Properties

Label 156.3.l.c.47.20
Level $156$
Weight $3$
Character 156.47
Analytic conductor $4.251$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [156,3,Mod(47,156)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("156.47"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(156, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 156 = 2^{2} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 156.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,0,0,0,-36,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.25069212402\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(48\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 47.20
Character \(\chi\) \(=\) 156.47
Dual form 156.3.l.c.83.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.648159 + 1.89206i) q^{2} +(0.777110 + 2.89760i) q^{3} +(-3.15978 - 2.45271i) q^{4} +(-0.949668 + 0.949668i) q^{5} +(-5.98613 - 0.407769i) q^{6} +(-7.87350 - 7.87350i) q^{7} +(6.68872 - 4.38874i) q^{8} +(-7.79220 + 4.50351i) q^{9} +(-1.18129 - 2.41236i) q^{10} +(-13.0508 + 13.0508i) q^{11} +(4.65149 - 11.0618i) q^{12} +(-2.93839 - 12.6636i) q^{13} +(20.0004 - 9.79385i) q^{14} +(-3.48976 - 2.01376i) q^{15} +(3.96841 + 15.5001i) q^{16} +10.4874 q^{17} +(-3.47032 - 17.6623i) q^{18} +(-6.48583 + 6.48583i) q^{19} +(5.33000 - 0.671480i) q^{20} +(16.6957 - 28.9329i) q^{21} +(-16.2339 - 33.1519i) q^{22} +17.0776i q^{23} +(17.9147 + 15.9707i) q^{24} +23.1963i q^{25} +(25.8648 + 2.64840i) q^{26} +(-19.1048 - 19.0790i) q^{27} +(5.56710 + 44.1900i) q^{28} -37.2704i q^{29} +(6.07208 - 5.29759i) q^{30} +(-14.6982 + 14.6982i) q^{31} +(-31.8992 - 2.53803i) q^{32} +(-47.9580 - 27.6741i) q^{33} +(-6.79748 + 19.8427i) q^{34} +14.9544 q^{35} +(35.6674 + 4.88192i) q^{36} +(18.0222 - 18.0222i) q^{37} +(-8.06773 - 16.4754i) q^{38} +(34.4105 - 18.3553i) q^{39} +(-2.18421 + 10.5199i) q^{40} +(-26.9059 + 26.9059i) q^{41} +(43.9212 + 50.3424i) q^{42} -9.70221 q^{43} +(73.2475 - 9.22781i) q^{44} +(3.12316 - 11.6768i) q^{45} +(-32.3119 - 11.0690i) q^{46} +(-52.2200 + 52.2200i) q^{47} +(-41.8291 + 23.5441i) q^{48} +74.9840i q^{49} +(-43.8887 - 15.0349i) q^{50} +(8.14984 + 30.3882i) q^{51} +(-21.7754 + 47.2211i) q^{52} +93.7692i q^{53} +(48.4815 - 23.7812i) q^{54} -24.7879i q^{55} +(-87.2184 - 18.1088i) q^{56} +(-23.8336 - 13.7532i) q^{57} +(70.5179 + 24.1572i) q^{58} +(27.8906 - 27.8906i) q^{59} +(6.08768 + 14.9224i) q^{60} -19.9699 q^{61} +(-18.2831 - 37.3367i) q^{62} +(96.8103 + 25.8935i) q^{63} +(25.4778 - 58.7101i) q^{64} +(14.8167 + 9.23569i) q^{65} +(83.4455 - 72.8021i) q^{66} +(27.3331 - 27.3331i) q^{67} +(-33.1378 - 25.7225i) q^{68} +(-49.4842 + 13.2712i) q^{69} +(-9.69285 + 28.2947i) q^{70} +(12.2997 + 12.2997i) q^{71} +(-32.3551 + 64.3207i) q^{72} +(3.46448 - 3.46448i) q^{73} +(22.4179 + 45.7804i) q^{74} +(-67.2135 + 18.0260i) q^{75} +(36.4017 - 4.58593i) q^{76} +205.511 q^{77} +(12.4257 + 77.0039i) q^{78} -30.4341i q^{79} +(-18.4886 - 10.9512i) q^{80} +(40.4368 - 70.1845i) q^{81} +(-33.4683 - 68.3469i) q^{82} +(-93.6129 - 93.6129i) q^{83} +(-123.719 + 50.4717i) q^{84} +(-9.95952 + 9.95952i) q^{85} +(6.28858 - 18.3572i) q^{86} +(107.995 - 28.9632i) q^{87} +(-30.0165 + 144.570i) q^{88} +(-27.0128 - 27.0128i) q^{89} +(20.0690 + 13.4777i) q^{90} +(-76.5712 + 122.842i) q^{91} +(41.8865 - 53.9616i) q^{92} +(-54.0117 - 31.1675i) q^{93} +(-64.9565 - 132.650i) q^{94} -12.3188i q^{95} +(-17.4350 - 94.4035i) q^{96} +(58.7776 + 58.7776i) q^{97} +(-141.874 - 48.6016i) q^{98} +(42.9201 - 160.469i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 36 q^{6} - 64 q^{9} - 8 q^{13} + 80 q^{16} + 48 q^{18} + 8 q^{21} + 124 q^{24} - 8 q^{28} + 24 q^{33} + 64 q^{34} - 128 q^{37} - 136 q^{40} - 140 q^{42} - 160 q^{45} + 88 q^{46} - 108 q^{48} - 320 q^{52}+ \cdots + 336 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/156\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.648159 + 1.89206i −0.324080 + 0.946030i
\(3\) 0.777110 + 2.89760i 0.259037 + 0.965868i
\(4\) −3.15978 2.45271i −0.789945 0.613178i
\(5\) −0.949668 + 0.949668i −0.189934 + 0.189934i −0.795667 0.605734i \(-0.792880\pi\)
0.605734 + 0.795667i \(0.292880\pi\)
\(6\) −5.98613 0.407769i −0.997688 0.0679616i
\(7\) −7.87350 7.87350i −1.12479 1.12479i −0.991012 0.133774i \(-0.957290\pi\)
−0.133774 0.991012i \(-0.542710\pi\)
\(8\) 6.68872 4.38874i 0.836090 0.548593i
\(9\) −7.79220 + 4.50351i −0.865800 + 0.500390i
\(10\) −1.18129 2.41236i −0.118129 0.241236i
\(11\) −13.0508 + 13.0508i −1.18644 + 1.18644i −0.208391 + 0.978046i \(0.566823\pi\)
−0.978046 + 0.208391i \(0.933177\pi\)
\(12\) 4.65149 11.0618i 0.387624 0.921818i
\(13\) −2.93839 12.6636i −0.226030 0.974120i
\(14\) 20.0004 9.79385i 1.42860 0.699561i
\(15\) −3.48976 2.01376i −0.232650 0.134251i
\(16\) 3.96841 + 15.5001i 0.248026 + 0.968753i
\(17\) 10.4874 0.616904 0.308452 0.951240i \(-0.400189\pi\)
0.308452 + 0.951240i \(0.400189\pi\)
\(18\) −3.47032 17.6623i −0.192796 0.981239i
\(19\) −6.48583 + 6.48583i −0.341360 + 0.341360i −0.856878 0.515519i \(-0.827599\pi\)
0.515519 + 0.856878i \(0.327599\pi\)
\(20\) 5.33000 0.671480i 0.266500 0.0335740i
\(21\) 16.6957 28.9329i 0.795033 1.37775i
\(22\) −16.2339 33.1519i −0.737905 1.50690i
\(23\) 17.0776i 0.742506i 0.928532 + 0.371253i \(0.121072\pi\)
−0.928532 + 0.371253i \(0.878928\pi\)
\(24\) 17.9147 + 15.9707i 0.746446 + 0.665446i
\(25\) 23.1963i 0.927850i
\(26\) 25.8648 + 2.64840i 0.994799 + 0.101862i
\(27\) −19.1048 19.0790i −0.707584 0.706629i
\(28\) 5.56710 + 44.1900i 0.198825 + 1.57821i
\(29\) 37.2704i 1.28519i −0.766207 0.642594i \(-0.777858\pi\)
0.766207 0.642594i \(-0.222142\pi\)
\(30\) 6.07208 5.29759i 0.202403 0.176586i
\(31\) −14.6982 + 14.6982i −0.474136 + 0.474136i −0.903250 0.429114i \(-0.858826\pi\)
0.429114 + 0.903250i \(0.358826\pi\)
\(32\) −31.8992 2.53803i −0.996850 0.0793133i
\(33\) −47.9580 27.6741i −1.45327 0.838610i
\(34\) −6.79748 + 19.8427i −0.199926 + 0.583610i
\(35\) 14.9544 0.427269
\(36\) 35.6674 + 4.88192i 0.990762 + 0.135609i
\(37\) 18.0222 18.0222i 0.487087 0.487087i −0.420299 0.907386i \(-0.638075\pi\)
0.907386 + 0.420299i \(0.138075\pi\)
\(38\) −8.06773 16.4754i −0.212309 0.433564i
\(39\) 34.4105 18.3553i 0.882321 0.470648i
\(40\) −2.18421 + 10.5199i −0.0546052 + 0.262998i
\(41\) −26.9059 + 26.9059i −0.656242 + 0.656242i −0.954489 0.298247i \(-0.903598\pi\)
0.298247 + 0.954489i \(0.403598\pi\)
\(42\) 43.9212 + 50.3424i 1.04574 + 1.19863i
\(43\) −9.70221 −0.225633 −0.112816 0.993616i \(-0.535987\pi\)
−0.112816 + 0.993616i \(0.535987\pi\)
\(44\) 73.2475 9.22781i 1.66472 0.209723i
\(45\) 3.12316 11.6768i 0.0694036 0.259485i
\(46\) −32.3119 11.0690i −0.702433 0.240631i
\(47\) −52.2200 + 52.2200i −1.11106 + 1.11106i −0.118057 + 0.993007i \(0.537667\pi\)
−0.993007 + 0.118057i \(0.962333\pi\)
\(48\) −41.8291 + 23.5441i −0.871440 + 0.490503i
\(49\) 74.9840i 1.53029i
\(50\) −43.8887 15.0349i −0.877774 0.300697i
\(51\) 8.14984 + 30.3882i 0.159801 + 0.595848i
\(52\) −21.7754 + 47.2211i −0.418758 + 0.908098i
\(53\) 93.7692i 1.76923i 0.466323 + 0.884615i \(0.345579\pi\)
−0.466323 + 0.884615i \(0.654421\pi\)
\(54\) 48.4815 23.7812i 0.897806 0.440392i
\(55\) 24.7879i 0.450688i
\(56\) −87.2184 18.1088i −1.55747 0.323372i
\(57\) −23.8336 13.7532i −0.418133 0.241283i
\(58\) 70.5179 + 24.1572i 1.21583 + 0.416503i
\(59\) 27.8906 27.8906i 0.472722 0.472722i −0.430072 0.902794i \(-0.641512\pi\)
0.902794 + 0.430072i \(0.141512\pi\)
\(60\) 6.08768 + 14.9224i 0.101461 + 0.248707i
\(61\) −19.9699 −0.327375 −0.163688 0.986512i \(-0.552339\pi\)
−0.163688 + 0.986512i \(0.552339\pi\)
\(62\) −18.2831 37.3367i −0.294889 0.602205i
