Properties

Label 156.3.l.c.47.39
Level $156$
Weight $3$
Character 156.47
Analytic conductor $4.251$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [156,3,Mod(47,156)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("156.47"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(156, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 156 = 2^{2} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 156.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,0,0,0,-36,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.25069212402\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(48\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 47.39
Character \(\chi\) \(=\) 156.47
Dual form 156.3.l.c.83.39

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.63658 + 1.14961i) q^{2} +(-2.64742 + 1.41109i) q^{3} +(1.35681 + 3.76285i) q^{4} +(-3.10286 + 3.10286i) q^{5} +(-5.95492 - 0.734131i) q^{6} +(-7.50740 - 7.50740i) q^{7} +(-2.10527 + 7.71802i) q^{8} +(5.01767 - 7.47148i) q^{9} +(-8.64517 + 1.51102i) q^{10} +(-8.95288 + 8.95288i) q^{11} +(-8.90176 - 8.04728i) q^{12} +(11.6170 + 5.83481i) q^{13} +(-3.65593 - 20.9170i) q^{14} +(3.83617 - 12.5930i) q^{15} +(-12.3181 + 10.2109i) q^{16} -10.5509 q^{17} +(16.8011 - 6.45936i) q^{18} +(5.32408 - 5.32408i) q^{19} +(-15.8856 - 7.46564i) q^{20} +(30.4688 + 9.28165i) q^{21} +(-24.9444 + 4.35984i) q^{22} +13.8259i q^{23} +(-5.31725 - 23.4036i) q^{24} +5.74446i q^{25} +(12.3045 + 22.9042i) q^{26} +(-2.74096 + 26.8605i) q^{27} +(18.0632 - 38.4354i) q^{28} +40.6250i q^{29} +(20.7552 - 16.1994i) q^{30} +(-32.5642 + 32.5642i) q^{31} +(-31.8982 + 2.55003i) q^{32} +(11.0687 - 36.3353i) q^{33} +(-17.2674 - 12.1294i) q^{34} +46.5889 q^{35} +(34.9221 + 8.74338i) q^{36} +(18.5545 - 18.5545i) q^{37} +(14.8339 - 2.59270i) q^{38} +(-38.9885 + 0.945419i) q^{39} +(-17.4156 - 30.4804i) q^{40} +(31.6904 - 31.6904i) q^{41} +(39.1945 + 50.2174i) q^{42} +56.9036 q^{43} +(-45.8357 - 21.5410i) q^{44} +(7.61385 + 38.7521i) q^{45} +(-15.8944 + 22.6273i) q^{46} +(41.9868 - 41.9868i) q^{47} +(18.2028 - 44.4146i) q^{48} +63.7221i q^{49} +(-6.60387 + 9.40129i) q^{50} +(27.9326 - 14.8882i) q^{51} +(-6.19349 + 51.6298i) q^{52} +1.52710i q^{53} +(-35.3648 + 40.8084i) q^{54} -55.5591i q^{55} +(73.7474 - 42.1371i) q^{56} +(-6.58233 + 21.6078i) q^{57} +(-46.7028 + 66.4862i) q^{58} +(29.4245 - 29.4245i) q^{59} +(52.5906 - 2.65132i) q^{60} -91.3759 q^{61} +(-90.7301 + 15.8580i) q^{62} +(-93.7610 + 18.4218i) q^{63} +(-55.1356 - 32.4971i) q^{64} +(-54.1506 + 17.9414i) q^{65} +(59.8862 - 46.7411i) q^{66} +(-24.1047 + 24.1047i) q^{67} +(-14.3155 - 39.7014i) q^{68} +(-19.5096 - 36.6030i) q^{69} +(76.2466 + 53.5589i) q^{70} +(31.2001 + 31.2001i) q^{71} +(47.1015 + 