Properties

Label 156.3.l.c.83.5
Level $156$
Weight $3$
Character 156.83
Analytic conductor $4.251$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [156,3,Mod(47,156)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("156.47"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(156, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 156 = 2^{2} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 156.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,0,0,0,-36,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.25069212402\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(48\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 83.5
Character \(\chi\) \(=\) 156.83
Dual form 156.3.l.c.47.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.89206 - 0.648159i) q^{2} +(-0.777110 + 2.89760i) q^{3} +(3.15978 + 2.45271i) q^{4} +(-0.949668 - 0.949668i) q^{5} +(3.34845 - 4.97875i) q^{6} +(7.87350 - 7.87350i) q^{7} +(-4.38874 - 6.68872i) q^{8} +(-7.79220 - 4.50351i) q^{9} +(1.18129 + 2.41236i) q^{10} +(13.0508 + 13.0508i) q^{11} +(-9.56248 + 7.24976i) q^{12} +(-2.93839 + 12.6636i) q^{13} +(-20.0004 + 9.79385i) q^{14} +(3.48976 - 2.01376i) q^{15} +(3.96841 + 15.5001i) q^{16} +10.4874 q^{17} +(11.8243 + 13.5715i) q^{18} +(6.48583 + 6.48583i) q^{19} +(-0.671480 - 5.33000i) q^{20} +(16.6957 + 28.9329i) q^{21} +(-16.2339 - 33.1519i) q^{22} +17.0776i q^{23} +(22.7918 - 7.51897i) q^{24} -23.1963i q^{25} +(13.7676 - 22.0557i) q^{26} +(19.1048 - 19.0790i) q^{27} +(44.1900 - 5.56710i) q^{28} +37.2704i q^{29} +(-7.90807 + 1.54824i) q^{30} +(14.6982 + 14.6982i) q^{31} +(2.53803 - 31.8992i) q^{32} +(-47.9580 + 27.6741i) q^{33} +(-19.8427 - 6.79748i) q^{34} -14.9544 q^{35} +(-13.5758 - 33.3421i) q^{36} +(18.0222 + 18.0222i) q^{37} +(-8.06773 - 16.4754i) q^{38} +(-34.4105 - 18.3553i) q^{39} +(-2.18421 + 10.5199i) q^{40} +(-26.9059 - 26.9059i) q^{41} +(-12.8362 - 65.5642i) q^{42} +9.70221 q^{43} +(9.22781 + 73.2475i) q^{44} +(3.12316 + 11.6768i) q^{45} +(11.0690 - 32.3119i) q^{46} +(52.2200 + 52.2200i) q^{47} +(-47.9969 - 0.546359i) q^{48} -74.9840i q^{49} +(-15.0349 + 43.8887i) q^{50} +(-8.14984 + 30.3882i) q^{51} +(-40.3447 + 32.8071i) q^{52} -93.7692i q^{53} +(-48.5136 + 23.7156i) q^{54} -24.7879i q^{55} +(-87.2184 - 18.1088i) q^{56} +(-23.8336 + 13.7532i) q^{57} +(24.1572 - 70.5179i) q^{58} +(-27.8906 - 27.8906i) q^{59} +(15.9660 + 2.19632i) q^{60} -19.9699 q^{61} +(-18.2831 - 37.3367i) q^{62} +(-96.8103 + 25.8935i) q^{63} +(-25.4778 + 58.7101i) q^{64} +(14.8167 - 9.23569i) q^{65} +(108.677 - 21.2767i) q^{66} +(-27.3331 - 27.3331i) q^{67} +(33.1378 + 25.7225i) q^{68} +(-49.4842 - 13.2712i) q^{69} +(28.2947 + 9.69285i) q^{70} +(-12.2997 + 12.2997i) q^{71} +(4.07527 + 71.8846i) q^{72} +(3.46448 + 3.46448i) q^{73} +(-22.4179 - 45.7804i) q^{74} +(67.2135 + 18.0260i) q^{75} +(4.58593 + 36.4017i) q^{76} +205.511 q^{77} +(53.2096 + 57.0327i) q^{78} -30.4341i q^{79} +(10.9512 - 18.4886i) q^{80} +(40.4368 + 70.1845i) q^{81} +(33.4683 + 68.3469i) q^{82} +(93.6129 - 93.6129i) q^{83} +(-18.2092 + 132.371i) q^{84} +(-9.95952 - 9.95952i) q^{85} +(-18.3572 - 6.28858i) q^{86} +(-107.995 - 28.9632i) q^{87} +(30.0165 - 144.570i) q^{88} +(-27.0128 + 27.0128i) q^{89} +(1.65924 - 24.1176i) q^{90} +(76.5712 + 122.842i) q^{91} +(-41.8865 + 53.9616i) q^{92} +(-54.0117 + 31.1675i) q^{93} +(-64.9565 - 132.650i) q^{94} -12.3188i q^{95} +(90.4589 + 32.1434i) q^{96} +(58.7776 - 58.7776i) q^{97} +(-48.6016 + 141.874i) q^{98} +(-42.9201 - 160.469i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 36 q^{6} - 64 q^{9} - 8 q^{13} + 80 q^{16} + 48 q^{18} + 8 q^{21} + 124 q^{24} - 8 q^{28} + 24 q^{33} + 64 q^{34} - 128 q^{37} - 136 q^{40} - 140 q^{42} - 160 q^{45} + 88 q^{46} - 108 q^{48} - 320 q^{52}+ \cdots + 336 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/156\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.89206 0.648159i −0.946030 0.324080i
\(3\) −0.777110 + 2.89760i −0.259037 + 0.965868i
\(4\) 3.15978 + 2.45271i 0.789945 + 0.613178i
\(5\) −0.949668 0.949668i −0.189934 0.189934i 0.605734 0.795667i \(-0.292880\pi\)
−0.795667 + 0.605734i \(0.792880\pi\)
\(6\) 3.34845 4.97875i 0.558074 0.829791i
\(7\) 7.87350 7.87350i 1.12479 1.12479i 0.133774 0.991012i \(-0.457290\pi\)
0.991012 0.133774i \(-0.0427096\pi\)
\(8\) −4.38874 6.68872i −0.548593 0.836090i
\(9\) −7.79220 4.50351i −0.865800 0.500390i
\(10\) 1.18129 + 2.41236i 0.118129 + 0.241236i
\(11\) 13.0508 + 13.0508i 1.18644 + 1.18644i 0.978046 + 0.208391i \(0.0668227\pi\)
0.208391 + 0.978046i \(0.433177\pi\)
\(12\) −9.56248 + 7.24976i −0.796873 + 0.604147i
\(13\) −2.93839 + 12.6636i −0.226030 + 0.974120i
\(14\) −20.0004 + 9.79385i −1.42860 + 0.699561i
\(15\) 3.48976 2.01376i 0.232650 0.134251i
\(16\) 3.96841 + 15.5001i 0.248026 + 0.968753i
\(17\) 10.4874 0.616904 0.308452 0.951240i \(-0.400189\pi\)
0.308452 + 0.951240i \(0.400189\pi\)
\(18\) 11.8243 + 13.5715i 0.656907 + 0.753972i
\(19\) 6.48583 + 6.48583i 0.341360 + 0.341360i 0.856878 0.515519i \(-0.172401\pi\)
−0.515519 + 0.856878i \(0.672401\pi\)
\(20\) −0.671480 5.33000i −0.0335740 0.266500i
\(21\) 16.6957 + 28.9329i 0.795033 + 1.37775i
\(22\) −16.2339 33.1519i −0.737905 1.50690i
\(23\) 17.0776i 0.742506i 0.928532 + 0.371253i \(0.121072\pi\)
−0.928532 + 0.371253i \(0.878928\pi\)
\(24\) 22.7918 7.51897i 0.949657 0.313290i
\(25\) 23.1963i 0.927850i
\(26\) 13.7676 22.0557i 0.529523 0.848295i
\(27\) 19.1048 19.0790i 0.707584 0.706629i
\(28\) 44.1900 5.56710i 1.57821 0.198825i
\(29\) 37.2704i 1.28519i 0.766207 + 0.642594i \(0.222142\pi\)
−0.766207 + 0.642594i \(0.777858\pi\)
\(30\) −7.90807 + 1.54824i −0.263602 + 0.0516081i
\(31\) 14.6982 + 14.6982i 0.474136 + 0.474136i 0.903250 0.429114i \(-0.141174\pi\)
−0.429114 + 0.903250i \(0.641174\pi\)
\(32\) 2.53803 31.8992i 0.0793133 0.996850i
\(33\) −47.9580 + 27.6741i −1.45327 + 0.838610i
\(34\) −19.8427 6.79748i −0.583610 0.199926i
\(35\) −14.9544 −0.427269
\(36\) −13.5758 33.3421i −0.377106 0.926170i
\(37\) 18.0222 + 18.0222i 0.487087 + 0.487087i 0.907386 0.420299i \(-0.138075\pi\)
−0.420299 + 0.907386i \(0.638075\pi\)
\(38\) −8.06773 16.4754i −0.212309 0.433564i
\(39\) −34.4105 18.3553i −0.882321 0.470648i
\(40\) −2.18421 + 10.5199i −0.0546052 + 0.262998i
\(41\) −26.9059 26.9059i −0.656242 0.656242i 0.298247 0.954489i \(-0.403598\pi\)
−0.954489 + 0.298247i \(0.903598\pi\)
\(42\) −12.8362 65.5642i −0.305623 1.56105i
\(43\) 9.70221 0.225633 0.112816 0.993616i \(-0.464013\pi\)
0.112816 + 0.993616i \(0.464013\pi\)
\(44\) 9.22781 + 73.2475i 0.209723 + 1.66472i
\(45\) 3.12316 + 11.6768i 0.0694036 + 0.259485i
\(46\) 11.0690 32.3119i 0.240631 0.702433i
\(47\) 52.2200 + 52.2200i 1.11106 + 1.11106i 0.993007 + 0.118057i \(0.0376666\pi\)
0.118057 + 0.993007i \(0.462333\pi\)
\(48\) −47.9969 0.546359i −0.999935 0.0113825i
\(49\) 74.9840i 1.53029i
\(50\) −15.0349 + 43.8887i −0.300697 + 0.877774i
\(51\) −8.14984 + 30.3882i −0.159801 + 0.595848i
\(52\) −40.3447 + 32.8071i −0.775860 + 0.630905i
\(53\) 93.7692i 1.76923i −0.466323 0.884615i \(-0.654421\pi\)
0.466323 0.884615i \(-0.345579\pi\)
\(54\) −48.5136 + 23.7156i −0.898400 + 0.439178i
\(55\) 24.7879i 0.450688i
\(56\) −87.2184 18.1088i −1.55747 0.323372i
\(57\) −23.8336 + 13.7532i −0.418133 + 0.241283i
\(58\) 24.1572 70.5179i 0.416503 1.21583i
\(59\) −27.8906 27.8906i −0.472722 0.472722i 0.430072 0.902794i \(-0.358488\pi\)
−0.902794 + 0.430072i \(0.858488\pi\)
\(60\) 15.9660 + 2.19632i 0.266101 + 0.0366053i
\(61\) −19.9699 −0.327375 −0.163688 0.986512i \(-0.552339\pi\)
−0.163688 + 0.986512i \(0.552339\pi\)
\(62\) −18.2831 37.3367i −0.294889 0.602205i