\(63\) 96.8103 + 25.8935i 1.53667 + 0.411008i
\(64\) 25.4778 58.7101i 0.398091 0.917346i
\(65\) 14.8167 + 9.23569i 0.227949 + 0.142088i
\(66\) 83.4455 72.8021i 1.26433 1.10306i
\(67\) 27.3331 27.3331i 0.407957 0.407957i −0.473069 0.881026i \(-0.656854\pi\)
0.881026 + 0.473069i \(0.156854\pi\)
\(68\) −33.1378 25.7225i −0.487320 0.378272i
\(69\) −49.4842 + 13.2712i −0.717162 + 0.192336i
\(70\) −9.69285 + 28.2947i −0.138469 + 0.404209i
\(71\) 12.2997 + 12.2997i 0.173235 + 0.173235i 0.788399 0.615164i \(-0.210910\pi\)
−0.615164 + 0.788399i \(0.710910\pi\)
\(72\) −32.3551 + 64.3207i −0.449376 + 0.893343i
\(73\) 3.46448 3.46448i 0.0474586 0.0474586i −0.682979 0.730438i \(-0.739316\pi\)
0.730438 + 0.682979i \(0.239316\pi\)
\(74\) 22.4179 + 45.7804i 0.302944 + 0.618654i
\(75\) −67.2135 + 18.0260i −0.896181 + 0.240347i
\(76\) 36.4017 4.58593i 0.478969 0.0603411i
\(77\) 205.511 2.66897
\(78\) 12.4257 + 77.0039i 0.159304 + 0.987230i
\(79\) 30.4341i 0.385242i −0.981273 0.192621i \(-0.938301\pi\)
0.981273 0.192621i \(-0.0616988\pi\)
\(80\) −18.4886 10.9512i −0.231107 0.136890i
\(81\) 40.4368 70.1845i 0.499220 0.866476i
\(82\) −33.4683 68.3469i −0.408150 0.833499i
\(83\) −93.6129 93.6129i −1.12787 1.12787i −0.990524 0.137343i \(-0.956144\pi\)
−0.137343 0.990524i \(-0.543856\pi\)
\(84\) −123.719 + 50.4717i −1.47284 + 0.600853i
\(85\) −9.95952 + 9.95952i −0.117171 + 0.117171i
\(86\) 6.28858 18.3572i 0.0731230 0.213455i
\(87\) 107.995 28.9632i 1.24132 0.332911i
\(88\) −30.0165 + 144.570i −0.341096 + 1.64284i
\(89\) −27.0128 27.0128i −0.303515 0.303515i 0.538872 0.842387i \(-0.318851\pi\)
−0.842387 + 0.538872i \(0.818851\pi\)
\(90\) 20.0690 + 13.4777i 0.222989 + 0.149752i
\(91\) −76.5712 + 122.842i −0.841442 + 1.34991i
\(92\) 41.8865 53.9616i 0.455288 0.586539i
\(93\) −54.0117 31.1675i −0.580771 0.335134i
\(94\) −64.9565 132.650i −0.691027 1.41117i
\(95\) 12.3188i 0.129671i
\(96\) −17.4350 94.4035i −0.181614 0.983370i
\(97\) 58.7776 + 58.7776i 0.605954 + 0.605954i 0.941886 0.335932i \(-0.109051\pi\)
−0.335932 + 0.941886i \(0.609051\pi\)
\(98\) −141.874 48.6016i −1.44770 0.495935i
\(99\) 42.9201 160.469i 0.433536 1.62090i
\(100\) 56.8937 73.2951i 0.568937 0.732951i
\(101\) 12.9267 0.127987 0.0639934 0.997950i \(-0.479616\pi\)
0.0639934 + 0.997950i \(0.479616\pi\)
\(102\) −62.7787 4.27643i −0.615478 0.0419258i
\(103\) 24.5921 0.238758 0.119379 0.992849i \(-0.461910\pi\)
0.119379 + 0.992849i \(0.461910\pi\)
\(104\) −75.2312 71.8072i −0.723377 0.690454i
\(105\) 11.6212 + 43.3320i 0.110678 + 0.412685i
\(106\) −177.417 60.7773i −1.67374 0.573371i
\(107\) 45.2828 0.423204 0.211602 0.977356i \(-0.432132\pi\)
0.211602 + 0.977356i \(0.432132\pi\)
\(108\) 13.5717 + 107.144i 0.125664 + 0.992073i
\(109\) −127.144 127.144i −1.16646 1.16646i −0.983035 0.183421i \(-0.941283\pi\)
−0.183421 0.983035i \(-0.558717\pi\)
\(110\) 46.9001 + 16.0665i 0.426365 + 0.146059i
\(111\) 66.2265 + 38.2160i 0.596635 + 0.344288i
\(112\) 90.7944 153.285i 0.810664 1.36862i
\(113\) 124.896i 1.10528i 0.833421 + 0.552639i \(0.186379\pi\)
−0.833421 + 0.552639i \(0.813621\pi\)
\(114\) 41.4697 36.1803i 0.363770 0.317371i
\(115\) −16.2181 16.2181i −0.141027 0.141027i
\(116\) −91.4136 + 117.766i −0.788048 + 1.01523i
\(117\) 79.9270 + 85.4440i 0.683137 + 0.730291i
\(118\) 34.6931 + 70.8482i 0.294010 + 0.600409i
\(119\) −82.5723 82.5723i −0.693885 0.693885i
\(120\) −32.1799 + 1.84615i −0.268166 + 0.0153846i
\(121\) 219.647i 1.81526i
\(122\) 12.9437 37.7842i 0.106096 0.309707i
\(123\) −98.8715 57.0538i −0.803833 0.463852i
\(124\) 82.4936 10.3926i 0.665271 0.0838116i
\(125\) −45.7704 45.7704i −0.366164 0.366164i
\(126\) −111.741 + 166.388i −0.886830 + 1.32054i
\(127\) 200.693 1.58026 0.790130 0.612939i \(-0.210013\pi\)
0.790130 + 0.612939i \(0.210013\pi\)
\(128\) 94.5694 + 86.2591i 0.738823 + 0.673899i
\(129\) −7.53968 28.1132i −0.0584472 0.217931i
\(130\) −27.0780 + 22.0478i −0.208293 + 0.169599i
\(131\) 137.472 1.04941 0.524703 0.851285i \(-0.324176\pi\)
0.524703 + 0.851285i \(0.324176\pi\)
\(132\) 83.6599 + 205.071i 0.633787 + 1.55357i
\(133\) 102.132 0.767913
\(134\) 33.9997 + 69.4321i 0.253729 + 0.518150i
\(135\) 36.2619 0.0245023i 0.268607 0.000181499i
\(136\) 70.1470 46.0264i 0.515787 0.338429i
\(137\) 89.4472 + 89.4472i 0.652900 + 0.652900i 0.953690 0.300791i \(-0.0972505\pi\)
−0.300791 + 0.953690i \(0.597251\pi\)
\(138\) 6.96374 102.229i 0.0504619 0.740789i
\(139\) 45.2932i 0.325850i 0.986638 + 0.162925i \(0.0520929\pi\)
−0.986638 + 0.162925i \(0.947907\pi\)
\(140\) −47.2527 36.6789i −0.337519 0.261992i
\(141\) −191.893 110.732i −1.36095 0.785334i
\(142\) −31.2440 + 15.2996i −0.220028 + 0.107744i
\(143\) 203.618 + 126.921i 1.42390 + 0.887562i
\(144\) −100.727 102.908i −0.699495 0.714637i
\(145\) 35.3945 + 35.3945i 0.244100 + 0.244100i
\(146\) 4.30946 + 8.80053i 0.0295169 + 0.0602776i
\(147\) −217.274 + 58.2708i −1.47805 + 0.396400i
\(148\) −101.150 + 12.7429i −0.683443 + 0.0861010i
\(149\) −74.6323 + 74.6323i −0.500888 + 0.500888i −0.911714 0.410826i \(-0.865240\pi\)
0.410826 + 0.911714i \(0.365240\pi\)
\(150\) 9.45872 138.856i 0.0630582 0.925705i
\(151\) −32.3514 32.3514i −0.214247 0.214247i 0.591822 0.806069i \(-0.298409\pi\)
−0.806069 + 0.591822i \(0.798409\pi\)
\(152\) −14.9172 + 71.8465i −0.0981397 + 0.472675i
\(153\) −81.7197 + 47.2300i −0.534116 + 0.308693i
\(154\) −133.204 + 388.839i −0.864960 + 2.52493i
\(155\) 27.9168i 0.180109i
\(156\) −153.750 26.4005i −0.985576 0.169234i
\(157\) 38.4009 0.244592 0.122296 0.992494i \(-0.460974\pi\)
0.122296 + 0.992494i \(0.460974\pi\)
\(158\) 57.5832 + 19.7262i 0.364451 + 0.124849i
\(159\) −271.706 + 72.8689i −1.70884 + 0.458295i
\(160\) 32.7039 27.8834i 0.204400 0.174271i
\(161\) 134.461 134.461i 0.835160 0.835160i
\(162\) 106.584 + 122.000i 0.657925 + 0.753084i
\(163\) 5.31158 + 5.31158i 0.0325864 + 0.0325864i 0.723212 0.690626i \(-0.242665\pi\)
−0.690626 + 0.723212i \(0.742665\pi\)
\(164\) 151.009 19.0243i 0.920788 0.116002i
\(165\) 71.8254 19.2629i 0.435305 0.116745i
\(166\) 237.797 116.445i 1.43251 0.701477i
\(167\) −19.7239 + 19.7239i −0.118107 + 0.118107i −0.763690 0.645583i \(-0.776615\pi\)
0.645583 + 0.763690i \(0.276615\pi\)
\(168\) −15.3061 266.797i −0.0911076 1.58808i
\(169\) −151.732 + 74.4209i −0.897821 + 0.440360i
\(170\) −12.3886 25.2994i −0.0728744 0.148820i
\(171\) 21.3299 79.7479i 0.124736 0.466362i
\(172\) 30.6569 + 23.7967i 0.178238 + 0.138353i
\(173\) −151.819 −0.877567 −0.438783 0.898593i \(-0.644590\pi\)
−0.438783 + 0.898593i \(0.644590\pi\)
\(174\) −15.1977 + 223.106i −0.0873433 + 1.28222i
\(175\) 182.636 182.636i 1.04363 1.04363i
\(176\) −254.079 150.497i −1.44363 0.855098i
\(177\) 102.490 + 59.1418i 0.579039 + 0.334134i
\(178\) 68.6185 33.6013i 0.385497 0.188771i
\(179\) 168.054i 0.938850i 0.882972 + 0.469425i \(0.155539\pi\)
−0.882972 + 0.469425i \(0.844461\pi\)
\(180\) −38.5084 + 29.2360i −0.213936 + 0.162422i
\(181\) 161.911i 0.894539i 0.894399 + 0.447269i \(0.147603\pi\)
−0.894399 + 0.447269i \(0.852397\pi\)
\(182\) −182.794 224.498i −1.00436 1.23351i
\(183\) −15.5188 57.8648i −0.0848022 0.316201i
\(184\) 74.9494 + 114.227i 0.407334 + 0.620801i
\(185\) 34.2303i 0.185028i
\(186\) 93.9789 81.9919i 0.505263 0.440817i
\(187\) −136.869 + 136.869i −0.731918 + 0.731918i
\(188\) 293.084 36.9231i 1.55896 0.196399i
\(189\) 0.203144 + 300.640i 0.00107483 + 1.59069i
\(190\) 23.3079 + 7.98452i 0.122673 + 0.0420238i
\(191\) −89.9885 −0.471144 −0.235572 0.971857i \(-0.575696\pi\)
−0.235572 + 0.971857i \(0.575696\pi\)
\(192\) 189.918 + 28.2005i 0.989155 + 0.146877i
\(193\) −129.472 + 129.472i −0.670841 + 0.670841i −0.957910 0.287069i \(-0.907319\pi\)