54.4560i) q^{72} +(-17.5775 + 17.5775i) q^{73} +(51.6965 - 9.03562i) q^{74} +(-8.10593 - 15.2080i) q^{75} +(27.2575 + 12.8100i) q^{76} +134.426 q^{77} +(-64.8948 - 43.2742i) q^{78} +102.844i q^{79} +(6.53836 - 69.9047i) q^{80} +(-30.6461 - 74.9788i) q^{81} +(88.2956 - 15.4325i) q^{82} +(-38.2900 - 38.2900i) q^{83} +(6.41488 + 127.243i) q^{84} +(32.7379 - 32.7379i) q^{85} +(93.1274 + 65.4167i) q^{86} +(-57.3254 - 107.551i) q^{87} +(-50.2502 - 87.9468i) q^{88} +(-0.515880 - 0.515880i) q^{89} +(-32.0890 + 72.1740i) q^{90} +(-43.4093 - 131.018i) q^{91} +(-52.0249 + 18.7591i) q^{92} +(40.2602 - 132.162i) q^{93} +(116.983 - 20.4466i) q^{94} +33.0398i q^{95} +(80.8497 - 51.7622i) q^{96} +(-61.1704 - 61.1704i) q^{97} +(-73.2554 + 104.287i) q^{98} +(21.9687 + 111.814i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 36 q^{6} - 64 q^{9} - 8 q^{13} + 80 q^{16} + 48 q^{18} + 8 q^{21} + 124 q^{24} - 8 q^{28} + 24 q^{33} + 64 q^{34} - 128 q^{37} - 136 q^{40} - 140 q^{42} - 160 q^{45} + 88 q^{46} - 108 q^{48} - 320 q^{52}+ \cdots + 336 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/156\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.63658 + 1.14961i 0.818292 + 0.574803i
\(3\) −2.64742 + 1.41109i −0.882473 + 0.470362i
\(4\) 1.35681 + 3.76285i 0.339202 + 0.940714i
\(5\) −3.10286 + 3.10286i −0.620573 + 0.620573i −0.945678 0.325105i \(-0.894600\pi\)
0.325105 + 0.945678i \(0.394600\pi\)
\(6\) −5.95492 0.734131i −0.992486 0.122355i
\(7\) −7.50740 7.50740i −1.07249 1.07249i −0.997159 0.0753268i \(-0.976000\pi\)
−0.0753268 0.997159i \(-0.524000\pi\)
\(8\) −2.10527 + 7.71802i −0.263159 + 0.964752i
\(9\) 5.01767 7.47148i 0.557518 0.830165i
\(10\) −8.64517 + 1.51102i −0.864517 + 0.151102i
\(11\) −8.95288 + 8.95288i −0.813898 + 0.813898i −0.985216 0.171318i \(-0.945198\pi\)
0.171318 + 0.985216i \(0.445198\pi\)
\(12\) −8.90176 8.04728i −0.741813 0.670607i
\(13\) 11.6170 + 5.83481i 0.893616 + 0.448832i
\(14\) −3.65593 20.9170i −0.261138 1.49407i
\(15\) 3.83617 12.5930i 0.255745 0.839533i
\(16\) −12.3181 + 10.2109i −0.769884 + 0.638184i
\(17\) −10.5509 −0.620640 −0.310320 0.950632i \(-0.600436\pi\)
−0.310320 + 0.950632i \(0.600436\pi\)
\(18\) 16.8011 6.45936i 0.933394 0.358853i
\(19\) 5.32408 5.32408i 0.280215 0.280215i −0.552980 0.833195i \(-0.686509\pi\)
0.833195 + 0.552980i \(0.186509\pi\)
\(20\) −15.8856 7.46564i −0.794281 0.373282i
\(21\) 30.4688 + 9.28165i 1.45090 + 0.441983i
\(22\) −24.9444 + 4.35984i −1.13384 + 0.198174i
\(23\) 13.8259i 0.601127i 0.953762 + 0.300563i \(0.0971747\pi\)
−0.953762 + 0.300563i \(0.902825\pi\)
\(24\) −5.31725 23.4036i −0.221552 0.975149i
\(25\) 5.74446i 0.229778i
\(26\) 12.3045 + 22.9042i 0.473249 + 0.880929i
\(27\) −2.74096 + 26.8605i −0.101517 + 0.994834i