\(63\) −96.8103 + 25.8935i −1.53667 + 0.411008i
\(64\) −25.4778 + 58.7101i −0.398091 + 0.917346i
\(65\) 14.8167 9.23569i 0.227949 0.142088i
\(66\) 108.677 21.2767i 1.64661 0.322375i
\(67\) −27.3331 27.3331i −0.407957 0.407957i 0.473069 0.881026i \(-0.343146\pi\)
−0.881026 + 0.473069i \(0.843146\pi\)
\(68\) 33.1378 + 25.7225i 0.487320 + 0.378272i
\(69\) −49.4842 13.2712i −0.717162 0.192336i
\(70\) 28.2947 + 9.69285i 0.404209 + 0.138469i
\(71\) −12.2997 + 12.2997i −0.173235 + 0.173235i −0.788399 0.615164i \(-0.789090\pi\)
0.615164 + 0.788399i \(0.289090\pi\)
\(72\) 4.07527 + 71.8846i 0.0566010 + 0.998397i
\(73\) 3.46448 + 3.46448i 0.0474586 + 0.0474586i 0.730438 0.682979i \(-0.239316\pi\)
−0.682979 + 0.730438i \(0.739316\pi\)
\(74\) −22.4179 45.7804i −0.302944 0.618654i
\(75\) 67.2135 + 18.0260i 0.896181 + 0.240347i
\(76\) 4.58593 + 36.4017i 0.0603411 + 0.478969i
\(77\) 205.511 2.66897
\(78\) 53.2096 + 57.0327i 0.682175 + 0.731189i
\(79\) 30.4341i 0.385242i −0.981273 0.192621i \(-0.938301\pi\)
0.981273 0.192621i \(-0.0616988\pi\)
\(80\) 10.9512 18.4886i 0.136890 0.231107i
\(81\) 40.4368 + 70.1845i 0.499220 + 0.866476i
\(82\) 33.4683 + 68.3469i 0.408150 + 0.833499i
\(83\) 93.6129 93.6129i 1.12787 1.12787i 0.137343 0.990524i \(-0.456144\pi\)
0.990524 0.137343i \(-0.0438561\pi\)
\(84\) −18.2092 + 132.371i −0.216776 + 1.57585i
\(85\) −9.95952 9.95952i −0.117171 0.117171i
\(86\) −18.3572 6.28858i −0.213455 0.0731230i
\(87\) −107.995 28.9632i −1.24132 0.332911i
\(88\) 30.0165 144.570i 0.341096 1.64284i
\(89\) −27.0128 + 27.0128i −0.303515 + 0.303515i −0.842387 0.538872i \(-0.818851\pi\)
0.538872 + 0.842387i \(0.318851\pi\)
\(90\) 1.65924 24.1176i 0.0184360 0.267973i
\(91\) 76.5712 + 122.842i 0.841442 + 1.34991i
\(92\) −41.8865 + 53.9616i −0.455288 + 0.586539i
\(93\) −54.0117 + 31.1675i −0.580771 + 0.335134i
\(94\) −64.9565 132.650i −0.691027 1.41117i
\(95\) 12.3188i 0.129671i
\(96\) 90.4589 + 32.1434i 0.942280 + 0.334827i
\(97\) 58.7776 58.7776i 0.605954 0.605954i −0.335932 0.941886i \(-0.609051\pi\)
0.941886 + 0.335932i \(0.109051\pi\)
\(98\) −48.6016 + 141.874i −0.495935 + 1.44770i
\(99\) −42.9201 160.469i −0.433536 1.62090i
\(100\) 56.8937 73.2951i 0.568937 0.732951i
\(101\) 12.9267 0.127987 0.0639934 0.997950i \(-0.479616\pi\)
0.0639934 + 0.997950i \(0.479616\pi\)
\(102\) 35.1164 52.2139i 0.344278 0.511901i
\(103\) −24.5921 −0.238758 −0.119379 0.992849i \(-0.538090\pi\)
−0.119379 + 0.992849i \(0.538090\pi\)
\(104\) 97.5988 35.9231i 0.938450 0.345415i
\(105\) 11.6212 43.3320i 0.110678 0.412685i
\(106\) −60.7773 + 177.417i −0.573371 + 1.67374i
\(107\) −45.2828 −0.423204 −0.211602 0.977356i \(-0.567868\pi\)
−0.211602 + 0.977356i \(0.567868\pi\)
\(108\) 107.162 13.4269i 0.992242 0.124323i
\(109\) −127.144 + 127.144i −1.16646 + 1.16646i −0.183421 + 0.983035i \(0.558717\pi\)
−0.983035 + 0.183421i \(0.941283\pi\)
\(110\) −16.0665 + 46.9001i −0.146059 + 0.426365i
\(111\) −66.2265 + 38.2160i −0.596635 + 0.344288i
\(112\) 153.285 + 90.7944i 1.36862 + 0.810664i
\(113\) 124.896i 1.10528i −0.833421 0.552639i \(-0.813621\pi\)
0.833421 0.552639i \(-0.186379\pi\)
\(114\) 54.0088 10.5739i 0.473761 0.0927531i
\(115\) 16.2181 16.2181i 0.141027 0.141027i
\(116\) −91.4136 + 117.766i −0.788048 + 1.01523i
\(117\) 79.9270 85.4440i 0.683137 0.730291i
\(118\) 34.6931 + 70.8482i 0.294010 + 0.600409i
\(119\) 82.5723 82.5723i 0.693885 0.693885i
\(120\) −28.7851 14.5041i −0.239876 0.120867i
\(121\) 219.647i 1.81526i
\(122\) 37.7842 + 12.9437i 0.309707 + 0.106096i
\(123\) 98.8715 57.0538i 0.803833 0.463852i
\(124\) 10.3926 + 82.4936i 0.0838116 + 0.665271i
\(125\) −45.7704 + 45.7704i −0.366164 + 0.366164i
\(126\) 199.954 + 13.7564i 1.58694 + 0.109178i
\(127\) −200.693 −1.58026 −0.790130 0.612939i \(-0.789987\pi\)
−0.790130 + 0.612939i \(0.789987\pi\)
\(128\) 86.2591 94.5694i 0.673899 0.738823i
\(129\) −7.53968 + 28.1132i −0.0584472 + 0.217931i
\(130\) −34.0202 + 7.87092i −0.261694 + 0.0605455i
\(131\) −137.472 −1.04941 −0.524703 0.851285i \(-0.675824\pi\)
−0.524703 + 0.851285i \(0.675824\pi\)
\(132\) −219.413 30.1828i −1.66222 0.228658i
\(133\) 102.132 0.767913
\(134\) 33.9997 + 69.4321i 0.253729 + 0.518150i
\(135\) −36.2619 0.0245023i −0.268607 0.000181499i
\(136\) −46.0264 70.1470i −0.338429 0.515787i
\(137\) 89.4472 89.4472i 0.652900 0.652900i −0.300791 0.953690i \(-0.597251\pi\)
0.953690 + 0.300791i \(0.0972505\pi\)
\(138\) 85.0252 + 57.1835i 0.616125 + 0.414373i
\(139\) 45.2932i 0.325850i 0.986638 + 0.162925i \(0.0520929\pi\)
−0.986638 + 0.162925i \(0.947907\pi\)
\(140\) −47.2527 36.6789i −0.337519 0.261992i
\(141\) −191.893 + 110.732i −1.36095 + 0.785334i
\(142\) 31.2440 15.2996i 0.220028 0.107744i
\(143\) −203.618 + 126.921i −1.42390 + 0.887562i
\(144\) 38.8820 138.651i 0.270014 0.962856i
\(145\) 35.3945 35.3945i 0.244100 0.244100i
\(146\) −4.30946 8.80053i −0.0295169 0.0602776i
\(147\) 217.274 + 58.2708i 1.47805 + 0.396400i
\(148\) 12.7429 + 101.150i 0.0861010 + 0.683443i
\(149\) −74.6323 74.6323i −0.500888 0.500888i 0.410826 0.911714i \(-0.365240\pi\)
−0.911714 + 0.410826i \(0.865240\pi\)
\(150\) −115.488 77.6714i −0.769922 0.517809i
\(151\) 32.3514 32.3514i 0.214247 0.214247i −0.591822 0.806069i \(-0.701591\pi\)
0.806069 + 0.591822i \(0.201591\pi\)
\(152\) 14.9172 71.8465i 0.0981397 0.472675i
\(153\) −81.7197 47.2300i −0.534116 0.308693i
\(154\) −388.839 133.204i −2.52493 0.864960i
\(155\) 27.9168i 0.180109i
\(156\) −63.7095 142.398i −0.408395 0.912806i
\(157\) 38.4009 0.244592 0.122296 0.992494i \(-0.460974\pi\)
0.122296 + 0.992494i \(0.460974\pi\)
\(158\) −19.7262 + 57.5832i −0.124849 + 0.364451i
\(159\) 271.706 + 72.8689i 1.70884 + 0.458295i
\(160\) −32.7039 + 27.8834i −0.204400 + 0.174271i
\(161\) 134.461 + 134.461i 0.835160 + 0.835160i
\(162\) −31.0181 159.003i −0.191470 0.981499i
\(163\) −5.31158 + 5.31158i −0.0325864 + 0.0325864i −0.723212 0.690626i \(-0.757335\pi\)
0.690626 + 0.723212i \(0.257335\pi\)
\(164\) −19.0243 151.009i −0.116002 0.920788i
\(165\) 71.8254 + 19.2629i 0.435305 + 0.116745i
\(166\) −237.797 + 116.445i −1.43251 + 0.701477i
\(167\) 19.7239 + 19.7239i 0.118107 + 0.118107i 0.763690 0.645583i \(-0.223385\pi\)
−0.645583 + 0.763690i \(0.723385\pi\)
\(168\) 120.250 238.652i 0.715777 1.42055i
\(169\) −151.732 74.4209i −0.897821 0.440360i
\(170\) 12.3886 + 25.2994i 0.0728744 + 0.148820i
\(171\) −21.3299 79.7479i −0.124736 0.466362i
\(172\) 30.6569 + 23.7967i 0.178238 + 0.138353i
\(173\) −151.819 −0.877567 −0.438783 0.898593i \(-0.644590\pi\)
−0.438783 + 0.898593i \(0.644590\pi\)
\(174\) 185.560 + 124.798i 1.06644 + 0.717230i
\(175\) −182.636 182.636i −1.04363 1.04363i
\(176\) −150.497 + 254.079i −0.855098 + 1.44363i
\(177\) 102.490 59.1418i 0.579039 0.334134i
\(178\) 68.6185 33.6013i 0.385497 0.188771i
\(179\) 168.054i 0.938850i 0.882972 + 0.469425i \(0.155539\pi\)
−0.882972 + 0.469425i \(0.844461\pi\)
\(180\) −18.7714 + 44.5565i −0.104286 + 0.247536i
\(181\) 161.911i 0.894539i −0.894399 0.447269i \(-0.852397\pi\)
0.894399 0.447269i \(-0.147603\pi\)
\(182\) −65.2561 282.055i −0.358550 1.54975i
\(183\) 15.5188 57.8648i 0.0848022 0.316201i
\(184\) 114.227 74.9494i 0.620801 0.407334i
\(185\) 34.2303i 0.185028i
\(186\) 122.395 23.9625i 0.658037 0.128831i
\(187\) 136.869 + 136.869i 0.731918 + 0.731918i
\(188\) 36.9231 + 293.084i 0.196399 + 1.55896i
\(189\) 0.203144 300.640i 0.00107483 1.59069i
\(190\) −7.98452 + 23.3079i −0.0420238 + 0.122673i
\(191\) 89.9885 0.471144 0.235572 0.971857i \(-0.424304\pi\)
0.235572 + 0.971857i \(0.424304\pi\)
\(192\) −150.320 119.449i −0.782914 0.622130i
\(193\) −129.472 129.472i −0.670841 0.670841i 0.287069 0.957910i \(-0.407319\pi\)