0.287069 + 0.957910i \(0.407319\pi\)
\(194\) −149.308 + 73.1135i −0.769628 + 0.376874i
\(195\) −15.2472 + 50.1100i −0.0781907 + 0.256974i
\(196\) 183.914 236.933i 0.938338 1.20884i
\(197\) 43.9320 43.9320i 0.223005 0.223005i −0.586758 0.809763i \(-0.699596\pi\)
0.809763 + 0.586758i \(0.199596\pi\)
\(198\) 275.798 + 185.217i 1.39292 + 0.935438i
\(199\) 170.302 0.855788 0.427894 0.903829i \(-0.359256\pi\)
0.427894 + 0.903829i \(0.359256\pi\)
\(200\) 101.802 + 155.153i 0.509012 + 0.775766i
\(201\) 100.441 + 57.9597i 0.499708 + 0.288357i
\(202\) −8.37854 + 24.4580i −0.0414779 + 0.121079i
\(203\) −293.449 + 293.449i −1.44556 + 1.44556i
\(204\) 48.7819 116.009i 0.239127 0.568673i
\(205\) 51.1034i 0.249285i
\(206\) −15.9396 + 46.5297i −0.0773766 + 0.225872i
\(207\) −76.9093 133.072i −0.371543 0.642862i
\(208\) 184.625 95.7994i 0.887621 0.460574i
\(209\) 169.291i 0.810003i
\(210\) −89.5191 6.09796i −0.426281 0.0290379i
\(211\) 224.166i 1.06240i −0.847247 0.531200i \(-0.821741\pi\)
0.847247 0.531200i \(-0.178259\pi\)
\(212\) 229.989 296.290i 1.08485 1.39759i
\(213\) −26.0815 + 45.1979i −0.122448 + 0.212197i
\(214\) −29.3505 + 85.6777i −0.137152 + 0.400363i
\(215\) 9.21388 9.21388i 0.0428553 0.0428553i
\(216\) −211.519 43.7679i −0.979256 0.202629i
\(217\) 231.453 1.06660
\(218\) 322.973 158.154i 1.48153 0.725477i
\(219\) 12.7310 + 7.34640i 0.0581322 + 0.0335452i
\(220\) −60.7975 + 78.3242i −0.276352 + 0.356019i
\(221\) −30.8159 132.807i −0.139439 0.600939i
\(222\) −115.232 + 100.534i −0.519064 + 0.452858i
\(223\) −177.676 + 177.676i −0.796752 + 0.796752i −0.982582 0.185830i \(-0.940503\pi\)
0.185830 + 0.982582i \(0.440503\pi\)
\(224\) 231.175 + 271.141i 1.03203 + 1.21045i
\(225\) −104.465 180.750i −0.464287 0.803333i
\(226\) −236.311 80.9527i −1.04563 0.358198i
\(227\) −30.2485 30.2485i −0.133253 0.133253i 0.637334 0.770588i \(-0.280037\pi\)
−0.770588 + 0.637334i \(0.780037\pi\)
\(228\) 41.5763 + 101.914i 0.182352 + 0.446990i
\(229\) 274.828 274.828i 1.20012 1.20012i 0.225995 0.974128i \(-0.427437\pi\)
0.974128 0.225995i \(-0.0725634\pi\)
\(230\) 41.1975 20.1737i 0.179119 0.0877117i
\(231\) 159.705 + 595.489i 0.691362 + 2.57788i
\(232\) −163.570 249.291i −0.705045 1.07453i
\(233\) −176.505 −0.757532 −0.378766 0.925492i \(-0.623652\pi\)
−0.378766 + 0.925492i \(0.623652\pi\)
\(234\) −213.471 + 95.8453i −0.912267 + 0.409596i
\(235\) 99.1833i 0.422057i
\(236\) −156.536 + 19.7206i −0.663287 + 0.0835617i
\(237\) 88.1860 23.6507i 0.372093 0.0997918i
\(238\) 209.752 102.712i 0.881310 0.431562i
\(239\) −82.2545 82.2545i −0.344161 0.344161i 0.513768 0.857929i \(-0.328249\pi\)
−0.857929 + 0.513768i \(0.828249\pi\)
\(240\) 17.3647 62.0829i 0.0723527 0.258679i
\(241\) −64.6891 + 64.6891i −0.268419 + 0.268419i −0.828463 0.560044i \(-0.810784\pi\)
0.560044 + 0.828463i \(0.310784\pi\)
\(242\) 415.585 + 142.366i 1.71729 + 0.588290i
\(243\) 234.791 + 62.6287i 0.966217 + 0.257731i
\(244\) 63.1005 + 48.9804i 0.258608 + 0.200739i
\(245\) −71.2099 71.2099i −0.290653 0.290653i
\(246\) 172.034 150.091i 0.699324 0.610125i
\(247\) 101.192 + 63.0759i 0.409683 + 0.255368i
\(248\) −33.8055 + 162.819i −0.136312 + 0.656528i
\(249\) 198.505 344.000i 0.797211 1.38153i
\(250\) 116.267 56.9339i 0.465068 0.227736i
\(251\) 186.767i 0.744091i −0.928215 0.372045i \(-0.878657\pi\)
0.928215 0.372045i \(-0.121343\pi\)
\(252\) −242.390 319.265i −0.961865 1.26693i
\(253\) −222.877 222.877i −0.880936 0.880936i
\(254\) −130.081 + 379.723i −0.512130 + 1.49497i
\(255\) −36.5984 21.1191i −0.143523 0.0828199i
\(256\) −224.503 + 123.021i −0.876966 + 0.480552i
\(257\) −440.294 −1.71321 −0.856604 0.515975i \(-0.827430\pi\)
−0.856604 + 0.515975i \(0.827430\pi\)
\(258\) 58.0787 + 3.95626i 0.225111 + 0.0153344i
\(259\) −283.796 −1.09574
\(260\) −24.1649 65.5238i −0.0929421 0.252015i
\(261\) 167.848 + 290.419i 0.643095 + 1.11272i
\(262\) −89.1039 + 260.106i −0.340091 + 0.992770i
\(263\) −55.8360 −0.212304 −0.106152 0.994350i \(-0.533853\pi\)
−0.106152 + 0.994350i \(0.533853\pi\)
\(264\) −442.232 + 25.3707i −1.67512 + 0.0961013i
\(265\) −89.0496 89.0496i −0.336036 0.336036i
\(266\) −66.1980 + 193.241i −0.248865 + 0.726468i
\(267\) 57.2805 99.2644i 0.214534 0.371777i
\(268\) −153.407 + 19.3264i −0.572414 + 0.0721133i
\(269\) 139.702i 0.519337i −0.965698 0.259668i \(-0.916387\pi\)
0.965698 0.259668i \(-0.0836133\pi\)
\(270\) −23.4571 + 68.6255i −0.0868782 + 0.254169i
\(271\) 14.0400 + 14.0400i 0.0518082 + 0.0518082i 0.732536 0.680728i \(-0.238336\pi\)
−0.680728 + 0.732536i \(0.738336\pi\)
\(272\) 41.6182 + 162.555i 0.153008 + 0.597628i
\(273\) −415.451 126.411i −1.52180 0.463045i
\(274\) −227.216 + 111.263i −0.829254 + 0.406071i
\(275\) −302.730 302.730i −1.10084 1.10084i
\(276\) 188.910 + 79.4364i 0.684455 + 0.287813i
\(277\) 264.498i 0.954868i 0.878668 + 0.477434i \(0.158433\pi\)
−0.878668 + 0.477434i \(0.841567\pi\)
\(278\) −85.6973 29.3572i −0.308264 0.105601i
\(279\) 48.3379 180.725i 0.173254 0.647760i
\(280\) 100.026 65.6311i 0.357235 0.234397i
\(281\) −201.246 201.246i −0.716179 0.716179i 0.251641 0.967821i \(-0.419030\pi\)
−0.967821 + 0.251641i \(0.919030\pi\)
\(282\) 333.889 291.302i 1.18400 1.03299i
\(283\) −396.067 −1.39953 −0.699765 0.714373i \(-0.746712\pi\)
−0.699765 + 0.714373i \(0.746712\pi\)
\(284\) −8.69674 69.0320i −0.0306223 0.243071i
\(285\) 35.6949 9.57304i 0.125245 0.0335896i
\(286\) −372.120 + 302.992i −1.30112 + 1.05941i
\(287\) 423.687 1.47626
\(288\) 259.995 123.882i 0.902760 0.430144i
\(289\) −179.015 −0.619429
\(290\) −89.9099 + 44.0273i −0.310034 + 0.151818i
\(291\) −124.637 + 215.991i −0.428307 + 0.742236i
\(292\) −19.4443 + 2.44962i −0.0665902 + 0.00838911i
\(293\) 186.129 + 186.129i 0.635253 + 0.635253i 0.949381 0.314128i \(-0.101712\pi\)
−0.314128 + 0.949381i \(0.601712\pi\)
\(294\) 30.5762 448.864i 0.104001 1.52675i
\(295\) 52.9736i 0.179572i
\(296\) 41.4506 199.641i 0.140036 0.674461i
\(297\) 498.329 0.336723i 1.67787 0.00113375i
\(298\) −92.8352 189.582i −0.311527 0.636183i
\(299\) 216.264 50.1807i 0.723290 0.167828i
\(300\) 256.593 + 107.897i 0.855309 + 0.359657i
\(301\) 76.3904 + 76.3904i 0.253789 + 0.253789i
\(302\) 82.1795 40.2419i 0.272118 0.133251i
\(303\) 10.0454 + 37.4563i 0.0331533 + 0.123618i
\(304\) −126.269 74.7923i −0.415359 0.246027i
\(305\) 18.9648 18.9648i 0.0621796 0.0621796i
\(306\) −36.3946 185.231i −0.118937 0.605330i
\(307\) −249.313 249.313i −0.812093 0.812093i 0.172854 0.984947i \(-0.444701\pi\)
−0.984947 + 0.172854i \(0.944701\pi\)
\(308\) −649.370 504.059i −2.10834 1.63656i
\(309\) 19.1107 + 71.2581i 0.0618471 + 0.230609i
\(310\) 52.8203 + 18.0946i 0.170388 + 0.0583695i
\(311\) 145.007i 0.466262i −0.972445 0.233131i \(-0.925103\pi\)
0.972445 0.233131i \(-0.0748971\pi\)
\(312\) 149.606 273.792i 0.479506 0.877539i
\(313\) 238.458 0.761848 0.380924 0.924606i \(-0.375606\pi\)
0.380924 + 0.924606i \(0.375606\pi\)
\(314\) −24.8899 + 72.6568i −0.0792672 + 0.231391i
\(315\) −116.528 + 67.3474i −0.369930 + 0.213801i
\(316\) −74.6461 + 96.1651i −0.236222 + 0.304320i
\(317\) −313.133 + 313.133i −0.987801 + 0.987801i −0.999926 0.0121259i \(-0.996140\pi\)
0.0121259 + 0.999926i \(0.496140\pi\)
\(318\) 38.2362 561.314i 0.120240 1.76514i
\(319\) 486.409 + 486.409i 1.52479 + 1.52479i
\(320\) 31.5596 + 79.9506i 0.0986239 + 0.249846i
\(321\) 35.1897 + 131.212i 0.109625 + 0.408759i
\(322\) 167.256 + 341.560i 0.519428 + 1.06074i
\(323\) −68.0193 + 68.0193i −0.210586 + 0.210586i
\(324\) −299.914 + 122.588i −0.925660 + 0.378358i
\(325\) 293.747 68.1596i 0.903838 0.209722i
\(326\) −13.4926 + 6.60708i −0.0413883 + 0.0202671i