\(28\) 18.0632 38.4354i 0.645113 1.37269i
\(29\) 40.6250i 1.40086i 0.713720 + 0.700431i \(0.247009\pi\)
−0.713720 + 0.700431i \(0.752991\pi\)
\(30\) 20.7552 16.1994i 0.691841 0.539980i
\(31\) −32.5642 + 32.5642i −1.05046 + 1.05046i −0.0518016 + 0.998657i \(0.516496\pi\)
−0.998657 + 0.0518016i \(0.983504\pi\)
\(32\) −31.8982 + 2.55003i −0.996820 + 0.0796885i
\(33\) 11.0687 36.3353i 0.335416 1.10107i
\(34\) −17.2674 12.1294i −0.507864 0.356746i
\(35\) 46.5889 1.33111
\(36\) 34.9221 + 8.74338i 0.970058 + 0.242872i
\(37\) 18.5545 18.5545i 0.501474 0.501474i −0.410422 0.911896i \(-0.634618\pi\)
0.911896 + 0.410422i \(0.134618\pi\)
\(38\) 14.8339 2.59270i 0.390365 0.0682289i
\(39\) −38.9885 + 0.945419i −0.999706 + 0.0242415i
\(40\) −17.4156 30.4804i −0.435390 0.762009i
\(41\) 31.6904 31.6904i 0.772937 0.772937i −0.205682 0.978619i \(-0.565941\pi\)
0.978619 + 0.205682i \(0.0659411\pi\)
\(42\) 39.1945 + 50.2174i 0.933203 + 1.19565i
\(43\) 56.9036 1.32334 0.661669 0.749796i \(-0.269848\pi\)
0.661669 + 0.749796i \(0.269848\pi\)
\(44\) −45.8357 21.5410i −1.04172 0.489569i
\(45\) 7.61385 + 38.7521i 0.169197 + 0.861159i
\(46\) −15.8944 + 22.6273i −0.345530 + 0.491897i
\(47\) 41.9868 41.9868i 0.893337 0.893337i −0.101499 0.994836i \(-0.532364\pi\)
0.994836 + 0.101499i \(0.0323638\pi\)
\(48\) 18.2028 44.4146i 0.379224 0.925305i
\(49\) 63.7221i 1.30045i
\(50\) −6.60387 + 9.40129i −0.132077 + 0.188026i
\(51\) 27.9326 14.8882i 0.547698 0.291926i
\(52\) −6.19349 + 51.6298i −0.119106 + 0.992882i
\(53\) 1.52710i 0.0288132i 0.999896 + 0.0144066i \(0.00458592\pi\)
−0.999896 + 0.0144066i \(0.995414\pi\)
\(54\) −35.3648 + 40.8084i −0.654904 + 0.755712i
\(55\) 55.5591i 1.01017i
\(56\) 73.7474 42.1371i 1.31692 0.752449i
\(57\) −6.58233 + 21.6078i −0.115479 + 0.379084i
\(58\) −46.7028 + 66.4862i −0.805221 + 1.14631i
\(59\) 29.4245 29.4245i 0.498720 0.498720i −0.412319 0.911039i \(-0.635281\pi\)
0.911039 + 0.412319i \(0.135281\pi\)
\(60\) 52.5906 2.65132i 0.876510 0.0441887i
\(61\) −91.3759 −1.49797 −0.748983 0.662589i \(-0.769458\pi\)
−0.748983 + 0.662589i \(0.769458\pi\)
\(62\) −90.7301 + 15.8580i −1.46339 + 0.255774i
\(63\) −93.7610 + 18.4218i −1.48827 + 0.292409i
\(64\) −55.1356 32.4971i −0.861494 0.507767i
\(65\) −54.1506 + 17.9414i −0.833087 + 0.276021i
\(66\) 59.8862 46.7411i 0.907367 0.708198i
\(67\) −24.1047 + 24.1047i −0.359772 + 0.359772i −0.863729 0.503957i \(-0.831877\pi\)
0.503957 + 0.863729i \(0.331877\pi\)
\(68\) −14.3155 39.7014i −0.210522 0.583844i
\(69\) −19.5096 36.6030i −0.282747 0.530478i
\(70\) 76.2466 + 53.5589i 1.08924 + 0.765127i
\(71\) 31.2001 + 31.2001i 0.439438 + 0.439438i 0.891823 0.452385i \(-0.149427\pi\)
−0.452385 + 0.891823i \(0.649427\pi\)