−0.957910 + 0.287069i \(0.907319\pi\)
\(194\) −149.308 + 73.1135i −0.769628 + 0.376874i
\(195\) 15.2472 + 50.1100i 0.0781907 + 0.256974i
\(196\) 183.914 236.933i 0.938338 1.20884i
\(197\) 43.9320 + 43.9320i 0.223005 + 0.223005i 0.809763 0.586758i \(-0.199596\pi\)
−0.586758 + 0.809763i \(0.699596\pi\)
\(198\) −22.8021 + 331.436i −0.115162 + 1.67392i
\(199\) −170.302 −0.855788 −0.427894 0.903829i \(-0.640744\pi\)
−0.427894 + 0.903829i \(0.640744\pi\)
\(200\) −155.153 + 101.802i −0.775766 + 0.509012i
\(201\) 100.441 57.9597i 0.499708 0.288357i
\(202\) −24.4580 8.37854i −0.121079 0.0414779i
\(203\) 293.449 + 293.449i 1.44556 + 1.44556i
\(204\) −100.285 + 76.0309i −0.491594 + 0.372700i
\(205\) 51.1034i 0.249285i
\(206\) 46.5297 + 15.9396i 0.225872 + 0.0773766i
\(207\) 76.9093 133.072i 0.371543 0.642862i
\(208\) −207.947 + 4.70912i −0.999744 + 0.0226400i
\(209\) 169.291i 0.810003i
\(210\) −50.0741 + 74.4543i −0.238448 + 0.354544i
\(211\) 224.166i 1.06240i −0.847247 0.531200i \(-0.821741\pi\)
0.847247 0.531200i \(-0.178259\pi\)
\(212\) 229.989 296.290i 1.08485 1.39759i
\(213\) −26.0815 45.1979i −0.122448 0.212197i
\(214\) 85.6777 + 29.3505i 0.400363 + 0.137152i
\(215\) −9.21388 9.21388i −0.0428553 0.0428553i
\(216\) −211.460 44.0537i −0.978981 0.203952i
\(217\) 231.453 1.06660
\(218\) 322.973 158.154i 1.48153 0.725477i
\(219\) −12.7310 + 7.34640i −0.0581322 + 0.0335452i
\(220\) 60.7975 78.3242i 0.276352 0.356019i
\(221\) −30.8159 + 132.807i −0.139439 + 0.600939i
\(222\) 150.075 29.3816i 0.676012 0.132350i
\(223\) 177.676 + 177.676i 0.796752 + 0.796752i 0.982582 0.185830i \(-0.0594973\pi\)
−0.185830 + 0.982582i \(0.559497\pi\)
\(224\) −231.175 271.141i −1.03203 1.21045i
\(225\) −104.465 + 180.750i −0.464287 + 0.803333i
\(226\) −80.9527 + 236.311i −0.358198 + 1.04563i
\(227\) 30.2485 30.2485i 0.133253 0.133253i −0.637334 0.770588i \(-0.719963\pi\)
0.770588 + 0.637334i \(0.219963\pi\)
\(228\) −109.041 14.9999i −0.478252 0.0657891i
\(229\) 274.828 + 274.828i 1.20012 + 1.20012i 0.974128 + 0.225995i \(0.0725634\pi\)
0.225995 + 0.974128i \(0.427437\pi\)
\(230\) −41.1975 + 20.1737i −0.179119 + 0.0877117i
\(231\) −159.705 + 595.489i −0.691362 + 2.57788i
\(232\) 249.291 163.570i 1.07453 0.705045i
\(233\) −176.505 −0.757532 −0.378766 0.925492i \(-0.623652\pi\)
−0.378766 + 0.925492i \(0.623652\pi\)
\(234\) −206.608 + 109.860i −0.882940 + 0.469486i
\(235\) 99.1833i 0.422057i
\(236\) −19.7206 156.536i −0.0835617 0.663287i
\(237\) 88.1860 + 23.6507i 0.372093 + 0.0997918i
\(238\) −209.752 + 102.712i −0.881310 + 0.431562i
\(239\) 82.2545 82.2545i 0.344161 0.344161i −0.513768 0.857929i \(-0.671751\pi\)
0.857929 + 0.513768i \(0.171751\pi\)
\(240\) 45.0622 + 46.1000i 0.187759 + 0.192083i
\(241\) −64.6891 64.6891i −0.268419 0.268419i 0.560044 0.828463i \(-0.310784\pi\)
−0.828463 + 0.560044i \(0.810784\pi\)
\(242\) 142.366 415.585i 0.588290 1.71729i
\(243\) −234.791 + 62.6287i −0.966217 + 0.257731i
\(244\) −63.1005 48.9804i −0.258608 0.200739i
\(245\) −71.2099 + 71.2099i −0.290653 + 0.290653i
\(246\) −224.051 + 43.8647i −0.910775 + 0.178312i
\(247\) −101.192 + 63.0759i −0.409683 + 0.255368i
\(248\) 33.8055 162.819i 0.136312 0.656528i
\(249\) 198.505 + 344.000i 0.797211 + 1.38153i
\(250\) 116.267 56.9339i 0.465068 0.227736i
\(251\) 186.767i 0.744091i −0.928215 0.372045i \(-0.878657\pi\)
0.928215 0.372045i \(-0.121343\pi\)
\(252\) −369.408 155.630i −1.46591 0.617579i
\(253\) −222.877 + 222.877i −0.880936 + 0.880936i
\(254\) 379.723 + 130.081i 1.49497 + 0.512130i
\(255\) 36.5984 21.1191i 0.143523 0.0828199i
\(256\) −224.503 + 123.021i −0.876966 + 0.480552i
\(257\) −440.294 −1.71321 −0.856604 0.515975i \(-0.827430\pi\)
−0.856604 + 0.515975i \(0.827430\pi\)
\(258\) 32.4873 48.3049i 0.125920 0.187228i
\(259\) 283.796 1.09574
\(260\) 69.4699 + 7.15828i 0.267192 + 0.0275318i
\(261\) 167.848 290.419i 0.643095 1.11272i
\(262\) 260.106 + 89.1039i 0.992770 + 0.340091i
\(263\) 55.8360 0.212304 0.106152 0.994350i \(-0.466147\pi\)
0.106152 + 0.994350i \(0.466147\pi\)
\(264\) 395.580 + 199.322i 1.49841 + 0.755009i
\(265\) −89.0496 + 89.0496i −0.336036 + 0.336036i
\(266\) −193.241 66.1980i −0.726468 0.248865i
\(267\) −57.2805 99.2644i −0.214534 0.371777i
\(268\) −19.3264 153.407i −0.0721133 0.572414i
\(269\) 139.702i 0.519337i 0.965698 + 0.259668i \(0.0836133\pi\)
−0.965698 + 0.259668i \(0.916387\pi\)
\(270\) 68.5938 + 23.5498i 0.254051 + 0.0872216i
\(271\) −14.0400 + 14.0400i −0.0518082 + 0.0518082i −0.732536 0.680728i \(-0.761664\pi\)
0.680728 + 0.732536i \(0.261664\pi\)
\(272\) 41.6182 + 162.555i 0.153008 + 0.597628i
\(273\) −415.451 + 126.411i −1.52180 + 0.463045i
\(274\) −227.216 + 111.263i −0.829254 + 0.406071i
\(275\) 302.730 302.730i 1.10084 1.10084i
\(276\) −123.809 163.305i −0.448582 0.591683i
\(277\) 264.498i 0.954868i −0.878668 0.477434i \(-0.841567\pi\)
0.878668 0.477434i \(-0.158433\pi\)
\(278\) 29.3572 85.6973i 0.105601 0.308264i
\(279\) −48.3379 180.725i −0.173254 0.647760i
\(280\) 65.6311 + 100.026i 0.234397 + 0.357235i
\(281\) −201.246 + 201.246i −0.716179 + 0.716179i −0.967821 0.251641i \(-0.919030\pi\)
0.251641 + 0.967821i \(0.419030\pi\)
\(282\) 434.846 85.1343i 1.54201 0.301895i
\(283\) 396.067 1.39953 0.699765 0.714373i \(-0.253288\pi\)
0.699765 + 0.714373i \(0.253288\pi\)
\(284\) −69.0320 + 8.69674i −0.243071 + 0.0306223i
\(285\) 35.6949 + 9.57304i 0.125245 + 0.0335896i
\(286\) 467.523 108.166i 1.63469 0.378203i
\(287\) −423.687 −1.47626
\(288\) −163.435 + 237.135i −0.567483 + 0.823385i
\(289\) −179.015 −0.619429
\(290\) −89.9099 + 44.0273i −0.310034 + 0.151818i
\(291\) 124.637 + 215.991i 0.428307 + 0.742236i
\(292\) 2.44962 + 19.4443i 0.00838911 + 0.0665902i
\(293\) 186.129 186.129i 0.635253 0.635253i −0.314128 0.949381i \(-0.601712\pi\)
0.949381 + 0.314128i \(0.101712\pi\)
\(294\) −373.326 251.080i −1.26982 0.854013i
\(295\) 52.9736i 0.179572i
\(296\) 41.4506 199.641i 0.140036 0.674461i
\(297\) 498.329 + 0.336723i 1.67787 + 0.00113375i
\(298\) 92.8352 + 189.582i 0.311527 + 0.636183i
\(299\) −216.264 50.1807i −0.723290 0.167828i
\(300\) 168.167 + 221.814i 0.560558 + 0.739379i
\(301\) 76.3904 76.3904i 0.253789 0.253789i
\(302\) −82.1795 + 40.2419i −0.272118 + 0.133251i
\(303\) −10.0454 + 37.4563i −0.0331533 + 0.123618i
\(304\) −74.7923 + 126.269i −0.246027 + 0.415359i
\(305\) 18.9648 + 18.9648i 0.0621796 + 0.0621796i
\(306\) 124.006 + 142.329i 0.405248 + 0.465128i
\(307\) 249.313 249.313i 0.812093 0.812093i −0.172854 0.984947i \(-0.555299\pi\)
0.984947 + 0.172854i \(0.0552990\pi\)
\(308\) 649.370 + 504.059i 2.10834 + 1.63656i
\(309\) 19.1107 71.2581i 0.0618471 0.230609i
\(310\) −18.0946 + 52.8203i −0.0583695 + 0.170388i
\(311\) 145.007i 0.466262i −0.972445 0.233131i \(-0.925103\pi\)
0.972445 0.233131i \(-0.0748971\pi\)
\(312\) 28.2459 + 310.719i 0.0905318 + 0.995894i
\(313\) 238.458 0.761848 0.380924 0.924606i \(-0.375606\pi\)
0.380924 + 0.924606i \(0.375606\pi\)
\(314\) −72.6568 24.8899i −0.231391 0.0792672i
\(315\) 116.528 + 67.3474i 0.369930 + 0.213801i
\(316\) 74.6461 96.1651i 0.236222 0.304320i
\(317\) −313.133 313.133i −0.987801 0.987801i 0.0121259 0.999926i \(-0.496140\pi\)
−0.999926 + 0.0121259i \(0.996140\pi\)
\(318\) −466.853 313.981i −1.46809 0.987361i
\(319\) −486.409 + 486.409i −1.52479 + 1.52479i
\(320\) 79.9506 31.5596i 0.249846 0.0986239i
\(321\) 35.1897 131.212i 0.109625 0.408759i
\(322\) −167.256 341.560i −0.519428 1.06074i
\(323\) 68.0193 + 68.0193i 0.210586 + 0.210586i
\(324\) −44.3710 + 320.947i −0.136948 + 0.990578i
\(325\) 293.747 + 68.1596i 0.903838 + 0.209722i