\(327\) 269.607 467.216i 0.824487 1.42880i
\(328\) −61.8828 + 298.049i −0.188667 + 0.908686i
\(329\) 822.309 2.49942
\(330\) −10.1077 + 148.383i −0.0306295 + 0.449646i
\(331\) −180.560 + 180.560i −0.545499 + 0.545499i −0.925136 0.379636i \(-0.876049\pi\)
0.379636 + 0.925136i \(0.376049\pi\)
\(332\) 66.1907 + 525.401i 0.199370 + 1.58253i
\(333\) −59.2695 + 221.596i −0.177987 + 0.665454i
\(334\) −24.5346 50.1031i −0.0734569 0.150009i
\(335\) 51.9148i 0.154969i
\(336\) 514.716 + 143.967i 1.53189 + 0.428473i
\(337\) 20.9367i 0.0621266i −0.999517 0.0310633i \(-0.990111\pi\)
0.999517 0.0310633i \(-0.00988935\pi\)
\(338\) −42.4624 335.322i −0.125629 0.992077i
\(339\) −361.900 + 97.0582i −1.06755 + 0.286307i
\(340\) 55.8977 7.04206i 0.164405 0.0207119i
\(341\) 383.647i 1.12506i
\(342\) 137.063 + 92.0468i 0.400768 + 0.269143i
\(343\) 204.585 204.585i 0.596459 0.596459i
\(344\) −64.8953 + 42.5805i −0.188649 + 0.123781i
\(345\) 34.3903 59.5968i 0.0996821 0.172744i
\(346\) 98.4029 287.251i 0.284401 0.830204i
\(347\) 304.430 0.877319 0.438659 0.898653i \(-0.355453\pi\)
0.438659 + 0.898653i \(0.355453\pi\)
\(348\) −412.278 173.363i −1.18471 0.498169i
\(349\) −273.159 + 273.159i −0.782690 + 0.782690i −0.980284 0.197594i \(-0.936687\pi\)
0.197594 + 0.980284i \(0.436687\pi\)
\(350\) 227.181 + 463.935i 0.649088 + 1.32553i
\(351\) −185.471 + 297.996i −0.528406 + 0.848992i
\(352\) 449.433 383.187i 1.27680 1.08860i
\(353\) 88.1316 88.1316i 0.249665 0.249665i −0.571168 0.820833i \(-0.693510\pi\)
0.820833 + 0.571168i \(0.193510\pi\)
\(354\) −178.330 + 155.584i −0.503756 + 0.439502i
\(355\) −23.3613 −0.0658065
\(356\) 19.0999 + 151.609i 0.0536515 + 0.425869i
\(357\) 175.094 303.429i 0.490459 0.849942i
\(358\) −317.968 108.926i −0.888180 0.304262i
\(359\) 93.4775 93.4775i 0.260383 0.260383i −0.564827 0.825210i \(-0.691057\pi\)
0.825210 + 0.564827i \(0.191057\pi\)
\(360\) −30.3567 91.8099i −0.0843242 0.255027i
\(361\) 276.868i 0.766947i
\(362\) −306.346 104.944i −0.846260 0.289902i
\(363\) 636.450 170.690i 1.75331 0.470220i
\(364\) 543.244 200.347i 1.49243 0.550402i
\(365\) 6.58021i 0.0180280i
\(366\) 119.542 + 8.14311i 0.326618 + 0.0222489i
\(367\) 498.412i 1.35807i −0.734106 0.679035i \(-0.762398\pi\)
0.734106 0.679035i \(-0.237602\pi\)
\(368\) −264.704 + 67.7711i −0.719305 + 0.184161i
\(369\) 88.4852 330.827i 0.239797 0.896551i
\(370\) −64.7657 22.1867i −0.175042 0.0599639i
\(371\) 738.292 738.292i 1.99000 1.99000i
\(372\) 94.2203 + 230.957i 0.253280 + 0.620853i
\(373\) −576.578 −1.54579 −0.772893 0.634537i \(-0.781191\pi\)
−0.772893 + 0.634537i \(0.781191\pi\)
\(374\) −170.251 347.676i −0.455216 0.929615i
\(375\) 97.0559 168.193i 0.258816 0.448515i
\(376\) −120.105 + 578.465i −0.319427 + 1.53847i
\(377\) −471.977 + 109.515i −1.25193 + 0.290491i
\(378\) −568.960 194.478i −1.50519 0.514492i
\(379\) −168.149 + 168.149i −0.443664 + 0.443664i −0.893241 0.449577i \(-0.851575\pi\)
0.449577 + 0.893241i \(0.351575\pi\)
\(380\) −30.2144 + 38.9246i −0.0795116 + 0.102433i
\(381\) 155.961 + 581.529i 0.409345 + 1.52632i
\(382\) 58.3269 170.264i 0.152688 0.445716i
\(383\) 199.284 + 199.284i 0.520323 + 0.520323i 0.917669 0.397346i \(-0.130069\pi\)
−0.397346 + 0.917669i \(0.630069\pi\)
\(384\) −176.454 + 341.057i −0.459515 + 0.888170i
\(385\) −195.167 + 195.167i −0.506928 + 0.506928i
\(386\) −161.051 328.888i −0.417230 0.852041i
\(387\) 75.6016 43.6940i 0.195353 0.112904i
\(388\) −41.5598 329.889i −0.107113 0.850228i
\(389\) −81.1669 −0.208655 −0.104328 0.994543i \(-0.533269\pi\)
−0.104328 + 0.994543i \(0.533269\pi\)
\(390\) −84.9285 61.3278i −0.217765 0.157251i
\(391\) 179.099i 0.458055i
\(392\) 329.086 + 501.547i 0.839504 + 1.27946i
\(393\) 106.831 + 398.340i 0.271835 + 1.01359i
\(394\) 54.6470 + 111.597i 0.138698 + 0.283241i
\(395\) 28.9023 + 28.9023i 0.0731704 + 0.0731704i
\(396\) −529.202 + 401.776i −1.33637 + 1.01459i
\(397\) 251.456 251.456i 0.633390 0.633390i −0.315527 0.948917i \(-0.602181\pi\)
0.948917 + 0.315527i \(0.102181\pi\)
\(398\) −110.383 + 322.221i −0.277343 + 0.809601i
\(399\) 79.3681 + 295.939i 0.198918 + 0.741702i
\(400\) −359.543 + 92.0524i −0.898858 + 0.230131i
\(401\) 419.266 + 419.266i 1.04555 + 1.04555i 0.998912 + 0.0466382i \(0.0148508\pi\)
0.0466382 + 0.998912i \(0.485149\pi\)
\(402\) −174.765 + 152.474i −0.434739 + 0.379288i
\(403\) 229.321 + 142.943i 0.569034 + 0.354697i
\(404\) −40.8454 31.7054i −0.101103 0.0784787i
\(405\) 28.2505 + 105.054i 0.0697542 + 0.259391i
\(406\) −365.021 745.424i −0.899067 1.83602i
\(407\) 470.409i 1.15580i
\(408\) 187.878 + 167.491i 0.460486 + 0.410516i
\(409\) 474.074 + 474.074i 1.15911 + 1.15911i 0.984668 + 0.174437i \(0.0558104\pi\)
0.174437 + 0.984668i \(0.444190\pi\)
\(410\) 96.6906 + 33.1231i 0.235831 + 0.0807881i
\(411\) −189.672 + 328.693i −0.461490 + 0.799739i
\(412\) −77.7056 60.3173i −0.188606 0.146401i
\(413\) −439.193 −1.06342
\(414\) 301.630 59.2649i 0.728576 0.143152i
\(415\) 177.802 0.428439
\(416\) 61.5917 + 411.415i 0.148057 + 0.988979i
\(417\) −131.242 + 35.1978i −0.314728 + 0.0844071i
\(418\) 320.308 + 109.727i 0.766287 + 0.262505i
\(419\) −738.508 −1.76255 −0.881274 0.472605i \(-0.843314\pi\)
−0.881274 + 0.472605i \(0.843314\pi\)
\(420\) 69.5603 165.423i 0.165620 0.393864i
\(421\) 18.8649 + 18.8649i 0.0448098 + 0.0448098i 0.729157 0.684347i \(-0.239913\pi\)
−0.684347 + 0.729157i \(0.739913\pi\)
\(422\) 424.136 + 145.295i 1.00506 + 0.344302i
\(423\) 171.735 642.082i 0.405994 1.51792i
\(424\) 411.529 + 627.195i 0.970587 + 1.47923i
\(425\) 243.268i 0.572395i
\(426\) −68.6122 78.6431i −0.161062 0.184608i
\(427\) 157.233 + 157.233i 0.368227 + 0.368227i
\(428\) −143.084 111.066i −0.334308 0.259499i
\(429\) −209.534 + 688.636i −0.488425 + 1.60521i
\(430\) 11.4612 + 23.4053i 0.0266538 + 0.0544309i
\(431\) −408.414 408.414i −0.947596 0.947596i 0.0510979 0.998694i \(-0.483728\pi\)
−0.998694 + 0.0510979i \(0.983728\pi\)
\(432\) 219.910 371.838i 0.509050 0.860737i
\(433\) 486.714i 1.12405i −0.827120 0.562025i \(-0.810022\pi\)
0.827120 0.562025i \(-0.189978\pi\)
\(434\) −150.018 + 437.923i −0.345664 + 1.00904i
\(435\) −75.0538 + 130.065i −0.172538 + 0.298999i
\(436\) 89.8992 + 713.592i 0.206191 + 1.63668i
\(437\) −110.763 110.763i −0.253461 0.253461i
\(438\) −22.1515 + 19.3261i −0.0505742 + 0.0441235i
\(439\) −279.462 −0.636588 −0.318294 0.947992i \(-0.603110\pi\)
−0.318294 + 0.947992i \(0.603110\pi\)
\(440\) −108.788 165.799i −0.247245 0.376816i
\(441\) −337.691 584.291i −0.765740 1.32492i
\(442\) 271.253 + 27.7748i 0.613695 + 0.0628389i
\(443\) 687.638 1.55223 0.776115 0.630592i \(-0.217188\pi\)
0.776115 + 0.630592i \(0.217188\pi\)
\(444\) −115.528 283.189i −0.260199 0.637812i
\(445\) 51.3065 0.115295
\(446\) −221.011 451.335i −0.495540 1.01196i
\(447\) −274.252 158.257i −0.613540 0.354043i
\(448\) −662.854 + 261.654i −1.47959 + 0.584050i
\(449\) −332.430 332.430i −0.740378 0.740378i 0.232272 0.972651i \(-0.425384\pi\)
−0.972651 + 0.232272i \(0.925384\pi\)
\(450\) 409.699 80.4986i 0.910443 0.178886i
\(451\) 702.288i 1.55718i
\(452\) 306.335 394.645i 0.677732 0.873108i
\(453\) 68.6008 118.882i 0.151437 0.262433i
\(454\) 76.8379 37.6262i 0.169246 0.0828770i
\(455\) −43.9419 189.376i −0.0965755 0.416212i
\(456\) −219.775 + 12.6084i −0.481963 + 0.0276501i
\(457\) 478.742 + 478.742i 1.04758 + 1.04758i 0.998810 + 0.0487647i \(0.0155284\pi\)
0.0487647 + 0.998810i \(0.484472\pi\)
\(458\) 341.859 + 698.124i 0.746417 + 1.52429i
\(459\) −200.359 200.088i −0.436512 0.435922i
\(460\) 11.4673 + 91.0238i 0.0249289 + 0.197878i
\(461\) 222.155 222.155i 0.481898 0.481898i −0.423839 0.905737i \(-0.639318\pi\)