\(72\) 47.1015 + 54.4560i 0.654187 + 0.756333i
\(73\) −17.5775 + 17.5775i −0.240788 + 0.240788i −0.817176 0.576388i \(-0.804462\pi\)
0.576388 + 0.817176i \(0.304462\pi\)
\(74\) 51.6965 9.03562i 0.698601 0.122103i
\(75\) −8.10593 15.2080i −0.108079 0.202773i
\(76\) 27.2575 + 12.8100i 0.358651 + 0.168552i
\(77\) 134.426 1.74579
\(78\) −64.8948 43.2742i −0.831985 0.554798i
\(79\) 102.844i 1.30183i 0.759151 + 0.650914i \(0.225614\pi\)
−0.759151 + 0.650914i \(0.774386\pi\)
\(80\) 6.53836 69.9047i 0.0817295 0.873809i
\(81\) −30.6461 74.9788i −0.378346 0.925664i
\(82\) 88.2956 15.4325i 1.07678 0.188201i
\(83\) −38.2900 38.2900i −0.461326 0.461326i 0.437764 0.899090i \(-0.355770\pi\)
−0.899090 + 0.437764i \(0.855770\pi\)
\(84\) 6.41488 + 127.243i 0.0763677 + 1.51480i
\(85\) 32.7379 32.7379i 0.385152 0.385152i
\(86\) 93.1274 + 65.4167i 1.08288 + 0.760660i
\(87\) −57.3254 107.551i −0.658913 1.23622i
\(88\) −50.2502 87.9468i −0.571025 0.999395i
\(89\) −0.515880 0.515880i −0.00579640 0.00579640i 0.704203 0.709999i \(-0.251305\pi\)
−0.709999 + 0.704203i \(0.751305\pi\)
\(90\) −32.0890 + 72.1740i −0.356545 + 0.801934i
\(91\) −43.4093 131.018i −0.477025 1.43976i
\(92\) −52.0249 + 18.7591i −0.565488 + 0.203903i
\(93\) 40.2602 132.162i 0.432906 1.42110i
\(94\) 116.983 20.4466i 1.24450 0.217517i
\(95\) 33.0398i 0.347787i
\(96\) 80.8497 51.7622i 0.842184 0.539190i
\(97\) −61.1704 61.1704i −0.630623 0.630623i 0.317602 0.948224i \(-0.397123\pi\)
−0.948224 + 0.317602i \(0.897123\pi\)
\(98\) −73.2554 + 104.287i −0.747504 + 1.06415i
\(99\) 21.9687 + 111.814i 0.221906 + 1.12943i
\(100\) −21.6156 + 7.79413i −0.216156 + 0.0779413i
\(101\) −154.942 −1.53408 −0.767040 0.641599i \(-0.778271\pi\)
−0.767040 + 0.641599i \(0.778271\pi\)
\(102\) 62.8296 + 7.74573i 0.615977 + 0.0759385i
\(103\) 98.4770 0.956088 0.478044 0.878336i \(-0.341346\pi\)
0.478044 + 0.878336i \(0.341346\pi\)
\(104\) −69.4902 + 77.3764i −0.668175 + 0.744004i
\(105\) −123.340 + 65.7410i −1.17467 + 0.626105i
\(106\) −1.75556 + 2.49922i −0.0165619 + 0.0235776i
\(107\) 21.3914 0.199920 0.0999600 0.994991i \(-0.468129\pi\)
0.0999600 + 0.994991i \(0.468129\pi\)
\(108\) −104.791 + 26.1307i −0.970288 + 0.241951i
\(109\) 38.8509 + 38.8509i 0.356430 + 0.356430i 0.862495 0.506065i \(-0.168900\pi\)
−0.506065 + 0.862495i \(0.668900\pi\)
\(110\) 63.8712 90.9272i 0.580647 0.826610i
\(111\) −22.9396 + 75.3038i −0.206663 + 0.678412i
\(112\) 169.135 + 15.8196i 1.51013 + 0.141246i
\(113\) 56.7285i 0.502022i −0.967984 0.251011i \(-0.919237\pi\)
0.967984 0.251011i \(-0.0807630\pi\)
\(114\) −35.6130 + 27.7959i −0.312395 + 0.243823i
\(115\) −42.8999 42.8999i −0.373043 0.373043i
\(116\) −152.866 + 55.1204i −1.31781 + 0.475175i
\(117\) 101.885 57.5191i 0.870812 0.491617i