\(326\) 13.4926 6.60708i 0.0413883 0.0202671i
\(327\) −269.607 467.216i −0.824487 1.42880i
\(328\) −61.8828 + 298.049i −0.188667 + 0.908686i
\(329\) 822.309 2.49942
\(330\) −123.412 83.0008i −0.373977 0.251518i
\(331\) 180.560 + 180.560i 0.545499 + 0.545499i 0.925136 0.379636i \(-0.123951\pi\)
−0.379636 + 0.925136i \(0.623951\pi\)
\(332\) 525.401 66.1907i 1.58253 0.199370i
\(333\) −59.2695 221.596i −0.177987 0.665454i
\(334\) −24.5346 50.1031i −0.0734569 0.150009i
\(335\) 51.9148i 0.154969i
\(336\) −382.205 + 373.602i −1.13752 + 1.11191i
\(337\) 20.9367i 0.0621266i 0.999517 + 0.0310633i \(0.00988935\pi\)
−0.999517 + 0.0310633i \(0.990111\pi\)
\(338\) 238.849 + 239.155i 0.706654 + 0.707559i
\(339\) 361.900 + 97.0582i 1.06755 + 0.286307i
\(340\) −7.04206 55.8977i −0.0207119 0.164405i
\(341\) 383.647i 1.12506i
\(342\) −11.3319 + 164.713i −0.0331342 + 0.481617i
\(343\) −204.585 204.585i −0.596459 0.596459i
\(344\) −42.5805 64.8953i −0.123781 0.188649i
\(345\) 34.3903 + 59.5968i 0.0996821 + 0.172744i
\(346\) 287.251 + 98.4029i 0.830204 + 0.284401i
\(347\) −304.430 −0.877319 −0.438659 0.898653i \(-0.644547\pi\)
−0.438659 + 0.898653i \(0.644547\pi\)
\(348\) −270.202 356.398i −0.776441 1.02413i
\(349\) −273.159 273.159i −0.782690 0.782690i 0.197594 0.980284i \(-0.436687\pi\)
−0.980284 + 0.197594i \(0.936687\pi\)
\(350\) 227.181 + 463.935i 0.649088 + 1.32553i
\(351\) 185.471 + 297.996i 0.528406 + 0.848992i
\(352\) 449.433 383.187i 1.27680 1.08860i
\(353\) 88.1316 + 88.1316i 0.249665 + 0.249665i 0.820833 0.571168i \(-0.193510\pi\)
−0.571168 + 0.820833i \(0.693510\pi\)
\(354\) −232.250 + 45.4700i −0.656074 + 0.128446i
\(355\) 23.3613 0.0658065
\(356\) −151.609 + 19.0999i −0.425869 + 0.0536515i
\(357\) 175.094 + 303.429i 0.490459 + 0.849942i
\(358\) 108.926 317.968i 0.304262 0.888180i
\(359\) −93.4775 93.4775i −0.260383 0.260383i 0.564827 0.825210i \(-0.308943\pi\)
−0.825210 + 0.564827i \(0.808943\pi\)
\(360\) 64.3963 72.1366i 0.178879 0.200380i
\(361\) 276.868i 0.766947i
\(362\) −104.944 + 306.346i −0.289902 + 0.846260i
\(363\) −636.450 170.690i −1.75331 0.470220i
\(364\) −59.3478 + 575.961i −0.163043 + 1.58231i
\(365\) 6.58021i 0.0180280i
\(366\) −66.8681 + 99.4250i −0.182700 + 0.271653i
\(367\) 498.412i 1.35807i −0.734106 0.679035i \(-0.762398\pi\)
0.734106 0.679035i \(-0.237602\pi\)
\(368\) −264.704 + 67.7711i −0.719305 + 0.184161i
\(369\) 88.4852 + 330.827i 0.239797 + 0.896551i
\(370\) −22.1867 + 64.7657i −0.0599639 + 0.175042i
\(371\) −738.292 738.292i −1.99000 1.99000i
\(372\) −247.110 33.9928i −0.664274 0.0913786i
\(373\) −576.578 −1.54579 −0.772893 0.634537i \(-0.781191\pi\)
−0.772893 + 0.634537i \(0.781191\pi\)
\(374\) −170.251 347.676i −0.455216 0.929615i
\(375\) −97.0559 168.193i −0.258816 0.448515i
\(376\) 120.105 578.465i 0.319427 1.53847i
\(377\) −471.977 109.515i −1.25193 0.290491i
\(378\) −195.247 + 568.697i −0.516526 + 1.50449i
\(379\) 168.149 + 168.149i 0.443664 + 0.443664i 0.893241 0.449577i \(-0.148425\pi\)
−0.449577 + 0.893241i \(0.648425\pi\)
\(380\) 30.2144 38.9246i 0.0795116 0.102433i
\(381\) 155.961 581.529i 0.409345 1.52632i
\(382\) −170.264 58.3269i −0.445716 0.152688i
\(383\) −199.284 + 199.284i −0.520323 + 0.520323i −0.917669 0.397346i \(-0.869931\pi\)
0.397346 + 0.917669i \(0.369931\pi\)
\(384\) 206.992 + 323.435i 0.539041 + 0.842280i
\(385\) −195.167 195.167i −0.506928 0.506928i
\(386\) 161.051 + 328.888i 0.417230 + 0.852041i
\(387\) −75.6016 43.6940i −0.195353 0.112904i
\(388\) 329.889 41.5598i 0.850228 0.107113i
\(389\) −81.1669 −0.208655 −0.104328 0.994543i \(-0.533269\pi\)
−0.104328 + 0.994543i \(0.533269\pi\)
\(390\) 3.63066 104.694i 0.00930940 0.268445i
\(391\) 179.099i 0.458055i
\(392\) −501.547 + 329.086i −1.27946 + 0.839504i
\(393\) 106.831 398.340i 0.271835 1.01359i
\(394\) −54.6470 111.597i −0.138698 0.283241i
\(395\) −28.9023 + 28.9023i −0.0731704 + 0.0731704i
\(396\) 257.966 612.317i 0.651429 1.54625i
\(397\) 251.456 + 251.456i 0.633390 + 0.633390i 0.948917 0.315527i \(-0.102181\pi\)
−0.315527 + 0.948917i \(0.602181\pi\)
\(398\) 322.221 + 110.383i 0.809601 + 0.277343i
\(399\) −79.3681 + 295.939i −0.198918 + 0.741702i
\(400\) 359.543 92.0524i 0.898858 0.230131i
\(401\) 419.266 419.266i 1.04555 1.04555i 0.0466382 0.998912i \(-0.485149\pi\)
0.998912 0.0466382i \(-0.0148508\pi\)
\(402\) −227.608 + 44.5612i −0.566189 + 0.110849i
\(403\) −229.321 + 142.943i −0.569034 + 0.354697i
\(404\) 40.8454 + 31.7054i 0.101103 + 0.0784787i
\(405\) 28.2505 105.054i 0.0697542 0.259391i
\(406\) −365.021 745.424i −0.899067 1.83602i
\(407\) 470.409i 1.15580i
\(408\) 239.026 78.8542i 0.585847 0.193270i
\(409\) 474.074 474.074i 1.15911 1.15911i 0.174437 0.984668i \(-0.444190\pi\)
0.984668 0.174437i \(-0.0558104\pi\)
\(410\) 33.1231 96.6906i 0.0807881 0.235831i
\(411\) 189.672 + 328.693i 0.461490 + 0.799739i
\(412\) −77.7056 60.3173i −0.188606 0.146401i
\(413\) −439.193 −1.06342
\(414\) −231.769 + 201.931i −0.559829 + 0.487757i
\(415\) −177.802 −0.428439
\(416\) 396.500 + 125.873i 0.953125 + 0.302578i
\(417\) −131.242 35.1978i −0.314728 0.0844071i
\(418\) 109.727 320.308i 0.262505 0.766287i
\(419\) 738.508 1.76255 0.881274 0.472605i \(-0.156686\pi\)
0.881274 + 0.472605i \(0.156686\pi\)
\(420\) 143.001 108.416i 0.340479 0.258133i
\(421\) 18.8649 18.8649i 0.0448098 0.0448098i −0.684347 0.729157i \(-0.739913\pi\)
0.729157 + 0.684347i \(0.239913\pi\)
\(422\) −145.295 + 424.136i −0.344302 + 1.00506i
\(423\) −171.735 642.082i −0.405994 1.51792i
\(424\) −627.195 + 411.529i −1.47923 + 0.970587i
\(425\) 243.268i 0.572395i
\(426\) 20.0522 + 102.422i 0.0470710 + 0.240427i
\(427\) −157.233 + 157.233i −0.368227 + 0.368227i
\(428\) −143.084 111.066i −0.334308 0.259499i
\(429\) −209.534 688.636i −0.488425 1.60521i
\(430\) 11.4612 + 23.4053i 0.0266538 + 0.0544309i
\(431\) 408.414 408.414i 0.947596 0.947596i −0.0510979 0.998694i \(-0.516272\pi\)
0.998694 + 0.0510979i \(0.0162720\pi\)
\(432\) 371.541 + 220.412i 0.860048 + 0.510213i
\(433\) 486.714i 1.12405i 0.827120 + 0.562025i \(0.189978\pi\)
−0.827120 + 0.562025i \(0.810022\pi\)
\(434\) −437.923 150.018i −1.00904 0.345664i
\(435\) 75.0538 + 130.065i 0.172538 + 0.298999i
\(436\) −713.592 + 89.8992i −1.63668 + 0.206191i
\(437\) −110.763 + 110.763i −0.253461 + 0.253461i
\(438\) 28.8494 5.64814i 0.0658661 0.0128953i
\(439\) 279.462 0.636588 0.318294 0.947992i \(-0.396890\pi\)
0.318294 + 0.947992i \(0.396890\pi\)
\(440\) −165.799 + 108.788i −0.376816 + 0.247245i
\(441\) −337.691 + 584.291i −0.765740 + 1.32492i
\(442\) 144.386 231.306i 0.326665 0.523317i
\(443\) −687.638 −1.55223 −0.776115 0.630592i \(-0.782812\pi\)
−0.776115 + 0.630592i \(0.782812\pi\)
\(444\) −302.994 41.6804i −0.682419 0.0938747i
\(445\) 51.3065 0.115295
\(446\) −221.011 451.335i −0.495540 1.01196i
\(447\) 274.252 158.257i 0.613540 0.354043i
\(448\) 261.654 + 662.854i 0.584050 + 1.47959i
\(449\) −332.430 + 332.430i −0.740378 + 0.740378i −0.972651 0.232272i \(-0.925384\pi\)
0.232272 + 0.972651i \(0.425384\pi\)
\(450\) 314.808 274.280i 0.699573 0.609511i
\(451\) 702.288i 1.55718i
\(452\) 306.335 394.645i 0.677732 0.873108i
\(453\) 68.6008 + 118.882i 0.151437 + 0.262433i
\(454\) −76.8379 + 37.6262i −0.169246 + 0.0828770i
\(455\) 43.9419 189.376i 0.0965755 0.416212i
\(456\) 196.590 + 99.0569i 0.431119 + 0.217230i
\(457\) 478.742 478.742i 1.04758 1.04758i 0.0487647 0.998810i \(-0.484472\pi\)
0.998810 0.0487647i \(-0.0155284\pi\)
\(458\) −341.859 698.124i −0.746417 1.52429i
\(459\) 200.359 200.088i 0.436512 0.435922i
\(460\) 91.0238 11.4673i 0.197878 0.0249289i
\(461\) 222.155 + 222.155i 0.481898 + 0.481898i 0.905737 0.423839i \(-0.139318\pi\)