0.905737 + 0.423839i \(0.139318\pi\)
\(462\) −1230.22 83.8011i −2.66280 0.181388i
\(463\) 318.982 + 318.982i 0.688945 + 0.688945i 0.961999 0.273054i \(-0.0880337\pi\)
−0.273054 + 0.961999i \(0.588034\pi\)
\(464\) 577.694 147.904i 1.24503 0.318760i
\(465\) 80.8919 21.6945i 0.173961 0.0466547i
\(466\) 114.403 333.958i 0.245501 0.716648i
\(467\) 121.753i 0.260714i 0.991467 + 0.130357i \(0.0416123\pi\)
−0.991467 + 0.130357i \(0.958388\pi\)
\(468\) −42.9822 466.022i −0.0918424 0.995774i
\(469\) −430.415 −0.917728
\(470\) 187.661 + 64.2866i 0.399278 + 0.136780i
\(471\) 29.8417 + 111.271i 0.0633582 + 0.236243i
\(472\) 64.1476 308.957i 0.135906 0.654570i
\(473\) 126.622 126.622i 0.267699 0.267699i
\(474\) −12.4101 + 182.183i −0.0261817 + 0.384351i
\(475\) −150.447 150.447i −0.316731 0.316731i
\(476\) 58.3842 + 463.436i 0.122656 + 0.973606i
\(477\) −422.290 730.668i −0.885305 1.53180i
\(478\) 208.944 102.316i 0.437122 0.214051i
\(479\) −262.894 + 262.894i −0.548839 + 0.548839i −0.926105 0.377266i \(-0.876864\pi\)
0.377266 + 0.926105i \(0.376864\pi\)
\(480\) 106.209 + 73.0945i 0.221270 + 0.152280i
\(481\) −281.182 175.269i −0.584578 0.364385i
\(482\) −80.4668 164.324i −0.166944 0.340922i
\(483\) 494.105 + 285.123i 1.02299 + 0.590317i
\(484\) −538.731 + 694.036i −1.11308 + 1.43396i
\(485\) −111.638 −0.230182
\(486\) −270.679 + 403.645i −0.556952 + 0.830544i
\(487\) −222.814 + 222.814i −0.457524 + 0.457524i −0.897842 0.440318i \(-0.854866\pi\)
0.440318 + 0.897842i \(0.354866\pi\)
\(488\) −133.573 + 87.6428i −0.273715 + 0.179596i
\(489\) −11.2632 + 19.5185i −0.0230331 + 0.0399152i
\(490\) 180.889 88.5781i 0.369161 0.180772i
\(491\) 972.633i 1.98092i 0.137788 + 0.990462i \(0.456001\pi\)
−0.137788 + 0.990462i \(0.543999\pi\)
\(492\) 172.476 + 422.781i 0.350560 + 0.859310i
\(493\) 390.869i 0.792837i
\(494\) −184.932 + 150.577i −0.374355 + 0.304813i
\(495\) 111.632 + 193.152i 0.225520 + 0.390206i
\(496\) −286.152 169.495i −0.576919 0.341723i
\(497\) 193.684i 0.389706i
\(498\) 522.206 + 598.551i 1.04861 + 1.20191i
\(499\) 445.893 445.893i 0.893574 0.893574i −0.101284 0.994858i \(-0.532295\pi\)
0.994858 + 0.101284i \(0.0322951\pi\)
\(500\) 32.3628 + 256.886i 0.0647256 + 0.513772i
\(501\) −72.4798 41.8245i −0.144670 0.0834819i
\(502\) 353.374 + 121.055i 0.703932 + 0.241145i
\(503\) 9.30759 0.0185042 0.00925208 0.999957i \(-0.497055\pi\)
0.00925208 + 0.999957i \(0.497055\pi\)
\(504\) 761.177 251.681i 1.51027 0.499368i
\(505\) −12.2760 + 12.2760i −0.0243090 + 0.0243090i
\(506\) 566.156 277.237i 1.11889 0.547899i
\(507\) −333.554 381.825i −0.657898 0.753107i
\(508\) −634.146 492.242i −1.24832 0.968981i
\(509\) 336.411 336.411i 0.660926 0.660926i −0.294672 0.955598i \(-0.595210\pi\)
0.955598 + 0.294672i \(0.0952105\pi\)
\(510\) 63.6801 55.5578i 0.124863 0.108937i
\(511\) −54.5551 −0.106761
\(512\) −87.2496 504.511i −0.170409 0.985373i
\(513\) 247.653 0.167340i 0.482755 0.000326200i
\(514\) 285.381 833.063i 0.555215 1.62075i
\(515\) −23.3543 + 23.3543i −0.0453482 + 0.0453482i
\(516\) −45.1297 + 107.324i −0.0874607 + 0.207992i
\(517\) 1363.03i 2.63641i
\(518\) 183.945 536.959i 0.355106 1.03660i
\(519\) −117.980 439.911i −0.227322 0.847613i
\(520\) 139.638 3.25168i 0.268534 0.00625322i
\(521\) 210.994i 0.404979i −0.979284 0.202489i \(-0.935097\pi\)
0.979284 0.202489i \(-0.0649031\pi\)
\(522\) −658.282 + 129.341i −1.26108 + 0.247779i
\(523\) 782.435i 1.49605i 0.663670 + 0.748026i \(0.268998\pi\)
−0.663670 + 0.748026i \(0.731002\pi\)
\(524\) −434.382 337.180i −0.828973 0.643473i
\(525\) 671.134 + 387.278i 1.27835 + 0.737672i
\(526\) 36.1906 105.645i 0.0688035 0.200846i
\(527\) −154.146 + 154.146i −0.292496 + 0.292496i
\(528\) 238.634 853.173i 0.451958 1.61586i
\(529\) 237.354 0.448685
\(530\) 226.205 110.769i 0.426803 0.208998i
\(531\) −91.7235 + 342.935i −0.172737 + 0.645828i
\(532\) −322.716 250.501i −0.606609 0.470867i
\(533\) 419.785 + 261.665i 0.787589 + 0.490928i
\(534\) 150.687 + 172.717i 0.282186 + 0.323441i
\(535\) −43.0036 + 43.0036i −0.0803806 + 0.0803806i
\(536\) 62.8654 302.782i 0.117286 0.564891i
\(537\) −486.954 + 130.597i −0.906805 + 0.243197i
\(538\) 264.324 + 90.5489i 0.491308 + 0.168306i
\(539\) −978.602 978.602i −1.81559 1.81559i
\(540\) −114.640 88.8625i −0.212296 0.164560i
\(541\) 110.852 110.852i 0.204903 0.204903i −0.597194 0.802097i \(-0.703718\pi\)
0.802097 + 0.597194i \(0.203718\pi\)
\(542\) −35.6647 + 17.4644i −0.0658021 + 0.0322221i
\(543\) −469.155 + 125.823i −0.864006 + 0.231718i
\(544\) −334.539 26.6172i −0.614961 0.0489287i
\(545\) 241.488 0.443098
\(546\) 508.456 704.124i 0.931238 1.28961i
\(547\) 83.0751i 0.151874i −0.997113 0.0759370i \(-0.975805\pi\)
0.997113 0.0759370i \(-0.0241948\pi\)
\(548\) −63.2453 502.022i −0.115411 0.916098i
\(549\) 155.609 89.9346i 0.283442 0.163815i
\(550\) 769.000 376.566i 1.39818 0.684665i
\(551\) 241.730 + 241.730i 0.438711 + 0.438711i
\(552\) −272.742 + 305.941i −0.494098 + 0.554240i
\(553\) −239.623 + 239.623i −0.433315 + 0.433315i
\(554\) −500.447 171.437i −0.903334 0.309453i
\(555\) −99.1857 + 26.6007i −0.178713 + 0.0479291i
\(556\) 111.091 143.116i 0.199804 0.257404i
\(557\) 438.392 + 438.392i 0.787060 + 0.787060i 0.981011 0.193951i \(-0.0621304\pi\)
−0.193951 + 0.981011i \(0.562130\pi\)
\(558\) 310.612 + 208.597i 0.556652 + 0.373829i
\(559\) 28.5088 + 122.865i 0.0509997 + 0.219794i
\(560\) 59.3453 + 231.794i 0.105974 + 0.413919i
\(561\) −502.953 290.229i −0.896529 0.517342i
\(562\) 511.210 250.330i 0.909626 0.445428i
\(563\) 773.124i 1.37322i 0.727025 + 0.686611i \(0.240902\pi\)
−0.727025 + 0.686611i \(0.759098\pi\)
\(564\) 334.747 + 820.549i 0.593523 + 1.45487i
\(565\) −118.610 118.610i −0.209929 0.209929i
\(566\) 256.714 749.382i 0.453559 1.32400i
\(567\) −870.977 + 234.219i −1.53611 + 0.413084i
\(568\) 136.250 + 28.2890i 0.239876 + 0.0498046i
\(569\) −238.618 −0.419364 −0.209682 0.977770i \(-0.567243\pi\)
−0.209682 + 0.977770i \(0.567243\pi\)
\(570\) −5.02322 + 73.7417i −0.00881266 + 0.129371i
\(571\) −18.5671 −0.0325168 −0.0162584 0.999868i \(-0.505175\pi\)
−0.0162584 + 0.999868i \(0.505175\pi\)
\(572\) −332.086 900.460i −0.580571 1.57423i
\(573\) −69.9309 260.751i −0.122044 0.455063i
\(574\) −274.617 + 801.642i −0.478427 + 1.39659i
\(575\) −396.137 −0.688934
\(576\) 65.8732 + 572.221i 0.114363 + 0.993439i
\(577\) 640.717 + 640.717i 1.11043 + 1.11043i 0.993092 + 0.117336i \(0.0374354\pi\)
0.117336 + 0.993092i \(0.462565\pi\)
\(578\) 116.030 338.707i 0.200744 0.585999i
\(579\) −475.773 274.545i −0.821716 0.474171i
\(580\) −25.0263 198.651i −0.0431489 0.342503i
\(581\) 1474.12i 2.53722i
\(582\) −327.882 375.818i −0.563372 0.645735i
\(583\) −1223.76 1223.76i −2.09908 2.09908i
\(584\) 7.96820 38.3776i 0.0136442 0.0657151i
\(585\) −157.048 5.23931i −0.268457 0.00895609i
\(586\) −472.808 + 231.526i −0.806840 + 0.395095i
\(587\) −418.692 418.692i −0.713274 0.713274i 0.253945 0.967219i \(-0.418272\pi\)
−0.967219 + 0.253945i \(0.918272\pi\)
\(588\) 829.459 + 348.787i 1.41064 + 0.593176i
\(589\) 190.660i 0.323702i
\(590\) −100.229 34.3353i −0.169880 0.0581955i
\(591\) 161.437 + 93.1574i 0.273160 + 0.157627i
\(592\) 350.865 + 207.826i 0.592678 + 0.351057i
\(593\) −213.904 213.904i −0.360715 0.360715i 0.503361 0.864076i \(-0.332097\pi\)
−0.864076 + 0.503361i \(0.832097\pi\)
\(594\) −322.359 + 943.086i −0.542692 + 1.58769i
\(595\) 156.833 0.263584
\(596\) 418.873 52.7701i 0.702807 0.0885405i
\(597\) 132.343 + 493.467i 0.221680 + 0.826578i
\(598\) −45.2285 + 441.709i −0.0756329 + 0.738644i
\(599\) −491.097 −0.819862 −0.409931 0.912116i \(-0.634447\pi\)
