(728\) 0 0
\(729\) 3.87420e8 0.0370370
\(730\) 0 0
\(731\) −1.85190e10 −1.75350
\(732\) 0 0
\(733\) −1.26217e10 −1.18373 −0.591867 0.806036i \(-0.701609\pi\)
−0.591867 + 0.806036i \(0.701609\pi\)
\(734\) 0 0
\(735\) 2.37169e9 0.220319
\(736\) 0 0
\(737\) 1.35077e10 1.24293
\(738\) 0 0
\(739\) 1.52125e9 0.138658 0.0693289 0.997594i \(-0.477914\pi\)
0.0693289 + 0.997594i \(0.477914\pi\)
\(740\) 0 0
\(741\) −1.99740e9 −0.180344
\(742\) 0 0
\(743\) 1.67640e10 1.49940 0.749701 0.661777i \(-0.230197\pi\)
0.749701 + 0.661777i \(0.230197\pi\)
\(744\) 0 0
\(745\) −3.27376e10 −2.90068
\(746\) 0 0
\(747\) −2.40681e9 −0.211261
\(748\) 0 0
\(749\) 1.09224e10 0.949801
\(750\) 0 0
\(751\) 1.41040e10 1.21507 0.607536 0.794292i \(-0.292158\pi\)
0.607536 + 0.794292i \(0.292158\pi\)
\(752\) 0 0
\(753\) −1.30862e10 −1.11694
\(754\) 0 0
\(755\) 2.54931e10 2.15580
\(756\) 0 0
\(757\) −1.24712e10 −1.04489 −0.522446 0.852672i \(-0.674980\pi\)
−0.522446 + 0.852672i \(0.674980\pi\)
\(758\) 0 0
\(759\) 5.39533e9 0.447890
\(760\) 0 0
\(761\) −2.36111e9 −0.194209 −0.0971045 0.995274i \(-0.530958\pi\)
−0.0971045 + 0.995274i \(0.530958\pi\)
\(762\) 0 0
\(763\) 2.46311e9 0.200746
\(764\) 0 0
\(765\) −7.63281e9 −0.616410
\(766\) 0 0
\(767\) 1.60788e9 0.128667
\(768\) 0 0
\(769\) 1.72321e9 0.136646 0.0683228 0.997663i \(-0.478235\pi\)
0.0683228 + 0.997663i \(0.478235\pi\)
\(770\) 0 0
\(771\) −5.97987e9 −0.469896
\(772\) 0 0
\(773\) −1.63809e10 −1.27558 −0.637792 0.770209i \(-0.720152\pi\)
−0.637792 + 0.770209i \(0.720152\pi\)
\(774\) 0 0
\(775\) 1.34951e10 1.04140
\(776\) 0 0
\(777\) −8.20729e9 −0.627663
\(778\) 0 0
\(779\) −1.34383e10 −1.01851
\(780\) 0 0
\(781\) 4.17193e10 3.13370
\(782\) 0 0
\(783\) 2.22582e9 0.165700
\(784\) 0 0
\(785\) 1.60794e10 1.18639
\(786\) 0 0
\(787\) −6.69903e9 −0.489892 −0.244946 0.969537i \(-0.578770\pi\)
−0.244946 + 0.969537i \(0.578770\pi\)
\(788\) 0 0
\(789\) 1.82842e9 0.132528
\(790\) 0 0
\(791\) −8.35748e9 −0.600423
\(792\) 0 0
\(793\) 1.39051e9 0.0990187
\(794\) 0 0
\(795\) −1.48593e10 −1.04885
\(796\) 0 0
\(797\) −8.74251e9 −0.611691 −0.305845 0.952081i \(-0.598939\pi\)
−0.305845 + 0.952081i \(0.598939\pi\)
\(798\) 0 0
\(799\) −2.04839e10 −1.42069
\(800\) 0 0
\(801\) 5.61615e9 0.386122
\(802\) 0 0
\(803\) 7.51121e9 0.511924
\(804\) 0 0
\(805\) 1.00709e10 0.680426
\(806\) 0 0
\(807\) 7.26201e9 0.486407
\(808\) 0 0
\(809\) −2.57182e10 −1.70773 −0.853867 0.520492i \(-0.825749\pi\)
−0.853867 + 0.520492i \(0.825749\pi\)
\(810\) 0 0
\(811\) −1.61196e9 −0.106116 −0.0530579 0.998591i \(-0.516897\pi\)
−0.0530579 + 0.998591i \(0.516897\pi\)
\(812\) 0 0
\(813\) 1.43895e10 0.939137
\(814\) 0 0
\(815\) −2.08220e10 −1.34732
\(816\) 0 0
\(817\) 2.86086e10 1.83535
\(818\) 0 0
\(819\) −1.28197e9 −0.0815425
\(820\) 0 0
\(821\) 2.02299e10 1.27583 0.637914 0.770108i \(-0.279798\pi\)
0.637914 + 0.770108i \(0.279798\pi\)
\(822\) 0 0