−0.423839 + 0.905737i \(0.639318\pi\)
\(462\) 688.143 1023.19i 1.48949 2.21469i
\(463\) −318.982 + 318.982i −0.688945 + 0.688945i −0.961999 0.273054i \(-0.911966\pi\)
0.273054 + 0.961999i \(0.411966\pi\)
\(464\) −577.694 + 147.904i −1.24503 + 0.318760i
\(465\) 80.8919 + 21.6945i 0.173961 + 0.0466547i
\(466\) 333.958 + 114.403i 0.716648 + 0.245501i
\(467\) 121.753i 0.260714i 0.991467 + 0.130357i \(0.0416123\pi\)
−0.991467 + 0.130357i \(0.958388\pi\)
\(468\) 462.121 73.9463i 0.987438 0.158005i
\(469\) −430.415 −0.917728
\(470\) −64.2866 + 187.661i −0.136780 + 0.399278i
\(471\) −29.8417 + 111.271i −0.0633582 + 0.236243i
\(472\) −64.1476 + 308.957i −0.135906 + 0.654570i
\(473\) 126.622 + 126.622i 0.267699 + 0.267699i
\(474\) −151.524 101.907i −0.319670 0.214994i
\(475\) 150.447 150.447i 0.316731 0.316731i
\(476\) 463.436 58.3842i 0.973606 0.122656i
\(477\) −422.290 + 730.668i −0.885305 + 1.53180i
\(478\) −208.944 + 102.316i −0.437122 + 0.214051i
\(479\) 262.894 + 262.894i 0.548839 + 0.548839i 0.926105 0.377266i \(-0.123136\pi\)
−0.377266 + 0.926105i \(0.623136\pi\)
\(480\) −55.3804 116.431i −0.115376 0.242565i
\(481\) −281.182 + 175.269i −0.584578 + 0.364385i
\(482\) 80.4668 + 164.324i 0.166944 + 0.340922i
\(483\) −494.105 + 285.123i −1.02299 + 0.590317i
\(484\) −538.731 + 694.036i −1.11308 + 1.43396i
\(485\) −111.638 −0.230182
\(486\) 484.831 + 33.6846i 0.997595 + 0.0693098i
\(487\) 222.814 + 222.814i 0.457524 + 0.457524i 0.897842 0.440318i \(-0.145134\pi\)
−0.440318 + 0.897842i \(0.645134\pi\)
\(488\) 87.6428 + 133.573i 0.179596 + 0.273715i
\(489\) −11.2632 19.5185i −0.0230331 0.0399152i
\(490\) 180.889 88.5781i 0.369161 0.180772i
\(491\) 972.633i 1.98092i 0.137788 + 0.990462i \(0.456001\pi\)
−0.137788 + 0.990462i \(0.543999\pi\)
\(492\) 452.349 + 62.2258i 0.919408 + 0.126475i
\(493\) 390.869i 0.792837i
\(494\) 232.344 53.7550i 0.470332 0.108816i
\(495\) −111.632 + 193.152i −0.225520 + 0.390206i
\(496\) −169.495 + 286.152i −0.341723 + 0.576919i
\(497\) 193.684i 0.389706i
\(498\) −152.617 779.532i −0.306460 1.56533i
\(499\) −445.893 445.893i −0.893574 0.893574i 0.101284 0.994858i \(-0.467705\pi\)
−0.994858 + 0.101284i \(0.967705\pi\)
\(500\) −256.886 + 32.3628i −0.513772 + 0.0647256i
\(501\) −72.4798 + 41.8245i −0.144670 + 0.0834819i
\(502\) −121.055 + 353.374i −0.241145 + 0.703932i
\(503\) −9.30759 −0.0185042 −0.00925208 0.999957i \(-0.502945\pi\)
−0.00925208 + 0.999957i \(0.502945\pi\)
\(504\) 598.070 + 533.897i 1.18665 + 1.05932i
\(505\) −12.2760 12.2760i −0.0243090 0.0243090i
\(506\) 566.156 277.237i 1.11889 0.547899i
\(507\) 333.554 381.825i 0.657898 0.753107i
\(508\) −634.146 492.242i −1.24832 0.968981i
\(509\) 336.411 + 336.411i 0.660926 + 0.660926i 0.955598 0.294672i \(-0.0952105\pi\)
−0.294672 + 0.955598i \(0.595210\pi\)
\(510\) −82.9348 + 16.2370i −0.162617 + 0.0318373i
\(511\) 54.5551 0.106761
\(512\) 504.511 87.2496i 0.985373 0.170409i
\(513\) 247.653 + 0.167340i 0.482755 + 0.000326200i
\(514\) 833.063 + 285.381i 1.62075 + 0.555215i
\(515\) 23.3543 + 23.3543i 0.0453482 + 0.0453482i
\(516\) −92.7772 + 70.3387i −0.179801 + 0.136315i
\(517\) 1363.03i 2.63641i
\(518\) −536.959 183.945i −1.03660 0.355106i
\(519\) 117.980 439.911i 0.227322 0.847613i
\(520\) −126.802 58.5714i −0.243849 0.112637i
\(521\) 210.994i 0.404979i 0.979284 + 0.202489i \(0.0649031\pi\)
−0.979284 + 0.202489i \(0.935097\pi\)
\(522\) −505.816 + 440.697i −0.968995 + 0.844248i
\(523\) 782.435i 1.49605i 0.663670 + 0.748026i \(0.268998\pi\)
−0.663670 + 0.748026i \(0.731002\pi\)
\(524\) −434.382 337.180i −0.828973 0.643473i
\(525\) 671.134 387.278i 1.27835 0.737672i
\(526\) −105.645 36.1906i −0.200846 0.0688035i
\(527\) 154.146 + 154.146i 0.292496 + 0.292496i
\(528\) −619.268 633.528i −1.17286 1.19986i
\(529\) 237.354 0.448685
\(530\) 226.205 110.769i 0.426803 0.208998i
\(531\) 91.7235 + 342.935i 0.172737 + 0.645828i
\(532\) 322.716 + 250.501i 0.606609 + 0.470867i
\(533\) 419.785 261.665i 0.787589 0.490928i
\(534\) 44.0391 + 224.941i 0.0824702 + 0.421238i
\(535\) 43.0036 + 43.0036i 0.0803806 + 0.0803806i
\(536\) −62.8654 + 302.782i −0.117286 + 0.564891i
\(537\) −486.954 130.597i −0.906805 0.243197i
\(538\) 90.5489 264.324i 0.168306 0.491308i
\(539\) 978.602 978.602i 1.81559 1.81559i
\(540\) −114.519 89.0174i −0.212073 0.164847i
\(541\) 110.852 + 110.852i 0.204903 + 0.204903i 0.802097 0.597194i \(-0.203718\pi\)
−0.597194 + 0.802097i \(0.703718\pi\)
\(542\) 35.6647 17.4644i 0.0658021 0.0322221i
\(543\) 469.155 + 125.823i 0.864006 + 0.231718i
\(544\) 26.6172 334.539i 0.0489287 0.614961i
\(545\) 241.488 0.443098
\(546\) 867.994 + 30.1011i 1.58973 + 0.0551302i
\(547\) 83.0751i 0.151874i −0.997113 0.0759370i \(-0.975805\pi\)
0.997113 0.0759370i \(-0.0241948\pi\)
\(548\) 502.022 63.2453i 0.916098 0.115411i
\(549\) 155.609 + 89.9346i 0.283442 + 0.163815i
\(550\) −769.000 + 376.566i −1.39818 + 0.684665i
\(551\) −241.730 + 241.730i −0.438711 + 0.438711i
\(552\) 128.406 + 389.230i 0.232620 + 0.705126i
\(553\) −239.623 239.623i −0.433315 0.433315i
\(554\) −171.437 + 500.447i −0.309453 + 0.903334i
\(555\) 99.1857 + 26.6007i 0.178713 + 0.0479291i
\(556\) −111.091 + 143.116i −0.199804 + 0.257404i
\(557\) 438.392 438.392i 0.787060 0.787060i −0.193951 0.981011i \(-0.562130\pi\)
0.981011 + 0.193951i \(0.0621304\pi\)
\(558\) −25.6804 + 373.273i −0.0460223 + 0.668948i
\(559\) −28.5088 + 122.865i −0.0509997 + 0.219794i
\(560\) −59.3453 231.794i −0.105974 0.413919i
\(561\) −502.953 + 290.229i −0.896529 + 0.517342i
\(562\) 511.210 250.330i 0.909626 0.445428i
\(563\) 773.124i 1.37322i 0.727025 + 0.686611i \(0.240902\pi\)
−0.727025 + 0.686611i \(0.759098\pi\)
\(564\) −877.935 120.770i −1.55662 0.214132i
\(565\) −118.610 + 118.610i −0.209929 + 0.209929i
\(566\) −749.382 256.714i −1.32400 0.453559i
\(567\) 870.977 + 234.219i 1.53611 + 0.413084i
\(568\) 136.250 + 28.2890i 0.239876 + 0.0498046i
\(569\) −238.618 −0.419364 −0.209682 0.977770i \(-0.567243\pi\)
−0.209682 + 0.977770i \(0.567243\pi\)
\(570\) −61.3320 41.2487i −0.107600 0.0723662i
\(571\) 18.5671 0.0325168 0.0162584 0.999868i \(-0.494825\pi\)
0.0162584 + 0.999868i \(0.494825\pi\)
\(572\) −954.690 98.3726i −1.66904 0.171980i
\(573\) −69.9309 + 260.751i −0.122044 + 0.455063i
\(574\) 801.642 + 274.617i 1.39659 + 0.478427i
\(575\) 396.137 0.688934
\(576\) 462.930 342.741i 0.803698 0.595037i
\(577\) 640.717 640.717i 1.11043 1.11043i 0.117336 0.993092i \(-0.462565\pi\)
0.993092 0.117336i \(-0.0374354\pi\)
\(578\) 338.707 + 116.030i 0.585999 + 0.200744i
\(579\) 475.773 274.545i 0.821716 0.474171i
\(580\) 198.651 25.0263i 0.342503 0.0431489i
\(581\) 1474.12i 2.53722i
\(582\) −95.8251 489.452i −0.164648 0.840983i
\(583\) 1223.76 1223.76i 2.09908 2.09908i
\(584\) 7.96820 38.3776i 0.0136442 0.0657151i
\(585\) −157.048 + 5.23931i −0.268457 + 0.00895609i
\(586\) −472.808 + 231.526i −0.806840 + 0.395095i
\(587\) 418.692 418.692i 0.713274 0.713274i −0.253945 0.967219i \(-0.581728\pi\)
0.967219 + 0.253945i \(0.0817281\pi\)
\(588\) 543.616 + 717.033i 0.924517 + 1.21944i
\(589\) 190.660i 0.323702i
\(590\) 34.3353 100.229i 0.0581955 0.169880i
\(591\) −161.437 + 93.1574i −0.273160 + 0.157627i
\(592\) −207.826 + 350.865i −0.351057 + 0.592678i
\(593\) −213.904 + 213.904i −0.360715 + 0.360715i −0.864076 0.503361i \(-0.832097\pi\)
0.503361 + 0.864076i \(0.332097\pi\)
\(594\) −942.649 323.633i −1.58695 0.544837i
\(595\) −156.833 −0.263584
\(596\) −52.7701 418.873i −0.0885405 0.702807i
\(597\) 132.343 493.467i 0.221680 0.826578i
\(598\) 376.659 + 235.118i 0.629864 + 0.393174i
\(599\) 491.097 0.819862 0.409931 0.912116i \(-0.365553\pi\)