−0.409931 + 0.912116i \(0.634447\pi\)
\(600\) −370.461 + 415.554i −0.617434 + 0.692590i
\(601\) −858.307 −1.42813 −0.714066 0.700078i \(-0.753148\pi\)
−0.714066 + 0.700078i \(0.753148\pi\)
\(602\) −194.048 + 95.0220i −0.322339 + 0.157844i
\(603\) −89.8901 + 336.080i −0.149072 + 0.557347i
\(604\) 22.8746 + 181.572i 0.0378719 + 0.300615i
\(605\) 208.592 + 208.592i 0.344780 + 0.344780i
\(606\) −77.3807 5.27110i −0.127691 0.00869818i
\(607\) 131.464i 0.216579i 0.994119 + 0.108290i \(0.0345374\pi\)
−0.994119 + 0.108290i \(0.965463\pi\)
\(608\) 223.354 190.432i 0.367359 0.313210i
\(609\) −1078.34 622.256i −1.77067 1.02177i
\(610\) 23.5903 + 48.1747i 0.0386726 + 0.0789749i
\(611\) 814.734 + 507.849i 1.33344 + 0.831177i
\(612\) 374.058 + 51.1985i 0.611205 + 0.0836576i
\(613\) −334.286 334.286i −0.545328 0.545328i 0.379758 0.925086i \(-0.376007\pi\)
−0.925086 + 0.379758i \(0.876007\pi\)
\(614\) 633.308 310.120i 1.03145 0.505082i
\(615\) 148.077 39.7129i 0.240776 0.0645739i
\(616\) 1374.61 901.935i 2.23150 1.46418i
\(617\) −650.790 + 650.790i −1.05476 + 1.05476i −0.0563537 + 0.998411i \(0.517947\pi\)
−0.998411 + 0.0563537i \(0.982053\pi\)
\(618\) −147.211 10.0279i −0.238206 0.0162264i
\(619\) 803.023 + 803.023i 1.29729 + 1.29729i 0.930175 + 0.367116i \(0.119655\pi\)
0.367116 + 0.930175i \(0.380345\pi\)
\(620\) −68.4720 + 88.2111i −0.110439 + 0.142276i
\(621\) 325.824 326.264i 0.524676 0.525386i
\(622\) 274.363 + 93.9879i 0.441098 + 0.151106i
\(623\) 425.371i 0.682779i
\(624\) 421.063 + 460.524i 0.674780 + 0.738019i
\(625\) −492.973 −0.788757
\(626\) −154.559 + 451.177i −0.246899 + 0.720731i
\(627\) 490.537 131.557i 0.782356 0.209820i
\(628\) −121.338 94.1863i −0.193214 0.149978i
\(629\) 189.006 189.006i 0.300486 0.300486i
\(630\) −51.8967 264.130i −0.0823757 0.419253i
\(631\) 336.411 + 336.411i 0.533140 + 0.533140i 0.921505 0.388366i \(-0.126960\pi\)
−0.388366 + 0.921505i \(0.626960\pi\)
\(632\) −133.568 203.565i −0.211341 0.322097i
\(633\) 649.545 174.202i 1.02614 0.275200i
\(634\) −389.506 795.426i −0.614363 1.25461i
\(635\) −190.592 + 190.592i −0.300145 + 0.300145i
\(636\) 1037.26 + 436.166i 1.63091 + 0.685796i
\(637\) 949.565 220.332i 1.49068 0.345890i
\(638\) −1235.59 + 605.045i −1.93665 + 0.948346i
\(639\) −151.234 40.4500i −0.236673 0.0633020i
\(640\) −171.727 + 7.89198i −0.268323 + 0.0123312i
\(641\) −135.932 −0.212063 −0.106032 0.994363i \(-0.533814\pi\)
−0.106032 + 0.994363i \(0.533814\pi\)
\(642\) −271.069 18.4649i −0.422225 0.0287616i
\(643\) 304.119 304.119i 0.472970 0.472970i −0.429905 0.902874i \(-0.641453\pi\)
0.902874 + 0.429905i \(0.141453\pi\)
\(644\) −754.660 + 95.0729i −1.17183 + 0.147629i
\(645\) 33.8584 + 19.5380i 0.0524936 + 0.0302914i
\(646\) −84.6092 172.784i −0.130974 0.267467i
\(647\) 407.010i 0.629073i −0.949245 0.314537i \(-0.898151\pi\)
0.949245 0.314537i \(-0.101849\pi\)
\(648\) −37.5517 646.911i −0.0579502 0.998319i
\(649\) 727.989i 1.12171i
\(650\) −61.4330 + 599.966i −0.0945124 + 0.923024i
\(651\) 179.864 + 670.658i 0.276289 + 1.03020i
\(652\) −3.75565 29.8112i −0.00576020 0.0457227i
\(653\) 88.1990i 0.135067i −0.997717 0.0675337i \(-0.978487\pi\)
0.997717 0.0675337i \(-0.0215130\pi\)
\(654\) 709.253 + 812.943i 1.08448 + 1.24303i
\(655\) −130.553 + 130.553i −0.199318 + 0.199318i
\(656\) −523.817 310.269i −0.798501 0.472972i
\(657\) −11.3936 + 42.5982i −0.0173418 + 0.0648375i
\(658\) −532.987 + 1555.86i −0.810010 + 2.36452i
\(659\) 243.877 0.370071 0.185036 0.982732i \(-0.440760\pi\)
0.185036 + 0.982732i \(0.440760\pi\)
\(660\) −274.199 115.300i −0.415452 0.174698i
\(661\) 482.331 482.331i 0.729699 0.729699i −0.240861 0.970560i \(-0.577430\pi\)
0.970560 + 0.240861i \(0.0774298\pi\)
\(662\) −224.599 458.663i −0.339274 0.692844i
\(663\) 360.876 192.498i 0.544308 0.290344i
\(664\) −1036.99 215.307i −1.56174 0.324258i
\(665\) −96.9919 + 96.9919i −0.145852 + 0.145852i
\(666\) −380.857 255.771i −0.571857 0.384041i
\(667\) 636.491 0.954259
\(668\) 110.700 13.9462i 0.165719 0.0208775i
\(669\) −652.907 376.760i −0.975945 0.563169i
\(670\) −98.2258 33.6490i −0.146606 0.0502224i
\(671\) 260.623 260.623i 0.388410 0.388410i
\(672\) −606.012 + 880.560i −0.901803 + 1.31036i
\(673\) 885.893i 1.31633i 0.752872 + 0.658167i \(0.228668\pi\)
−0.752872 + 0.658167i \(0.771332\pi\)
\(674\) 39.6134 + 13.5703i 0.0587737 + 0.0201340i
\(675\) 442.561 443.159i 0.655646 0.656533i
\(676\) 661.972 + 137.001i 0.979248 + 0.202664i
\(677\) 948.372i 1.40085i −0.713728 0.700423i \(-0.752995\pi\)
0.713728 0.700423i \(-0.247005\pi\)
\(678\) 50.9289 747.645i 0.0751164 1.10272i
\(679\) 925.571i 1.36314i
\(680\) −22.9066 + 110.326i −0.0336862 + 0.162244i
\(681\) 64.1418 111.155i 0.0941876 0.163223i
\(682\) 725.883 + 248.664i 1.06434 + 0.364610i
\(683\) −495.730 + 495.730i −0.725813 + 0.725813i −0.969783 0.243970i \(-0.921550\pi\)
0.243970 + 0.969783i \(0.421550\pi\)
\(684\) −262.996 + 199.670i −0.384498 + 0.291915i
\(685\) −169.890 −0.248015
\(686\) 254.484 + 519.691i 0.370968 + 0.757568i
\(687\) 1009.91 + 582.771i 1.47004 + 0.848284i
\(688\) −38.5024 150.385i −0.0559628 0.218583i
\(689\) 1187.45 275.530i 1.72344 0.399898i
\(690\) 90.4703 + 103.697i 0.131116 + 0.150285i
\(691\) 842.804 842.804i 1.21969 1.21969i 0.251946 0.967741i \(-0.418929\pi\)
0.967741 0.251946i \(-0.0810706\pi\)
\(692\) 479.715 + 372.368i 0.693229 + 0.538104i
\(693\) −1601.38 + 925.521i −2.31080 + 1.33553i
\(694\) −197.319 + 575.999i −0.284321 + 0.829970i
\(695\) −43.0135 43.0135i −0.0618899 0.0618899i
\(696\) 595.235 667.689i 0.855223 0.959323i
\(697\) −282.172 + 282.172i −0.404838 + 0.404838i
\(698\) −339.783 693.883i −0.486794 0.994102i
\(699\) −137.164 511.441i −0.196229 0.731676i
\(700\) −1025.04 + 129.136i −1.46435 + 0.184480i
\(701\) −435.243 −0.620889 −0.310444 0.950592i \(-0.600478\pi\)
−0.310444 + 0.950592i \(0.600478\pi\)
\(702\) −443.612 544.070i −0.631926 0.775029i
\(703\) 233.778i 0.332544i
\(704\) 433.708 + 1098.72i 0.616063 + 1.56068i
\(705\) 287.394 77.0763i 0.407651 0.109328i
\(706\) 109.627 + 223.874i 0.155279 + 0.317101i
\(707\) −101.778 101.778i −0.143958 0.143958i
\(708\) −178.788 438.253i −0.252525 0.619002i
\(709\) 688.110 688.110i 0.970537 0.970537i −0.0290416 0.999578i \(-0.509246\pi\)
0.999578 + 0.0290416i \(0.00924553\pi\)
\(710\) 15.1418 44.2010i 0.0213265 0.0622549i
\(711\) 137.060 + 237.149i 0.192771 + 0.333543i
\(712\) −299.234 62.1288i −0.420272 0.0872595i
\(713\) −251.011 251.011i −0.352049 0.352049i
\(714\) 460.618 + 527.959i 0.645123 + 0.739438i
\(715\) −313.903 + 72.8363i −0.439025 + 0.101869i
\(716\) 412.188 531.014i 0.575682 0.741640i
\(717\) 174.420 302.262i 0.243264 0.421564i
\(718\) 116.277 + 237.453i 0.161945 + 0.330715i
\(719\) 576.024i 0.801146i −0.916265 0.400573i \(-0.868811\pi\)
0.916265 0.400573i \(-0.131189\pi\)
\(720\) 193.386 + 2.07066i 0.268591 + 0.00287592i
\(721\) −193.626 193.626i −0.268552 0.268552i
\(722\) −523.851 179.454i −0.725555 0.248552i
\(723\) −237.714 137.173i −0.328788 0.189727i
\(724\) 397.122 511.605i 0.548511 0.706636i
\(725\) 864.535 1.19246
\(726\) −89.5653 + 1314.84i −0.123368 + 1.81107i
\(727\) −516.927 −0.711041 −0.355520 0.934669i \(-0.615696\pi\)
−0.355520 + 0.934669i \(0.615696\pi\)
\(728\) 26.9590 + 1157.71i 0.0370316 + 1.59026i
\(729\) 0.985176 + 728.999i 0.00135141 + 0.999999i
\(730\) −12.4501 4.26502i −0.0170550 0.00584249i
\(731\) −101.751 −0.139194
\(732\) −92.8897 + 220.903i −0.126899 + 0.301780i
\(733\) 623.462 + 623.462i 0.850563 + 0.850563i 0.990202 0.139640i \(-0.0445944\pi\)
−0.139640 + 0.990202i \(0.544594\pi\)
\(734\) 943.025 + 323.050i 1.28477 + 0.440123i