\(118\) 81.9822 14.3290i 0.694764 0.121432i
\(119\) 79.2097 + 79.2097i 0.665627 + 0.665627i
\(120\) 89.1168 + 56.1194i 0.742640 + 0.467661i
\(121\) 39.3081i 0.324860i
\(122\) −149.544 105.046i −1.22577 0.861036i
\(123\) −39.1799 + 128.616i −0.318536 + 1.04566i
\(124\) −166.718 78.3510i −1.34450 0.631863i
\(125\) −95.3959 95.3959i −0.763167 0.763167i
\(126\) −174.625 77.6396i −1.38592 0.616187i
\(127\) −103.517 −0.815098 −0.407549 0.913183i \(-0.633616\pi\)
−0.407549 + 0.913183i \(0.633616\pi\)
\(128\) −52.8752 116.568i −0.413087 0.910691i
\(129\) −150.648 + 80.2959i −1.16781 + 0.622449i
\(130\) −109.248 32.8894i −0.840366 0.252995i
\(131\) 243.602 1.85956 0.929779 0.368119i \(-0.119998\pi\)
0.929779 + 0.368119i \(0.119998\pi\)
\(132\) 151.743 7.65001i 1.14957 0.0579546i
\(133\) −79.9399 −0.601052
\(134\) −67.1604 + 11.7384i −0.501197 + 0.0876003i
\(135\) −74.8397 91.8494i −0.554368 0.680366i
\(136\) 22.2125 81.4319i 0.163327 0.598764i
\(137\) 86.7590 + 86.7590i 0.633278 + 0.633278i 0.948889 0.315611i \(-0.102209\pi\)
−0.315611 + 0.948889i \(0.602209\pi\)
\(138\) 10.1500 82.3322i 0.0735510 0.596610i
\(139\) 39.1343i 0.281542i 0.990042 + 0.140771i \(0.0449581\pi\)
−0.990042 + 0.140771i \(0.955042\pi\)
\(140\) 63.2122 + 175.307i 0.451516 + 1.25219i
\(141\) −51.9097 + 170.404i −0.368154 + 1.20854i
\(142\) 15.1937 + 86.9295i 0.106998 + 0.612179i
\(143\) −156.244 + 51.7673i −1.09262 + 0.362009i
\(144\) 14.4825 + 143.270i 0.100573 + 0.994930i
\(145\) −126.054 126.054i −0.869338 0.869338i
\(146\) −48.9743 + 8.55984i −0.335441 + 0.0586290i
\(147\) −89.9175 168.699i −0.611683 1.14761i
\(148\) 94.9930 + 44.6431i 0.641845 + 0.301643i
\(149\) −11.4387 + 11.4387i −0.0767695 + 0.0767695i −0.744449 0.667679i \(-0.767288\pi\)
0.667679 + 0.744449i \(0.267288\pi\)
\(150\) 4.21719 34.2078i 0.0281146 0.228052i
\(151\) −30.7068 30.7068i −0.203356 0.203356i 0.598080 0.801436i \(-0.295930\pi\)
−0.801436 + 0.598080i \(0.795930\pi\)
\(152\) 29.8827 + 52.3000i 0.196597 + 0.344079i
\(153\) −52.9408 + 78.8307i −0.346018 + 0.515233i
\(154\) 219.999 + 154.537i 1.42856 + 1.00348i
\(155\) 202.085i 1.30377i
\(156\) −56.4574 145.425i −0.361907 0.932214i
\(157\) 204.657 1.30355 0.651774 0.758413i \(-0.274025\pi\)
0.651774 + 0.758413i \(0.274025\pi\)
\(158\) −118.231 + 168.313i −0.748295 + 1.06527i
\(159\) −2.15487 4.04287i −0.0135526 0.0254269i
\(160\) 91.0635 106.888i 0.569147 0.668052i
\(161\) 103.797 103.797i 0.644700 0.644700i
\(162\) 36.0413 157.940i 0.222477 0.974938i
\(163\) 176.937 + 176.937i 1.08551 + 1.08551i 0.995985 + 0.0895203i \(0.0285334\pi\)
0.0895203 + 0.995985i \(0.471467\pi\)
\(164\) 162.244 + 76.2487i 0.989295 + 0.464931i
\(165\) 78.3988 + 147.088i 0.475144 + 0.891445i