0.409931 + 0.912116i \(0.365553\pi\)
\(600\) −174.412 528.684i −0.290687 0.881140i
\(601\) −858.307 −1.42813 −0.714066 0.700078i \(-0.753148\pi\)
−0.714066 + 0.700078i \(0.753148\pi\)
\(602\) −194.048 + 95.0220i −0.322339 + 0.157844i
\(603\) 89.8901 + 336.080i 0.149072 + 0.557347i
\(604\) 181.572 22.8746i 0.300615 0.0378719i
\(605\) 208.592 208.592i 0.344780 0.344780i
\(606\) 43.2842 64.3586i 0.0714261 0.106202i
\(607\) 131.464i 0.216579i 0.994119 + 0.108290i \(0.0345374\pi\)
−0.994119 + 0.108290i \(0.965463\pi\)
\(608\) 223.354 190.432i 0.367359 0.313210i
\(609\) −1078.34 + 622.256i −1.77067 + 1.02177i
\(610\) −23.5903 48.1747i −0.0386726 0.0789749i
\(611\) −814.734 + 507.849i −1.33344 + 0.831177i
\(612\) −142.375 349.671i −0.232638 0.571358i
\(613\) −334.286 + 334.286i −0.545328 + 0.545328i −0.925086 0.379758i \(-0.876007\pi\)
0.379758 + 0.925086i \(0.376007\pi\)
\(614\) −633.308 + 310.120i −1.03145 + 0.505082i
\(615\) −148.077 39.7129i −0.240776 0.0645739i
\(616\) −901.935 1374.61i −1.46418 2.23150i
\(617\) −650.790 650.790i −1.05476 1.05476i −0.998411 0.0563537i \(-0.982053\pi\)
−0.0563537 0.998411i \(-0.517947\pi\)
\(618\) −82.3453 + 122.438i −0.133245 + 0.198119i
\(619\) −803.023 + 803.023i −1.29729 + 1.29729i −0.367116 + 0.930175i \(0.619655\pi\)
−0.930175 + 0.367116i \(0.880345\pi\)
\(620\) 68.4720 88.2111i 0.110439 0.142276i
\(621\) 325.824 + 326.264i 0.524676 + 0.525386i
\(622\) −93.9879 + 274.363i −0.151106 + 0.441098i
\(623\) 425.371i 0.682779i
\(624\) 147.952 606.206i 0.237103 0.971485i
\(625\) −492.973 −0.788757
\(626\) −451.177 154.559i −0.720731 0.246899i
\(627\) −490.537 131.557i −0.782356 0.209820i
\(628\) 121.338 + 94.1863i 0.193214 + 0.149978i
\(629\) 189.006 + 189.006i 0.300486 + 0.300486i
\(630\) −176.826 202.954i −0.280676 0.322149i
\(631\) −336.411 + 336.411i −0.533140 + 0.533140i −0.921505 0.388366i \(-0.873040\pi\)
0.388366 + 0.921505i \(0.373040\pi\)
\(632\) −203.565 + 133.568i −0.322097 + 0.211341i
\(633\) 649.545 + 174.202i 1.02614 + 0.275200i
\(634\) 389.506 + 795.426i 0.614363 + 1.25461i
\(635\) 190.592 + 190.592i 0.300145 + 0.300145i
\(636\) 679.804 + 896.666i 1.06887 + 1.40985i
\(637\) 949.565 + 220.332i 1.49068 + 0.345890i
\(638\) 1235.59 605.045i 1.93665 0.948346i
\(639\) 151.234 40.4500i 0.236673 0.0633020i
\(640\) −171.727 + 7.89198i −0.268323 + 0.0123312i
\(641\) −135.932 −0.212063 −0.106032 0.994363i \(-0.533814\pi\)
−0.106032 + 0.994363i \(0.533814\pi\)
\(642\) −151.627 + 225.452i −0.236179 + 0.351171i
\(643\) −304.119 304.119i −0.472970 0.472970i 0.429905 0.902874i \(-0.358547\pi\)
−0.902874 + 0.429905i \(0.858547\pi\)
\(644\) 95.0729 + 754.660i 0.147629 + 1.17183i
\(645\) 33.8584 19.5380i 0.0524936 0.0302914i
\(646\) −84.6092 172.784i −0.130974 0.267467i
\(647\) 407.010i 0.629073i −0.949245 0.314537i \(-0.898151\pi\)
0.949245 0.314537i \(-0.101849\pi\)
\(648\) 291.978 578.492i 0.450583 0.892735i
\(649\) 727.989i 1.12171i
\(650\) −511.609 319.357i −0.787091 0.491318i
\(651\) −179.864 + 670.658i −0.276289 + 1.03020i
\(652\) −29.8112 + 3.75565i −0.0457227 + 0.00576020i
\(653\) 88.1990i 0.135067i 0.997717 + 0.0675337i \(0.0215130\pi\)
−0.997717 + 0.0675337i \(0.978487\pi\)
\(654\) 207.282 + 1058.75i 0.316945 + 1.61888i
\(655\) 130.553 + 130.553i 0.199318 + 0.199318i
\(656\) 310.269 523.817i 0.472972 0.798501i
\(657\) −11.3936 42.5982i −0.0173418 0.0648375i
\(658\) −1555.86 532.987i −2.36452 0.810010i
\(659\) −243.877 −0.370071 −0.185036 0.982732i \(-0.559240\pi\)
−0.185036 + 0.982732i \(0.559240\pi\)
\(660\) 179.706 + 237.033i 0.272282 + 0.359142i
\(661\) 482.331 + 482.331i 0.729699 + 0.729699i 0.970560 0.240861i \(-0.0774298\pi\)
−0.240861 + 0.970560i \(0.577430\pi\)
\(662\) −224.599 458.663i −0.339274 0.692844i
\(663\) −360.876 192.498i −0.544308 0.290344i
\(664\) −1036.99 215.307i −1.56174 0.324258i
\(665\) −96.9919 96.9919i −0.145852 0.145852i
\(666\) −31.4881 + 457.689i −0.0472794 + 0.687221i
\(667\) −636.491 −0.954259
\(668\) 13.9462 + 110.700i 0.0208775 + 0.165719i
\(669\) −652.907 + 376.760i −0.975945 + 0.563169i
\(670\) 33.6490 98.2258i 0.0502224 0.146606i
\(671\) −260.623 260.623i −0.388410 0.388410i
\(672\) 965.309 459.147i 1.43647 0.683255i
\(673\) 885.893i 1.31633i −0.752872 0.658167i \(-0.771332\pi\)
0.752872 0.658167i \(-0.228668\pi\)
\(674\) 13.5703 39.6134i 0.0201340 0.0587737i
\(675\) −442.561 443.159i −0.655646 0.656533i
\(676\) −296.906 607.308i −0.439210 0.898384i
\(677\) 948.372i 1.40085i 0.713728 + 0.700423i \(0.247005\pi\)
−0.713728 + 0.700423i \(0.752995\pi\)
\(678\) −621.827 418.209i −0.917149 0.616827i
\(679\) 925.571i 1.36314i
\(680\) −22.9066 + 110.326i −0.0336862 + 0.162244i
\(681\) 64.1418 + 111.155i 0.0941876 + 0.163223i
\(682\) 248.664 725.883i 0.364610 1.06434i
\(683\) 495.730 + 495.730i 0.725813 + 0.725813i 0.969783 0.243970i \(-0.0784499\pi\)
−0.243970 + 0.969783i \(0.578450\pi\)
\(684\) 128.201 304.302i 0.187428 0.444886i
\(685\) −169.890 −0.248015
\(686\) 254.484 + 519.691i 0.370968 + 0.757568i
\(687\) −1009.91 + 582.771i −1.47004 + 0.848284i
\(688\) 38.5024 + 150.385i 0.0559628 + 0.218583i
\(689\) 1187.45 + 275.530i 1.72344 + 0.399898i
\(690\) −26.4403 135.051i −0.0383193 0.195726i
\(691\) −842.804 842.804i −1.21969 1.21969i −0.967741 0.251946i \(-0.918929\pi\)
−0.251946 0.967741i \(-0.581071\pi\)
\(692\) −479.715 372.368i −0.693229 0.538104i
\(693\) −1601.38 925.521i −2.31080 1.33553i
\(694\) 575.999 + 197.319i 0.829970 + 0.284321i
\(695\) 43.0135 43.0135i 0.0618899 0.0618899i
\(696\) 280.235 + 849.459i 0.402637 + 1.22049i
\(697\) −282.172 282.172i −0.404838 0.404838i
\(698\) 339.783 + 693.883i 0.486794 + 0.994102i
\(699\) 137.164 511.441i 0.196229 0.731676i
\(700\) −129.136 1025.04i −0.184480 1.46435i
\(701\) −435.243 −0.620889 −0.310444 0.950592i \(-0.600478\pi\)
−0.310444 + 0.950592i \(0.600478\pi\)
\(702\) −157.773 684.041i −0.224747 0.974417i
\(703\) 233.778i 0.332544i
\(704\) −1098.72 + 433.708i −1.56068 + 0.616063i
\(705\) 287.394 + 77.0763i 0.407651 + 0.109328i
\(706\) −109.627 223.874i −0.155279 0.317101i
\(707\) 101.778 101.778i 0.143958 0.143958i
\(708\) 468.903 + 64.5031i 0.662293 + 0.0911061i
\(709\) 688.110 + 688.110i 0.970537 + 0.970537i 0.999578 0.0290416i \(-0.00924553\pi\)
−0.0290416 + 0.999578i \(0.509246\pi\)
\(710\) −44.2010 15.1418i −0.0622549 0.0213265i
\(711\) −137.060 + 237.149i −0.192771 + 0.333543i
\(712\) 299.234 + 62.1288i 0.420272 + 0.0872595i
\(713\) −251.011 + 251.011i −0.352049 + 0.352049i
\(714\) −134.618 687.595i −0.188540 0.963019i
\(715\) 313.903 + 72.8363i 0.439025 + 0.101869i
\(716\) −412.188 + 531.014i −0.575682 + 0.741640i
\(717\) 174.420 + 302.262i 0.243264 + 0.421564i
\(718\) 116.277 + 237.453i 0.161945 + 0.330715i
\(719\) 576.024i 0.801146i −0.916265 0.400573i \(-0.868811\pi\)
0.916265 0.400573i \(-0.131189\pi\)
\(720\) −168.598 + 94.7478i −0.234163 + 0.131594i
\(721\) −193.626 + 193.626i −0.268552 + 0.268552i
\(722\) −179.454 + 523.851i −0.248552 + 0.725555i
\(723\) 237.714 137.173i 0.328788 0.189727i
\(724\) 397.122 511.605i 0.548511 0.706636i
\(725\) 864.535 1.19246
\(726\) 1093.57 + 735.476i 1.50629 + 1.01305i
\(727\) 516.927 0.711041 0.355520 0.934669i \(-0.384304\pi\)
0.355520 + 0.934669i \(0.384304\pi\)
\(728\) 485.604 1051.29i 0.667038 1.44407i
\(729\) 0.985176 728.999i 0.00135141 0.999999i
\(730\) −4.26502 + 12.4501i −0.00584249 + 0.0170550i
\(731\) 101.751 0.139194
\(732\) 190.962 144.777i 0.260877 0.197783i
\(733\) 623.462 623.462i 0.850563 0.850563i −0.139640 0.990202i \(-0.544594\pi\)
0.990202 + 0.139640i \(0.0445944\pi\)
\(734\) −323.050 + 943.025i −0.440123 + 1.28477i