\(735\) 151.000 261.676i 0.205442 0.356022i
\(736\) 43.3435 544.763i 0.0588906 0.740167i
\(737\) 713.438i 0.968030i
\(738\) 568.593 + 381.848i 0.770451 + 0.517409i
\(739\) 88.1069 + 88.1069i 0.119224 + 0.119224i 0.764202 0.644977i \(-0.223133\pi\)
−0.644977 + 0.764202i \(0.723133\pi\)
\(740\) 83.9570 108.160i 0.113455 0.146162i
\(741\) −104.132 + 342.230i −0.140529 + 0.461849i
\(742\) 918.361 + 1875.42i 1.23768 + 2.52752i
\(743\) 720.000 + 720.000i 0.969044 + 0.969044i 0.999535 0.0304906i \(-0.00970696\pi\)
−0.0304906 + 0.999535i \(0.509707\pi\)
\(744\) −498.055 + 28.5733i −0.669429 + 0.0384050i
\(745\) 141.752i 0.190271i
\(746\) 373.714 1090.92i 0.500957 1.46236i
\(747\) 1151.04 + 307.864i 1.54088 + 0.412134i
\(748\) 768.174 96.7754i 1.02697 0.129379i
\(749\) −356.534 356.534i −0.476013 0.476013i
\(750\) 255.324 + 292.652i 0.340432 + 0.390202i
\(751\) −863.481 −1.14977 −0.574887 0.818233i \(-0.694954\pi\)
−0.574887 + 0.818233i \(0.694954\pi\)
\(752\) −1016.64 602.182i −1.35192 0.800774i
\(753\) 541.176 145.138i 0.718693 0.192747i
\(754\) 98.7071 963.991i 0.130911 1.27850i
\(755\) 61.4461 0.0813856
\(756\) 736.741 950.454i 0.974525 1.25721i
\(757\) −1066.15 −1.40839 −0.704195 0.710006i \(-0.748692\pi\)
−0.704195 + 0.710006i \(0.748692\pi\)
\(758\) −209.160 427.134i −0.275937 0.563502i
\(759\) 472.609 819.008i 0.622673 1.07906i
\(760\) −54.0639 82.3968i −0.0711368 0.108417i
\(761\) 913.582 + 913.582i 1.20050 + 1.20050i 0.974014 + 0.226489i \(0.0727247\pi\)
0.226489 + 0.974014i \(0.427275\pi\)
\(762\) −1201.37 81.8365i −1.57661 0.107397i
\(763\) 2002.13i 2.62402i
\(764\) 284.344 + 220.716i 0.372178 + 0.288895i
\(765\) 32.7538 122.459i 0.0428154 0.160078i
\(766\) −506.225 + 247.889i −0.660868 + 0.323615i
\(767\) −435.148 271.241i −0.567337 0.353639i
\(768\) −530.930 554.921i −0.691316 0.722553i
\(769\) 638.154 + 638.154i 0.829849 + 0.829849i 0.987496 0.157646i \(-0.0503905\pi\)
−0.157646 + 0.987496i \(0.550391\pi\)
\(770\) −242.769 495.768i −0.315284 0.643854i
\(771\) −342.157 1275.80i −0.443783 1.65473i
\(772\) 726.662 91.5457i 0.941272 0.118583i
\(773\) −92.5067 + 92.5067i −0.119672 + 0.119672i −0.764407 0.644734i \(-0.776968\pi\)
0.644734 + 0.764407i \(0.276968\pi\)
\(774\) 33.6698 + 171.363i 0.0435011 + 0.221400i
\(775\) −340.944 340.944i −0.439927 0.439927i
\(776\) 651.106 + 135.187i 0.839054 + 0.174210i
\(777\) −220.541 822.328i −0.283836 1.05834i
\(778\) 52.6091 153.573i 0.0676209 0.197394i
\(779\) 349.014i 0.448029i
\(780\) 171.083 120.940i 0.219337 0.155051i
\(781\) −321.042 −0.411066
\(782\) −338.867 116.085i −0.433334 0.148446i
\(783\) −711.082 + 712.043i −0.908150 + 0.909378i
\(784\) −1162.26 + 297.568i −1.48247 + 0.379551i
\(785\) −36.4681 + 36.4681i −0.0464562 + 0.0464562i
\(786\) −822.926 56.0570i −1.04698 0.0713193i
\(787\) −226.028 226.028i −0.287202 0.287202i 0.548771 0.835973i \(-0.315096\pi\)
−0.835973 + 0.548771i \(0.815096\pi\)
\(788\) −246.568 + 31.0629i −0.312903 + 0.0394199i
\(789\) −43.3907 161.791i −0.0549946 0.205058i
\(790\) −73.4182 + 35.9516i −0.0929344 + 0.0455084i
\(791\) 983.371 983.371i 1.24320 1.24320i
\(792\) −417.177 1261.70i −0.526739 1.59305i
\(793\) 58.6793 + 252.890i 0.0739966 + 0.318903i
\(794\) 312.786 + 638.753i 0.393937 + 0.804475i
\(795\) 188.829 327.232i 0.237521 0.411612i
\(796\) −538.116 417.701i −0.676025 0.524750i
\(797\) 834.278 1.04677 0.523387 0.852095i \(-0.324668\pi\)
0.523387 + 0.852095i \(0.324668\pi\)
\(798\) −611.378 41.6465i −0.766137 0.0521885i
\(799\) −547.650 + 547.650i −0.685420 + 0.685420i
\(800\) 58.8727 739.942i 0.0735909 0.924927i
\(801\) 332.142 + 88.8369i 0.414659 + 0.110907i
\(802\) −1065.03 + 521.525i −1.32796 + 0.650280i
\(803\) 90.4284i 0.112613i
\(804\) −175.214 429.493i −0.217928 0.534196i
\(805\) 255.386i 0.317250i
\(806\) −419.093 + 341.239i −0.519966 + 0.423374i
\(807\) 404.800 108.563i 0.501611 0.134527i
\(808\) 86.4628 56.7318i 0.107008 0.0702127i
\(809\) 775.968i 0.959169i −0.877496 0.479585i \(-0.840787\pi\)
0.877496 0.479585i \(-0.159213\pi\)
\(810\) −217.078 14.6398i −0.267998 0.0180738i
\(811\) 627.437 627.437i 0.773658 0.773658i −0.205086 0.978744i \(-0.565747\pi\)
0.978744 + 0.205086i \(0.0657474\pi\)
\(812\) 1646.98 207.488i 2.02830 0.255527i
\(813\) −29.7718 + 51.5931i −0.0366197 + 0.0634601i
\(814\) −890.042 304.900i −1.09342 0.374570i
\(815\) −10.0885 −0.0123785
\(816\) −438.677 + 246.916i −0.537595 + 0.302593i
\(817\) 62.9269 62.9269i 0.0770219 0.0770219i
\(818\) −1204.25 + 589.701i −1.47219 + 0.720906i
\(819\) 43.4380 1302.05i 0.0530379 1.58980i
\(820\) −125.342 + 161.475i −0.152856 + 0.196921i
\(821\) −845.820 + 845.820i −1.03023 + 1.03023i −0.0307022 + 0.999529i \(0.509774\pi\)
−0.999529 + 0.0307022i \(0.990226\pi\)
\(822\) −498.969 571.916i −0.607018 0.695762i
\(823\) 632.140 0.768092 0.384046 0.923314i \(-0.374530\pi\)
0.384046 + 0.923314i \(0.374530\pi\)
\(824\) 164.489 107.928i 0.199623 0.130981i
\(825\) 641.937 1112.45i 0.778105 1.34842i
\(826\) 284.667 830.980i 0.344633 1.00603i
\(827\) 533.580 533.580i 0.645200 0.645200i −0.306629 0.951829i \(-0.599201\pi\)
0.951829 + 0.306629i \(0.0992012\pi\)
\(828\) −83.3716 + 609.116i −0.100690 + 0.735647i
\(829\) 34.0426i 0.0410646i −0.999789 0.0205323i \(-0.993464\pi\)
0.999789 0.0205323i \(-0.00653610\pi\)
\(830\) −115.244 + 336.413i −0.138848 + 0.405316i
\(831\) −766.411 + 205.544i −0.922276 + 0.247346i
\(832\) −818.343 150.127i −0.983586 0.180442i
\(833\) 786.385i 0.944040i
\(834\) 18.4692 271.131i 0.0221453 0.325097i
\(835\) 37.4624i 0.0448651i
\(836\) −415.221 + 534.921i −0.496676 + 0.639858i
\(837\) 561.233 0.379228i 0.670529 0.000453079i
\(838\) 478.671 1397.30i 0.571206 1.66742i
\(839\) 63.4338 63.4338i 0.0756064 0.0756064i −0.668292 0.743899i \(-0.732974\pi\)
0.743899 + 0.668292i \(0.232974\pi\)
\(840\) 267.904 + 238.833i 0.318933 + 0.284325i
\(841\) −548.085 −0.651706
\(842\) −47.9211 + 23.4661i −0.0569134 + 0.0278695i
\(843\) 426.741 739.522i 0.506217 0.877251i
\(844\) −549.815 + 708.316i −0.651440 + 0.839237i
\(845\) 73.4197 214.770i 0.0868872 0.254166i
\(846\) 1103.55 + 741.105i 1.30443 + 0.876011i
\(847\) −1729.39 + 1729.39i −2.04178 + 2.04178i
\(848\) −1453.43 + 372.115i −1.71395 + 0.438815i
\(849\) −307.787 1147.64i −0.362529 1.35176i
\(850\) −460.277 157.676i −0.541502 0.185501i
\(851\) 307.777 + 307.777i 0.361665 + 0.361665i
\(852\) 193.269 78.8452i 0.226842 0.0925413i
\(853\) −529.185 + 529.185i −0.620381 + 0.620381i −0.945629 0.325248i \(-0.894552\pi\)
0.325248 + 0.945629i \(0.394552\pi\)
\(854\) −399.406 + 195.582i −0.467689 + 0.229019i
\(855\) 55.4777 + 95.9904i 0.0648862 + 0.112269i
\(856\) 302.884 198.735i 0.353836 0.232167i
\(857\) 941.964 1.09914 0.549571 0.835447i \(-0.314791\pi\)
0.549571 + 0.835447i \(0.314791\pi\)
\(858\) −1167.13 842.797i −1.36029 0.982281i
\(859\) 51.4741i 0.0599233i −0.999551 0.0299617i \(-0.990461\pi\)
0.999551 0.0299617i \(-0.00953852\pi\)
\(860\) −51.7128 + 6.51484i −0.0601312 + 0.00757540i
\(861\) 329.252 + 1227.68i 0.382406 + 1.42587i
\(862\) 1037.46 508.026i 1.20355 0.589357i
\(863\) 182.144 + 182.144i 0.211059 + 0.211059i 0.804717 0.593658i \(-0.202317\pi\)
−0.593658 + 0.804717i \(0.702317\pi\)
\(864\) 561.004 + 657.092i 0.649310 + 0.760524i
\(865\) 144.178 144.178i 0.166679 0.166679i
\(866\) 920.892 + 315.468i 1.06339 + 0.364282i
\(867\) −139.114 518.715i −0.160455 0.598287i
\(868\) −731.340 567.687i −0.842558 0.654017i
\(869\) 397.190 + 397.190i 0.457065 + 0.457065i
\(870\) −197.443 226.309i −0.226946 0.260125i
\(871\) −426.450 265.819i −0.489610 0.305189i
\(872\) −1408.43 292.427i −1.61517 0.335352i
\(873\) −722.712 193.301i −0.827849 0.221422i