\(166\) −18.6463 106.683i −0.112327 0.642671i
\(167\) −96.6155 + 96.6155i −0.578536 + 0.578536i −0.934500 0.355964i \(-0.884153\pi\)
0.355964 + 0.934500i \(0.384153\pi\)
\(168\) −135.781 + 215.619i −0.808221 + 1.28344i
\(169\) 100.910 + 135.566i 0.597100 + 0.802167i
\(170\) 91.2141 15.9426i 0.536554 0.0937800i
\(171\) −13.0643 66.4932i −0.0763994 0.388849i
\(172\) 77.2072 + 214.120i 0.448879 + 1.24488i
\(173\) 204.889 1.18433 0.592165 0.805817i \(-0.298273\pi\)
0.592165 + 0.805817i \(0.298273\pi\)
\(174\) 29.8241 241.919i 0.171403 1.39034i
\(175\) 43.1260 43.1260i 0.246434 0.246434i
\(176\) 18.8655 201.700i 0.107190 1.14602i
\(177\) −36.3784 + 119.419i −0.205528 + 0.674686i
\(178\) −0.251221 1.43734i −0.00141135 0.00807494i
\(179\) 226.341i 1.26447i 0.774776 + 0.632236i \(0.217863\pi\)
−0.774776 + 0.632236i \(0.782137\pi\)
\(180\) −135.488 + 81.2290i −0.752712 + 0.451272i
\(181\) 121.536i 0.671468i −0.941957 0.335734i \(-0.891016\pi\)
0.941957 0.335734i \(-0.108984\pi\)
\(182\) 79.5761 264.325i 0.437231 1.45234i
\(183\) 241.911 128.939i 1.32192 0.704587i
\(184\) −106.709 29.1073i −0.579938 0.158192i
\(185\) 115.145i 0.622403i
\(186\) 217.824 170.011i 1.17110 0.914037i
\(187\) 94.4607 94.4607i 0.505138 0.505138i
\(188\) 214.958 + 101.022i 1.14340 + 0.537352i
\(189\) 222.230 181.075i 1.17582 0.958069i
\(190\) −37.9828 + 54.0723i −0.199909 + 0.284591i
\(191\) −110.508 −0.578575 −0.289287 0.957242i \(-0.593418\pi\)
−0.289287 + 0.957242i \(0.593418\pi\)
\(192\) 191.823 + 8.23225i 0.999080 + 0.0428763i
\(193\) 217.768 217.768i 1.12833 1.12833i 0.137886 0.990448i \(-0.455969\pi\)
0.990448 0.137886i \(-0.0440306\pi\)
\(194\) −29.7885 170.432i −0.153549 0.878517i
\(195\) 118.043 123.910i 0.605347 0.635434i
\(196\) −239.777 + 86.4587i −1.22335 + 0.441116i
\(197\) −199.164 + 199.164i −1.01099 + 1.01099i −0.0110466 + 0.999939i \(0.503516\pi\)
−0.999939 + 0.0110466i \(0.996484\pi\)
\(198\) −92.5883 + 208.248i −0.467618 + 1.05176i
\(199\) −99.9625 −0.502324 −0.251162 0.967945i \(-0.580813\pi\)
−0.251162 + 0.967945i \(0.580813\pi\)
\(200\) −44.3359 12.0937i −0.221679 0.0604683i
\(201\) 29.8015 97.8293i 0.148266 0.486713i
\(202\) −253.576 178.123i −1.25532 0.881795i
\(203\) 304.988 304.988i 1.50241 1.50241i
\(204\) 93.9213 + 84.9059i 0.460399 + 0.416205i
\(205\) 196.662i 0.959328i
\(206\) 161.166 + 113.210i 0.782358 + 0.549562i
\(207\) 103.300 + 69.3738i 0.499034 + 0.335139i
\(208\) −202.679 + 46.7466i −0.974418 + 0.224743i
\(209\) 95.3316i 0.456132i
\(210\) −277.433 34.2024i −1.32111 0.162868i
\(211\) 186.585i 0.884288i 0.896944 + 0.442144i \(0.145782\pi\)
−0.896944 + 0.442144i \(0.854218\pi\)
\(212\) −5.74625 + 2.07198i −0.0271049 + 0.00977348i
\(213\) −126.626 38.5737i −0.594488 0.181097i