\(735\) −151.000 261.676i −0.205442 0.356022i
\(736\) 544.763 + 43.3435i 0.740167 + 0.0588906i
\(737\) 713.438i 0.968030i
\(738\) 47.0095 683.298i 0.0636984 0.925877i
\(739\) −88.1069 + 88.1069i −0.119224 + 0.119224i −0.764202 0.644977i \(-0.776867\pi\)
0.644977 + 0.764202i \(0.276867\pi\)
\(740\) 83.9570 108.160i 0.113455 0.146162i
\(741\) −104.132 342.230i −0.140529 0.461849i
\(742\) 918.361 + 1875.42i 1.23768 + 2.52752i
\(743\) −720.000 + 720.000i −0.969044 + 0.969044i −0.999535 0.0304906i \(-0.990293\pi\)
0.0304906 + 0.999535i \(0.490293\pi\)
\(744\) 445.514 + 224.483i 0.598809 + 0.301724i
\(745\) 141.752i 0.190271i
\(746\) 1090.92 + 373.714i 1.46236 + 0.500957i
\(747\) −1151.04 + 307.864i −1.54088 + 0.412134i
\(748\) 96.7754 + 768.174i 0.129379 + 1.02697i
\(749\) −356.534 + 356.534i −0.476013 + 0.476013i
\(750\) 74.6196 + 381.139i 0.0994928 + 0.508186i
\(751\) 863.481 1.14977 0.574887 0.818233i \(-0.305046\pi\)
0.574887 + 0.818233i \(0.305046\pi\)
\(752\) −602.182 + 1016.64i −0.800774 + 1.35192i
\(753\) 541.176 + 145.138i 0.718693 + 0.192747i
\(754\) 822.025 + 513.125i 1.09022 + 0.680537i
\(755\) −61.4461 −0.0813856
\(756\) 738.025 949.457i 0.976223 1.25590i
\(757\) −1066.15 −1.40839 −0.704195 0.710006i \(-0.748692\pi\)
−0.704195 + 0.710006i \(0.748692\pi\)
\(758\) −209.160 427.134i −0.275937 0.563502i
\(759\) −472.609 819.008i −0.622673 1.07906i
\(760\) −82.3968 + 54.0639i −0.108417 + 0.0711368i
\(761\) 913.582 913.582i 1.20050 1.20050i 0.226489 0.974014i \(-0.427275\pi\)
0.974014 0.226489i \(-0.0727247\pi\)
\(762\) −672.010 + 999.200i −0.881903 + 1.31129i
\(763\) 2002.13i 2.62402i
\(764\) 284.344 + 220.716i 0.372178 + 0.288895i
\(765\) 32.7538 + 122.459i 0.0428154 + 0.160078i
\(766\) 506.225 247.889i 0.660868 0.323615i
\(767\) 435.148 271.241i 0.567337 0.353639i
\(768\) −182.003 746.123i −0.236983 0.971514i
\(769\) 638.154 638.154i 0.829849 0.829849i −0.157646 0.987496i \(-0.550391\pi\)
0.987496 + 0.157646i \(0.0503905\pi\)
\(770\) 242.769 + 495.768i 0.315284 + 0.643854i
\(771\) 342.157 1275.80i 0.443783 1.65473i
\(772\) −91.5457 726.662i −0.118583 0.941272i
\(773\) −92.5067 92.5067i −0.119672 0.119672i 0.644734 0.764407i \(-0.276968\pi\)
−0.764407 + 0.644734i \(0.776968\pi\)
\(774\) 114.722 + 131.674i 0.148220 + 0.170121i
\(775\) 340.944 340.944i 0.439927 0.439927i
\(776\) −651.106 135.187i −0.839054 0.174210i
\(777\) −220.541 + 822.328i −0.283836 + 1.05834i
\(778\) 153.573 + 52.6091i 0.197394 + 0.0676209i
\(779\) 349.014i 0.448029i
\(780\) −74.7276 + 195.733i −0.0958046 + 0.250940i
\(781\) −321.042 −0.411066
\(782\) 116.085 338.867i 0.148446 0.433334i
\(783\) 711.082 + 712.043i 0.908150 + 0.909378i
\(784\) 1162.26 297.568i 1.48247 0.379551i
\(785\) −36.4681 36.4681i −0.0464562 0.0464562i
\(786\) −460.318 + 684.439i −0.585647 + 0.870788i
\(787\) 226.028 226.028i 0.287202 0.287202i −0.548771 0.835973i \(-0.684904\pi\)
0.835973 + 0.548771i \(0.184904\pi\)
\(788\) 31.0629 + 246.568i 0.0394199 + 0.312903i
\(789\) −43.3907 + 161.791i −0.0549946 + 0.205058i
\(790\) 73.4182 35.9516i 0.0929344 0.0455084i
\(791\) −983.371 983.371i −1.24320 1.24320i
\(792\) −884.966 + 991.337i −1.11738 + 1.25169i
\(793\) 58.6793 252.890i 0.0739966 0.318903i
\(794\) −312.786 638.753i −0.393937 0.804475i
\(795\) −188.829 327.232i −0.237521 0.411612i
\(796\) −538.116 417.701i −0.676025 0.524750i
\(797\) 834.278 1.04677 0.523387 0.852095i \(-0.324668\pi\)
0.523387 + 0.852095i \(0.324668\pi\)
\(798\) 341.985 508.491i 0.428552 0.637207i
\(799\) 547.650 + 547.650i 0.685420 + 0.685420i
\(800\) −739.942 58.8727i −0.924927 0.0735909i
\(801\) 332.142 88.8369i 0.414659 0.110907i
\(802\) −1065.03 + 521.525i −1.32796 + 0.650280i
\(803\) 90.4284i 0.112613i
\(804\) 459.531 + 63.2138i 0.571556 + 0.0786242i
\(805\) 255.386i 0.317250i
\(806\) 526.538 121.820i 0.653273 0.151141i
\(807\) −404.800 108.563i −0.501611 0.134527i
\(808\) −56.7318 86.4628i −0.0702127 0.107008i
\(809\) 775.968i 0.959169i 0.877496 + 0.479585i \(0.159213\pi\)
−0.877496 + 0.479585i \(0.840787\pi\)
\(810\) −121.543 + 180.457i −0.150053 + 0.222786i
\(811\) −627.437 627.437i −0.773658 0.773658i 0.205086 0.978744i \(-0.434253\pi\)
−0.978744 + 0.205086i \(0.934253\pi\)
\(812\) 207.488 + 1646.98i 0.255527 + 2.02830i
\(813\) −29.7718 51.5931i −0.0366197 0.0634601i
\(814\) 304.900 890.042i 0.374570 1.09342i
\(815\) 10.0885 0.0123785
\(816\) −503.361 5.72986i −0.616864 0.00702189i
\(817\) 62.9269 + 62.9269i 0.0770219 + 0.0770219i
\(818\) −1204.25 + 589.701i −1.47219 + 0.720906i
\(819\) −43.4380 1302.05i −0.0530379 1.58980i
\(820\) −125.342 + 161.475i −0.152856 + 0.196921i
\(821\) −845.820 845.820i −1.03023 1.03023i −0.999529 0.0307022i \(-0.990226\pi\)
−0.0307022 0.999529i \(-0.509774\pi\)
\(822\) −145.826 744.844i −0.177404 0.906137i
\(823\) −632.140 −0.768092 −0.384046 0.923314i \(-0.625470\pi\)
−0.384046 + 0.923314i \(0.625470\pi\)
\(824\) 107.928 + 164.489i 0.130981 + 0.199623i
\(825\) 641.937 + 1112.45i 0.778105 + 1.34842i
\(826\) 830.980 + 284.667i 1.00603 + 0.344633i
\(827\) −533.580 533.580i −0.645200 0.645200i 0.306629 0.951829i \(-0.400799\pi\)
−0.951829 + 0.306629i \(0.900799\pi\)
\(828\) 569.405 231.843i 0.687687 0.280004i
\(829\) 34.0426i 0.0410646i 0.999789 + 0.0205323i \(0.00653610\pi\)
−0.999789 + 0.0205323i \(0.993464\pi\)
\(830\) 336.413 + 115.244i 0.405316 + 0.138848i
\(831\) 766.411 + 205.544i 0.922276 + 0.247346i
\(832\) −668.616 495.153i −0.803625 0.595136i
\(833\) 786.385i 0.944040i
\(834\) 225.503 + 151.662i 0.270387 + 0.181849i
\(835\) 37.4624i 0.0448651i
\(836\) −415.221 + 534.921i −0.496676 + 0.639858i
\(837\) 561.233 + 0.379228i 0.670529 + 0.000453079i
\(838\) −1397.30 478.671i −1.66742 0.571206i
\(839\) −63.4338 63.4338i −0.0756064 0.0756064i 0.668292 0.743899i \(-0.267026\pi\)
−0.743899 + 0.668292i \(0.767026\pi\)
\(840\) −340.838 + 112.442i −0.405759 + 0.133859i
\(841\) −548.085 −0.651706
\(842\) −47.9211 + 23.4661i −0.0569134 + 0.0278695i
\(843\) −426.741 739.522i −0.506217 0.877251i
\(844\) 549.815 708.316i 0.651440 0.839237i
\(845\) 73.4197 + 214.770i 0.0868872 + 0.254166i
\(846\) −91.2377 + 1326.17i −0.107846 + 1.56758i
\(847\) 1729.39 + 1729.39i 2.04178 + 2.04178i
\(848\) 1453.43 372.115i 1.71395 0.438815i
\(849\) −307.787 + 1147.64i −0.362529 + 1.35176i
\(850\) −157.676 + 460.277i −0.185501 + 0.541502i
\(851\) −307.777 + 307.777i −0.361665 + 0.361665i
\(852\) 28.4458 206.786i 0.0333871 0.242706i
\(853\) −529.185 529.185i −0.620381 0.620381i 0.325248 0.945629i \(-0.394552\pi\)
−0.945629 + 0.325248i \(0.894552\pi\)
\(854\) 399.406 195.582i 0.467689 0.229019i
\(855\) −55.4777 + 95.9904i −0.0648862 + 0.112269i
\(856\) 198.735 + 302.884i 0.232167 + 0.353836i
\(857\) 941.964 1.09914 0.549571 0.835447i \(-0.314791\pi\)
0.549571 + 0.835447i \(0.314791\pi\)
\(858\) −49.8944 + 1438.75i −0.0581520 + 1.67687i
\(859\) 51.4741i 0.0599233i −0.999551 0.0299617i \(-0.990461\pi\)
0.999551 0.0299617i \(-0.00953852\pi\)
\(860\) −6.51484 51.7128i −0.00757540 0.0601312i
\(861\) 329.252 1227.68i 0.382406 1.42587i
\(862\) −1037.46 + 508.026i −1.20355 + 0.589357i
\(863\) −182.144 + 182.144i −0.211059 + 0.211059i −0.804717 0.593658i \(-0.797683\pi\)
0.593658 + 0.804717i \(0.297683\pi\)
\(864\) −560.116 657.850i −0.648282 0.761400i
\(865\) 144.178 + 144.178i 0.166679 + 0.166679i
\(866\) 315.468 920.892i 0.364282 1.06339i
\(867\) 139.114 518.715i 0.160455 0.598287i
\(868\) 731.340 + 567.687i 0.842558 + 0.654017i
\(869\) 397.190 397.190i 0.457065 0.457065i
\(870\) −57.7037 294.737i −0.0663261 0.338778i
\(871\) 426.450 265.819i 0.489610 0.305189i
\(872\) 1408.43 + 292.427i 1.61517 + 0.335352i