\(874\) 281.361 137.778i 0.321924 0.157640i
\(875\) 720.747i 0.823711i
\(876\) −22.2084 54.4384i −0.0253521 0.0621442i
\(877\) −646.826 646.826i −0.737544 0.737544i 0.234558 0.972102i \(-0.424636\pi\)
−0.972102 + 0.234558i \(0.924636\pi\)
\(878\) 181.136 528.759i 0.206305 0.602231i
\(879\) −394.685 + 683.970i −0.449016 + 0.778123i
\(880\) 384.213 98.3685i 0.436606 0.111782i
\(881\) 82.3758 0.0935026 0.0467513 0.998907i \(-0.485113\pi\)
0.0467513 + 0.998907i \(0.485113\pi\)
\(882\) 1324.39 260.219i 1.50158 0.295033i
\(883\) −128.459 −0.145481 −0.0727403 0.997351i \(-0.523174\pi\)
−0.0727403 + 0.997351i \(0.523174\pi\)
\(884\) −228.367 + 495.225i −0.258334 + 0.560209i
\(885\) −153.496 + 41.1663i −0.173442 + 0.0465156i
\(886\) −445.699 + 1301.05i −0.503046 + 1.46846i
\(887\) 1047.33 1.18076 0.590380 0.807126i \(-0.298978\pi\)
0.590380 + 0.807126i \(0.298978\pi\)
\(888\) 610.691 35.0352i 0.687715 0.0394540i
\(889\) −1580.16 1580.16i −1.77745 1.77745i
\(890\) −33.2548 + 97.0749i −0.0373649 + 0.109073i
\(891\) 388.232 + 1443.70i 0.435726 + 1.62031i
\(892\) 997.203 125.629i 1.11794 0.140840i
\(893\) 677.380i 0.758545i
\(894\) 477.191 416.326i 0.533771 0.465689i
\(895\) −159.596 159.596i −0.178319 0.178319i
\(896\) −65.4308 1423.75i −0.0730255 1.58901i
\(897\) 313.464 + 587.650i 0.349459 + 0.655129i
\(898\) 844.445 413.510i 0.940361 0.460478i
\(899\) 547.809 + 547.809i 0.609354 + 0.609354i
\(900\) −113.242 + 827.351i −0.125825 + 0.919279i
\(901\) 983.392i 1.09144i
\(902\) 1328.77 + 455.194i 1.47314 + 0.504650i
\(903\) −161.985 + 280.713i −0.179386 + 0.310867i
\(904\) 548.138 + 835.396i 0.606347 + 0.924111i
\(905\) −153.762 153.762i −0.169903 0.169903i
\(906\) 180.467 + 206.851i 0.199191 + 0.228313i
\(907\) 1213.59 1.33803 0.669014 0.743250i \(-0.266717\pi\)
0.669014 + 0.743250i \(0.266717\pi\)
\(908\) 21.3878 + 169.770i 0.0235548 + 0.186971i
\(909\) −100.727 + 58.2154i −0.110811 + 0.0640433i
\(910\) 386.793 + 39.6053i 0.425047 + 0.0435223i
\(911\) −1249.62 −1.37170 −0.685849 0.727744i \(-0.740569\pi\)
−0.685849 + 0.727744i \(0.740569\pi\)
\(912\) 118.593 424.000i 0.130036 0.464912i
\(913\) 2443.45 2.67628
\(914\) −1216.11 + 595.507i −1.33053 + 0.651540i
\(915\) 69.6901 + 40.2147i 0.0761640 + 0.0439504i
\(916\) −1542.47 + 194.322i −1.68392 + 0.212142i
\(917\) −1082.39 1082.39i −1.18036 1.18036i
\(918\) 508.443 249.402i 0.553860 0.271680i
\(919\) 1693.18i 1.84241i −0.389076 0.921205i \(-0.627206\pi\)
0.389076 0.921205i \(-0.372794\pi\)
\(920\) −179.655 37.3011i −0.195277 0.0405447i
\(921\) 528.665 916.152i 0.574012 0.994736i
\(922\) 276.339 + 564.322i 0.299717 + 0.612063i
\(923\) 119.617 191.900i 0.129596 0.207909i
\(924\) 955.932 2273.32i 1.03456 2.46031i
\(925\) 418.048 + 418.048i 0.451944 + 0.451944i
\(926\) −810.283 + 396.781i −0.875036 + 0.428490i
\(927\) −191.626 + 110.751i −0.206717 + 0.119472i
\(928\) −94.5933 + 1188.90i −0.101932 + 1.28114i
\(929\) −871.599 + 871.599i −0.938212 + 0.938212i −0.998199 0.0599867i \(-0.980894\pi\)
0.0599867 + 0.998199i \(0.480894\pi\)
\(930\) −11.3836 + 167.114i −0.0122405 + 0.179692i
\(931\) −486.334 486.334i −0.522378 0.522378i
\(932\) 557.717 + 432.916i 0.598409 + 0.464502i
\(933\) 420.174 112.687i 0.450347 0.120779i
\(934\) −230.365 78.9155i −0.246643 0.0844920i
\(935\) 259.959i 0.278031i
\(936\) 909.601 + 220.731i 0.971796 + 0.235824i
\(937\) 565.122 0.603119 0.301559 0.953447i \(-0.402493\pi\)
0.301559 + 0.953447i \(0.402493\pi\)
\(938\) 278.977 814.370i 0.297417 0.868198i
\(939\) 185.308 + 690.957i 0.197346 + 0.735844i
\(940\) −243.268 + 313.397i −0.258796 + 0.333402i
\(941\) −1134.28 + 1134.28i −1.20540 + 1.20540i −0.232893 + 0.972502i \(0.574819\pi\)
−0.972502 + 0.232893i \(0.925181\pi\)
\(942\) −229.873 15.6587i −0.244026 0.0166228i
\(943\) −459.489 459.489i −0.487263 0.487263i
\(944\) 542.987 + 321.624i 0.575198 + 0.340704i
\(945\) −285.701 285.315i −0.302329 0.301921i
\(946\) 157.505 + 321.647i 0.166496 + 0.340007i
\(947\) −456.667 + 456.667i −0.482225 + 0.482225i −0.905842 0.423617i \(-0.860760\pi\)
0.423617 + 0.905842i \(0.360760\pi\)
\(948\) −336.657 141.564i −0.355123 0.149329i
\(949\) −54.0526 33.6927i −0.0569574 0.0355033i
\(950\) 382.168 187.141i 0.402283 0.196991i
\(951\) −1150.67 663.996i −1.20996 0.698208i
\(952\) −914.691 189.914i −0.960810 0.199489i
\(953\) 883.026 0.926575 0.463288 0.886208i \(-0.346670\pi\)
0.463288 + 0.886208i \(0.346670\pi\)
\(954\) 1656.18 325.409i 1.73604 0.341100i
\(955\) 85.4592 85.4592i 0.0894861 0.0894861i
\(956\) 58.1595 + 461.652i 0.0608363 + 0.482900i
\(957\) −1031.43 + 1787.41i −1.07777 + 1.86773i
\(958\) −327.014 667.808i −0.341351 0.697086i
\(959\) 1408.53i 1.46874i
\(960\) −207.140 + 153.578i −0.215771 + 0.159977i
\(961\) 528.925i 0.550390i
\(962\) 513.871 418.411i 0.534169 0.434938i
\(963\) −352.853 + 203.932i −0.366410 + 0.211767i
\(964\) 363.067 45.7396i 0.376625 0.0474477i
\(965\) 245.911i 0.254830i
\(966\) −859.728 + 750.070i −0.889988 + 0.776470i
\(967\) −556.304 + 556.304i −0.575289 + 0.575289i −0.933602 0.358313i \(-0.883352\pi\)
0.358313 + 0.933602i \(0.383352\pi\)
\(968\) −963.975 1469.16i −0.995841 1.51772i
\(969\) −249.951 144.234i −0.257948 0.148849i
\(970\) 72.3594 211.226i 0.0745973 0.217759i
\(971\) −1135.92 −1.16985 −0.584924 0.811088i \(-0.698876\pi\)
−0.584924 + 0.811088i \(0.698876\pi\)
\(972\) −588.277 773.766i −0.605223 0.796056i
\(973\) 356.616 356.616i 0.366511 0.366511i
\(974\) −277.159 565.997i −0.284557 0.581106i
\(975\) 425.773 + 798.196i 0.436691 + 0.818662i
\(976\) −79.2488 309.534i −0.0811976 0.317146i
\(977\) −302.818 + 302.818i −0.309947 + 0.309947i −0.844889 0.534942i \(-0.820333\pi\)
0.534942 + 0.844889i \(0.320333\pi\)
\(978\) −29.6299 33.9617i −0.0302964 0.0347257i
\(979\) 705.079 0.720203
\(980\) 50.3503 + 399.665i 0.0513778 + 0.407822i
\(981\) 1563.32 + 418.136i 1.59360 + 0.426234i
\(982\) −1840.28 630.421i −1.87401 0.641977i
\(983\) 859.837 859.837i 0.874707 0.874707i −0.118274 0.992981i \(-0.537736\pi\)
0.992981 + 0.118274i \(0.0377362\pi\)
\(984\) −911.718 + 52.3051i −0.926542 + 0.0531555i
\(985\) 83.4416i 0.0847123i
\(986\) 739.547 + 253.345i 0.750048 + 0.256942i
\(987\) 639.024 + 2382.72i 0.647441 + 2.41411i
\(988\) −165.036 447.500i −0.167041 0.452935i
\(989\) 165.691i 0.167534i
\(990\) −437.811 + 86.0219i −0.442233 + 0.0868908i
\(991\) 29.9709i 0.0302431i 0.999886 + 0.0151216i \(0.00481352\pi\)
−0.999886 + 0.0151216i \(0.995186\pi\)
\(992\) 506.166 431.557i 0.510248 0.435037i
\(993\) −663.507 382.877i −0.668185 0.385576i
\(994\) 366.461 + 125.538i 0.368673 + 0.126296i
\(995\) −161.730 + 161.730i −0.162543 + 0.162543i
\(996\) −1470.97 + 600.089i −1.47687 + 0.602499i
\(997\) −558.581 −0.560262 −0.280131 0.959962i \(-0.590378\pi\)
−0.280131 + 0.959962i \(0.590378\pi\)
\(998\) 554.647 + 1132.67i 0.555758 + 1.13494i
\(999\) −688.156 + 0.464990i −0.688845 + 0.000465456i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 156.3.l.c.47.20 yes 96
3.2 odd 2 inner 156.3.l.c.47.29 yes 96
4.3 odd 2 inner 156.3.l.c.47.5 96
12.11 even 2 inner 156.3.l.c.47.44 yes 96
13.5 odd 4 inner 156.3.l.c.83.44 yes 96
39.5 even 4 inner 156.3.l.c.83.5 yes 96
52.31 even 4 inner 156.3.l.c.83.29 yes 96
156.83 odd 4 inner 156.3.l.c.83.20 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.3.l.c.47.5 96 4.3 odd 2 inner
156.3.l.c.47.20 yes 96 1.1 even 1 trivial
156.3.l.c.47.29 yes 96 3.2 odd 2 inner
156.3.l.c.47.44 yes 96 12.11 even 2 inner
156.3.l.c.83.5 yes 96 39.5 even 4 inner
156.3.l.c.83.20 yes 96 156.83 odd 4 inner
156.3.l.c.83.29 yes 96 52.31 even 4 inner
156.3.l.c.83.44 yes 96 13.5 odd 4 inner