\(823\) −3.78840e9 −0.236895 −0.118448 0.992960i \(-0.537792\pi\)
−0.118448 + 0.992960i \(0.537792\pi\)
\(824\) 0 0
\(825\) −3.14372e10 −1.94919
\(826\) 0 0
\(827\) −7.14220e9 −0.439099 −0.219550 0.975601i \(-0.570459\pi\)
−0.219550 + 0.975601i \(0.570459\pi\)
\(828\) 0 0
\(829\) −2.06083e10 −1.25632 −0.628161 0.778083i \(-0.716192\pi\)
−0.628161 + 0.778083i \(0.716192\pi\)
\(830\) 0 0
\(831\) 1.06280e9 0.0642462
\(832\) 0 0
\(833\) 3.98585e9 0.238926
\(834\) 0 0
\(835\) 1.27127e10 0.755677
\(836\) 0 0
\(837\) −1.74044e9 −0.102594
\(838\) 0 0
\(839\) 2.32247e9 0.135764 0.0678819 0.997693i \(-0.478376\pi\)
0.0678819 + 0.997693i \(0.478376\pi\)
\(840\) 0 0
\(841\) −4.46205e9 −0.258672
\(842\) 0 0
\(843\) −1.41781e10 −0.815117
\(844\) 0 0
\(845\) 2.31859e9 0.132198
\(846\) 0 0
\(847\) −3.09891e10 −1.75233
\(848\) 0 0
\(849\) −6.48733e9 −0.363822
\(850\) 0 0
\(851\) 9.94713e9 0.553279
\(852\) 0 0
\(853\) −3.07680e10 −1.69738 −0.848688 0.528894i \(-0.822607\pi\)
−0.848688 + 0.528894i \(0.822607\pi\)
\(854\) 0 0
\(855\) 1.17914e10 0.645183
\(856\) 0 0
\(857\) 1.85601e10 1.00727 0.503637 0.863915i \(-0.331995\pi\)
0.503637 + 0.863915i \(0.331995\pi\)
\(858\) 0 0
\(859\) 4.84997e9 0.261074 0.130537 0.991443i \(-0.458330\pi\)
0.130537 + 0.991443i \(0.458330\pi\)
\(860\) 0 0
\(861\) −8.62496e9 −0.460517
\(862\) 0 0
\(863\) 1.93700e10 1.02587 0.512933 0.858429i \(-0.328559\pi\)
0.512933 + 0.858429i \(0.328559\pi\)
\(864\) 0 0
\(865\) 2.99990e10 1.57598
\(866\) 0 0
\(867\) −1.74855e9 −0.0911196
\(868\) 0 0
\(869\) 4.81768e10 2.49040
\(870\) 0 0
\(871\) 3.88991e9 0.199469
\(872\) 0 0
\(873\) −1.01478e9 −0.0516205
\(874\) 0 0
\(875\) −2.86420e10 −1.44536
\(876\) 0 0
\(877\) 2.54274e10 1.27293 0.636464 0.771307i \(-0.280396\pi\)
0.636464 + 0.771307i \(0.280396\pi\)
\(878\) 0 0
\(879\) −1.08230e10 −0.537509
\(880\) 0 0
\(881\) 2.55758e10 1.26013 0.630063 0.776544i \(-0.283029\pi\)
0.630063 + 0.776544i \(0.283029\pi\)
\(882\) 0 0
\(883\) 1.41560e10 0.691955 0.345977 0.938243i \(-0.387547\pi\)
0.345977 + 0.938243i \(0.387547\pi\)
\(884\) 0 0
\(885\) −9.49185e9 −0.460309
\(886\) 0 0
\(887\) 3.99228e9 0.192083 0.0960413 0.995377i \(-0.469382\pi\)
0.0960413 + 0.995377i \(0.469382\pi\)
\(888\) 0 0
\(889\) 2.37100e10 1.13181
\(890\) 0 0
\(891\) 4.05441e9 0.192024
\(892\) 0 0
\(893\) 3.16441e10 1.48700
\(894\) 0 0
\(895\) 2.04785e10 0.954810
\(896\) 0 0
\(897\) 1.55373e9 0.0718790
\(898\) 0 0
\(899\) −9.99922e9 −0.458994
\(900\) 0 0
\(901\) −2.49725e10 −1.13743
\(902\) 0 0
\(903\) 1.83615e10 0.829852
\(904\) 0 0
\(905\) 6.88778e10 3.08894
\(906\) 0 0
\(907\) 8.00293e9 0.356142 0.178071 0.984018i \(-0.443014\pi\)
0.178071 + 0.984018i \(0.443014\pi\)
\(908\) 0 0
\(909\) 1.13809e10 0.502577
\(910\) 0 0
\(911\) 9.08756e9 0.398229 0.199114 0.979976i \(-0.436193\pi\)
0.199114 + 0.979976i \(0.436193\pi\)
\(912\) 0 0
\(913\) −2.51876e10 −1.09531
\(914\) 0 0