\(873\) −722.712 + 193.301i −0.827849 + 0.221422i
\(874\) 281.361 137.778i 0.321924 0.157640i
\(875\) 720.747i 0.823711i
\(876\) −58.2456 8.01236i −0.0664904 0.00914653i
\(877\) −646.826 + 646.826i −0.737544 + 0.737544i −0.972102 0.234558i \(-0.924636\pi\)
0.234558 + 0.972102i \(0.424636\pi\)
\(878\) −528.759 181.136i −0.602231 0.206305i
\(879\) 394.685 + 683.970i 0.449016 + 0.778123i
\(880\) 384.213 98.3685i 0.436606 0.111782i
\(881\) 82.3758 0.0935026 0.0467513 0.998907i \(-0.485113\pi\)
0.0467513 + 0.998907i \(0.485113\pi\)
\(882\) 1017.65 886.635i 1.15379 1.00526i
\(883\) 128.459 0.145481 0.0727403 0.997351i \(-0.476826\pi\)
0.0727403 + 0.997351i \(0.476826\pi\)
\(884\) −423.110 + 344.060i −0.478631 + 0.389208i
\(885\) −153.496 41.1663i −0.173442 0.0465156i
\(886\) 1301.05 + 445.699i 1.46846 + 0.503046i
\(887\) −1047.33 −1.18076 −0.590380 0.807126i \(-0.701022\pi\)
−0.590380 + 0.807126i \(0.701022\pi\)
\(888\) 546.267 + 275.250i 0.615166 + 0.309966i
\(889\) −1580.16 + 1580.16i −1.77745 + 1.77745i
\(890\) −97.0749 33.2548i −0.109073 0.0373649i
\(891\) −388.232 + 1443.70i −0.435726 + 1.62031i
\(892\) 125.629 + 997.203i 0.140840 + 1.11794i
\(893\) 677.380i 0.758545i
\(894\) −621.478 + 121.673i −0.695165 + 0.136100i
\(895\) 159.596 159.596i 0.178319 0.178319i
\(896\) −65.4308 1423.75i −0.0730255 1.58901i
\(897\) 313.464 587.650i 0.349459 0.655129i
\(898\) 844.445 413.510i 0.940361 0.460478i
\(899\) −547.809 + 547.809i −0.609354 + 0.609354i
\(900\) −773.413 + 314.908i −0.859347 + 0.349898i
\(901\) 983.392i 1.09144i
\(902\) −455.194 + 1328.77i −0.504650 + 1.47314i
\(903\) 161.985 + 280.713i 0.179386 + 0.310867i
\(904\) −835.396 + 548.138i −0.924111 + 0.606347i
\(905\) −153.762 + 153.762i −0.169903 + 0.169903i
\(906\) −52.7424 269.396i −0.0582146 0.297347i
\(907\) −1213.59 −1.33803 −0.669014 0.743250i \(-0.733283\pi\)
−0.669014 + 0.743250i \(0.733283\pi\)
\(908\) 169.770 21.3878i 0.186971 0.0235548i
\(909\) −100.727 58.2154i −0.110811 0.0640433i
\(910\) −205.887 + 329.830i −0.226249 + 0.362450i
\(911\) 1249.62 1.37170 0.685849 0.727744i \(-0.259431\pi\)
0.685849 + 0.727744i \(0.259431\pi\)
\(912\) −307.756 314.843i −0.337452 0.345223i
\(913\) 2443.45 2.67628
\(914\) −1216.11 + 595.507i −1.33053 + 0.651540i
\(915\) −69.6901 + 40.2147i −0.0761640 + 0.0439504i
\(916\) 194.322 + 1542.47i 0.212142 + 1.68392i
\(917\) −1082.39 + 1082.39i −1.18036 + 1.18036i
\(918\) −508.780 + 248.715i −0.554227 + 0.270931i
\(919\) 1693.18i 1.84241i −0.389076 0.921205i \(-0.627206\pi\)
0.389076 0.921205i \(-0.372794\pi\)
\(920\) −179.655 37.3011i −0.195277 0.0405447i
\(921\) 528.665 + 916.152i 0.574012 + 0.994736i
\(922\) −276.339 564.322i −0.299717 0.612063i
\(923\) −119.617 191.900i −0.129596 0.207909i
\(924\) −1965.19 + 1489.91i −2.12683 + 1.61245i
\(925\) 418.048 418.048i 0.451944 0.451944i
\(926\) 810.283 396.781i 0.875036 0.428490i
\(927\) 191.626 + 110.751i 0.206717 + 0.119472i
\(928\) 1188.90 + 94.5933i 1.28114 + 0.101932i
\(929\) −871.599 871.599i −0.938212 0.938212i 0.0599867 0.998199i \(-0.480894\pi\)
−0.998199 + 0.0599867i \(0.980894\pi\)
\(930\) −138.991 93.4781i −0.149453 0.100514i
\(931\) 486.334 486.334i 0.522378 0.522378i
\(932\) −557.717 432.916i −0.598409 0.464502i
\(933\) 420.174 + 112.687i 0.450347 + 0.120779i
\(934\) 78.9155 230.365i 0.0844920 0.246643i
\(935\) 259.959i 0.278031i
\(936\) −922.290 159.617i −0.985352 0.170531i
\(937\) 565.122 0.603119 0.301559 0.953447i \(-0.402493\pi\)
0.301559 + 0.953447i \(0.402493\pi\)
\(938\) 814.370 + 278.977i 0.868198 + 0.297417i
\(939\) −185.308 + 690.957i −0.197346 + 0.735844i
\(940\) 243.268 313.397i 0.258796 0.333402i
\(941\) −1134.28 1134.28i −1.20540 1.20540i −0.972502 0.232893i \(-0.925181\pi\)
−0.232893 0.972502i \(-0.574819\pi\)
\(942\) 128.583 191.188i 0.136500 0.202960i
\(943\) 459.489 459.489i 0.487263 0.487263i
\(944\) 321.624 542.987i 0.340704 0.575198i
\(945\) −285.701 + 285.315i −0.302329 + 0.301921i
\(946\) −157.505 321.647i −0.166496 0.340007i
\(947\) 456.667 + 456.667i 0.482225 + 0.482225i 0.905842 0.423617i \(-0.139240\pi\)
−0.423617 + 0.905842i \(0.639240\pi\)
\(948\) 220.640 + 291.026i 0.232743 + 0.306989i
\(949\) −54.0526 + 33.6927i −0.0569574 + 0.0355033i
\(950\) −382.168 + 187.141i −0.402283 + 0.196991i
\(951\) 1150.67 663.996i 1.20996 0.698208i
\(952\) −914.691 189.914i −0.960810 0.199489i
\(953\) 883.026 0.926575 0.463288 0.886208i \(-0.346670\pi\)
0.463288 + 0.886208i \(0.346670\pi\)
\(954\) 1272.59 1108.76i 1.33395 1.16222i
\(955\) −85.4592 85.4592i −0.0894861 0.0894861i
\(956\) 461.652 58.1595i 0.482900 0.0608363i
\(957\) −1031.43 1787.41i −1.07777 1.86773i
\(958\) −327.014 667.808i −0.341351 0.697086i
\(959\) 1408.53i 1.46874i
\(960\) 29.3169 + 256.190i 0.0305384 + 0.266865i
\(961\) 528.925i 0.550390i
\(962\) 645.615 149.370i 0.671118 0.155270i
\(963\) 352.853 + 203.932i 0.366410 + 0.211767i
\(964\) −45.7396 363.067i −0.0474477 0.376625i
\(965\) 245.911i 0.254830i
\(966\) 1119.68 219.211i 1.15909 0.226927i
\(967\) 556.304 + 556.304i 0.575289 + 0.575289i 0.933602 0.358313i \(-0.116648\pi\)
−0.358313 + 0.933602i \(0.616648\pi\)
\(968\) 1469.16 963.975i 1.51772 0.995841i
\(969\) −249.951 + 144.234i −0.257948 + 0.148849i
\(970\) 211.226 + 72.3594i 0.217759 + 0.0745973i
\(971\) 1135.92 1.16985 0.584924 0.811088i \(-0.301124\pi\)
0.584924 + 0.811088i \(0.301124\pi\)
\(972\) −895.497 377.981i −0.921293 0.388869i
\(973\) 356.616 + 356.616i 0.366511 + 0.366511i
\(974\) −277.159 565.997i −0.284557 0.581106i
\(975\) −425.773 + 798.196i −0.436691 + 0.818662i
\(976\) −79.2488 309.534i −0.0811976 0.317146i
\(977\) −302.818 302.818i −0.309947 0.309947i 0.534942 0.844889i \(-0.320333\pi\)
−0.844889 + 0.534942i \(0.820333\pi\)
\(978\) 8.65948 + 44.2306i 0.00885427 + 0.0452255i
\(979\) −705.079 −0.720203
\(980\) −399.665 + 50.3503i −0.407822 + 0.0513778i
\(981\) 1563.32 418.136i 1.59360 0.426234i
\(982\) 630.421 1840.28i 0.641977 1.87401i
\(983\) −859.837 859.837i −0.874707 0.874707i 0.118274 0.992981i \(-0.462264\pi\)
−0.992981 + 0.118274i \(0.962264\pi\)
\(984\) −815.538 410.929i −0.828799 0.417611i
\(985\) 83.4416i 0.0847123i
\(986\) 253.345 739.547i 0.256942 0.750048i
\(987\) −639.024 + 2382.72i −0.647441 + 2.41411i
\(988\) −474.450 48.8880i −0.480213 0.0494818i
\(989\) 165.691i 0.167534i
\(990\) 336.408 293.100i 0.339806 0.296060i
\(991\) 29.9709i 0.0302431i 0.999886 + 0.0151216i \(0.00481352\pi\)
−0.999886 + 0.0151216i \(0.995186\pi\)
\(992\) 506.166 431.557i 0.510248 0.435037i
\(993\) −663.507 + 382.877i −0.668185 + 0.385576i
\(994\) 125.538 366.461i 0.126296 0.368673i
\(995\) 161.730 + 161.730i 0.162543 + 0.162543i
\(996\) −216.500 + 1573.84i −0.217370 + 1.58016i
\(997\) −558.581 −0.560262 −0.280131 0.959962i \(-0.590378\pi\)
−0.280131 + 0.959962i \(0.590378\pi\)
\(998\) 554.647 + 1132.67i 0.555758 + 1.13494i
\(999\) 688.156 + 0.464990i 0.688845 + 0.000465456i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 156.3.l.c.83.5 yes 96
3.2 odd 2 inner 156.3.l.c.83.44 yes 96
4.3 odd 2 inner 156.3.l.c.83.20 yes 96
12.11 even 2 inner 156.3.l.c.83.29 yes 96
13.8 odd 4 inner 156.3.l.c.47.29 yes 96
39.8 even 4 inner 156.3.l.c.47.20 yes 96
52.47 even 4 inner 156.3.l.c.47.44 yes 96
156.47 odd 4 inner 156.3.l.c.47.5 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.3.l.c.47.5 96 156.47 odd 4 inner
156.3.l.c.47.20 yes 96 39.8 even 4 inner
156.3.l.c.47.29 yes 96 13.8 odd 4 inner
156.3.l.c.47.44 yes 96 52.47 even 4 inner
156.3.l.c.83.5 yes 96 1.1 even 1 trivial
156.3.l.c.83.20 yes 96 4.3 odd 2 inner
156.3.l.c.83.29 yes 96 12.11 even 2 inner
156.3.l.c.83.44 yes 96 3.2 odd 2 inner