\(214\) 35.0089 + 24.5917i 0.163593 + 0.114915i
\(215\) −176.564 + 176.564i −0.821228 + 0.821228i
\(216\) −201.539 77.7035i −0.933053 0.359739i
\(217\) 488.945 2.25320
\(218\) 18.9195 + 108.246i 0.0867865 + 0.496541i
\(219\) 21.7317 71.3385i 0.0992314 0.325747i
\(220\) 209.061 75.3831i 0.950277 0.342650i
\(221\) −122.570 61.5624i −0.554614 0.278563i
\(222\) −124.112 + 96.8693i −0.559064 + 0.436348i
\(223\) 73.2786 73.2786i 0.328604 0.328604i −0.523452 0.852055i \(-0.675356\pi\)
0.852055 + 0.523452i \(0.175356\pi\)
\(224\) 258.617 + 220.329i 1.15454 + 0.983610i
\(225\) 42.9196 + 28.8238i 0.190754 + 0.128106i
\(226\) 65.2154 92.8408i 0.288564 0.410800i
\(227\) −160.573 160.573i −0.707371 0.707371i 0.258611 0.965982i \(-0.416735\pi\)
−0.965982 + 0.258611i \(0.916735\pi\)
\(228\) −90.2380 + 4.54929i −0.395781 + 0.0199530i
\(229\) −243.232 + 243.232i −1.06215 + 1.06215i −0.0642103 + 0.997936i \(0.520453\pi\)
−0.997936 + 0.0642103i \(0.979547\pi\)
\(230\) −20.8912 119.527i −0.0908315 0.519684i
\(231\) −355.881 + 189.686i −1.54061 + 0.821153i
\(232\) −313.545 85.5268i −1.35149 0.368650i
\(233\) 17.1781 0.0737259 0.0368630 0.999320i \(-0.488263\pi\)
0.0368630 + 0.999320i \(0.488263\pi\)
\(234\) 232.868 + 22.9928i 0.995161 + 0.0982598i
\(235\) 260.559i 1.10876i
\(236\) 150.643 + 70.7966i 0.638319 + 0.299986i
\(237\) −145.122 272.272i −0.612331 1.14883i
\(238\) 38.5732 + 220.693i 0.162072 + 0.927282i
\(239\) −85.5184 85.5184i −0.357818 0.357818i 0.505190 0.863008i \(-0.331422\pi\)
−0.863008 + 0.505190i \(0.831422\pi\)
\(240\) 81.3318 + 194.293i 0.338883 + 0.809556i
\(241\) 84.5939 84.5939i 0.351012 0.351012i −0.509474 0.860486i \(-0.670160\pi\)
0.860486 + 0.509474i \(0.170160\pi\)
\(242\) 45.1888 64.3309i 0.186731 0.265830i
\(243\) 186.935 + 155.256i 0.769278 + 0.638914i
\(244\) −123.980 343.834i −0.508113 1.40916i
\(245\) −197.721 197.721i −0.807025 0.807025i
\(246\) −211.979 + 165.449i −0.861703 + 0.672557i
\(247\) 92.9148 30.7849i 0.376173 0.124635i
\(248\) −182.775 319.888i −0.736995 1.28987i
\(249\) 155.400 + 47.3392i 0.624098 + 0.190117i
\(250\) −46.4555 265.791i −0.185822 1.06316i
\(251\) 5.28263i 0.0210463i 0.999945 + 0.0105232i \(0.00334969\pi\)
−0.999945 + 0.0105232i \(0.996650\pi\)
\(252\) −196.534 327.814i −0.779897 1.30085i
\(253\) −123.782 123.782i −0.489256 0.489256i
\(254\) −169.415 119.004i −0.666987 0.468521i
\(255\) −40.4750 + 132.867i −0.158725 + 0.521048i
\(256\) 47.4733 251.560i 0.185443 0.982655i
\(257\) 14.0684 0.0547409 0.0273705 0.999625i \(-0.491287\pi\)
0.0273705 + 0.999625i \(0.491287\pi\)
\(258\) −338.856 41.7747i −1.31340 0.161917i
\(259\) −278.593 −1.07565
\(260\) −140.983 179.418i −0.542242 0.690069i
\(261\) 303.529 + 203.843i 1.16295 + 0.781007i