\(915\) −8.20865e9 −0.354240
\(916\) 0 0
\(917\) 3.79585e10 1.62561
\(918\) 0 0
\(919\) −1.91516e10 −0.813955 −0.406977 0.913438i \(-0.633417\pi\)
−0.406977 + 0.913438i \(0.633417\pi\)
\(920\) 0 0
\(921\) 1.18207e10 0.498579
\(922\) 0 0
\(923\) 1.20142e10 0.502908
\(924\) 0 0
\(925\) −5.79593e10 −2.40784
\(926\) 0 0
\(927\) −3.59574e9 −0.148255
\(928\) 0 0
\(929\) 4.20832e10 1.72208 0.861040 0.508537i \(-0.169813\pi\)
0.861040 + 0.508537i \(0.169813\pi\)
\(930\) 0 0
\(931\) −6.15745e9 −0.250079
\(932\) 0 0
\(933\) 1.99679e9 0.0804907
\(934\) 0 0
\(935\) −7.98785e10 −3.19587
\(936\) 0 0
\(937\) −1.76568e10 −0.701170 −0.350585 0.936531i \(-0.614017\pi\)
−0.350585 + 0.936531i \(0.614017\pi\)
\(938\) 0 0
\(939\) 3.32029e9 0.130872
\(940\) 0 0
\(941\) 3.42121e10 1.33849 0.669246 0.743041i \(-0.266617\pi\)
0.669246 + 0.743041i \(0.266617\pi\)
\(942\) 0 0
\(943\) 1.04533e10 0.405942
\(944\) 0 0
\(945\) 7.56791e9 0.291719
\(946\) 0 0
\(947\) −1.52599e10 −0.583883 −0.291942 0.956436i \(-0.594301\pi\)
−0.291942 + 0.956436i \(0.594301\pi\)
\(948\) 0 0
\(949\) 2.16305e9 0.0821553
\(950\) 0 0
\(951\) 9.27827e9 0.349812
\(952\) 0 0
\(953\) 6.96741e9 0.260763 0.130382 0.991464i \(-0.458380\pi\)
0.130382 + 0.991464i \(0.458380\pi\)
\(954\) 0 0
\(955\) 6.24098e9 0.231868
\(956\) 0 0
\(957\) 2.32935e10 0.859098
\(958\) 0 0
\(959\) 2.18608e10 0.800388
\(960\) 0 0
\(961\) −1.96939e10 −0.715813
\(962\) 0 0
\(963\) −9.94778e9 −0.358950
\(964\) 0 0
\(965\) 3.49036e10 1.25033
\(966\) 0 0
\(967\) 3.60920e10 1.28357 0.641783 0.766886i \(-0.278195\pi\)
0.641783 + 0.766886i \(0.278195\pi\)
\(968\) 0 0
\(969\) 1.98166e10 0.699673
\(970\) 0 0
\(971\) −5.48838e8 −0.0192388 −0.00961938 0.999954i \(-0.503062\pi\)
−0.00961938 + 0.999954i \(0.503062\pi\)
\(972\) 0 0
\(973\) −2.32963e10 −0.810758
\(974\) 0 0
\(975\) −9.05317e9 −0.312813
\(976\) 0 0
\(977\) −4.65666e10 −1.59751 −0.798755 0.601657i \(-0.794508\pi\)
−0.798755 + 0.601657i \(0.794508\pi\)
\(978\) 0 0
\(979\) 5.87738e10 2.00191
\(980\) 0 0
\(981\) −2.24332e9 −0.0758663
\(982\) 0 0
\(983\) 3.55800e10 1.19473 0.597363 0.801971i \(-0.296215\pi\)
0.597363 + 0.801971i \(0.296215\pi\)
\(984\) 0 0
\(985\) −7.12064e10 −2.37406
\(986\) 0 0
\(987\) 2.03097e10 0.672348
\(988\) 0 0
\(989\) −2.22539e10 −0.731507
\(990\) 0 0
\(991\) 2.33963e10 0.763642 0.381821 0.924236i \(-0.375297\pi\)
0.381821 + 0.924236i \(0.375297\pi\)
\(992\) 0 0
\(993\) −3.36721e9 −0.109131
\(994\) 0 0
\(995\) −3.18056e10 −1.02358
\(996\) 0 0
\(997\) −3.75614e10 −1.20035 −0.600176 0.799868i \(-0.704903\pi\)
−0.600176 + 0.799868i \(0.704903\pi\)
\(998\) 0 0
\(999\) 7.47493e9 0.237207
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 156.8.a.c.1.3 3
3.2 odd 2 468.8.a.d.1.1 3
4.3 odd 2 624.8.a.m.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.8.a.c.1.3 3 1.1 even 1 trivial
468.8.a.d.1.1 3 3.2 odd 2
624.8.a.m.1.3 3 4.3 odd 2