\(262\) 398.675 + 280.046i 1.52166 + 1.06888i
\(263\) −87.7912 −0.333807 −0.166903 0.985973i \(-0.553377\pi\)
−0.166903 + 0.985973i \(0.553377\pi\)
\(264\) 257.134 + 161.925i 0.973992 + 0.613351i
\(265\) −4.73838 4.73838i −0.0178807 0.0178807i
\(266\) −130.828 91.8995i −0.491836 0.345487i
\(267\) 2.09370 + 0.637799i 0.00784158 + 0.00238876i
\(268\) −123.408 57.9971i −0.460478 0.216407i
\(269\) 283.264i 1.05303i 0.850167 + 0.526513i \(0.176501\pi\)
−0.850167 + 0.526513i \(0.823499\pi\)
\(270\) −16.8907 236.355i −0.0625583 0.875390i
\(271\) −239.818 239.818i −0.884939 0.884939i 0.109093 0.994032i \(-0.465205\pi\)
−0.994032 + 0.109093i \(0.965205\pi\)
\(272\) 129.967 107.734i 0.477821 0.396082i
\(273\) 299.800 + 285.605i 1.09817 + 1.04617i
\(274\) 42.2496 + 241.727i 0.154196 + 0.882216i
\(275\) −51.4295 51.4295i −0.187016 0.187016i
\(276\) 111.261 123.075i 0.403120 0.445924i
\(277\) 529.071i 1.91000i 0.296598 + 0.955002i \(0.404148\pi\)
−0.296598 + 0.955002i \(0.595852\pi\)
\(278\) −44.9890 + 64.0465i −0.161831 + 0.230383i
\(279\) 79.9066 + 406.699i 0.286404 + 1.45770i
\(280\) −98.0824 + 359.574i −0.350294 + 1.28419i
\(281\) 76.5718 + 76.5718i 0.272498 + 0.272498i 0.830105 0.557607i \(-0.188280\pi\)
−0.557607 + 0.830105i \(0.688280\pi\)
\(282\) −280.852 + 219.204i −0.995929 + 0.777320i
\(283\) 276.154 0.975810 0.487905 0.872897i \(-0.337761\pi\)
0.487905 + 0.872897i \(0.337761\pi\)
\(284\) −75.0689 + 159.734i −0.264327 + 0.562444i
\(285\) −46.6220 87.4702i −0.163586 0.306913i
\(286\) −315.218 94.8977i −1.10216 0.331810i
\(287\) −475.826 −1.65793
\(288\) −141.002 + 251.122i −0.489591 + 0.871952i
\(289\) −177.679 −0.614806
\(290\) −61.3853 351.210i −0.211673 1.21107i
\(291\) 248.261 + 75.6270i 0.853129 + 0.259887i
\(292\) −89.9910 42.2923i −0.308188 0.144837i
\(293\) 172.341 + 172.341i 0.588195 + 0.588195i 0.937142 0.348947i \(-0.113461\pi\)
−0.348947 + 0.937142i \(0.613461\pi\)
\(294\) 46.7804 379.460i 0.159117 1.29068i
\(295\) 182.600i 0.618984i
\(296\) 104.142 + 182.267i 0.351831 + 0.615766i
\(297\) −215.939 265.018i −0.727069 0.892318i
\(298\) −31.8703 + 5.57035i −0.106947 + 0.0186925i
\(299\) −80.6716 + 160.616i −0.269805 + 0.537177i
\(300\) 46.2273 51.1358i 0.154091 0.170453i
\(301\) −427.198 427.198i −1.41926 1.41926i
\(302\) −14.9535 85.5548i −0.0495148 0.283294i
\(303\) 410.197 218.637i 1.35379 0.721574i
\(304\) −11.2189 + 119.947i −0.0369043 + 0.394561i
\(305\) 283.527 283.527i 0.929597 0.929597i
\(306\) −177.266 + 68.1519i −0.579302 + 0.222719i
\(307\) −24.6801 24.6801i −0.0803911 0.0803911i 0.665768 0.746159i \(-0.268104\pi\)
−0.746159 + 0.665768i \(0.768104\pi\)
\(308\) 182.390 + 505.824i 0.592175 + 1.64229i
\(309\) −260.710 + 138.960i −0.843722 + 0.449708i
\(310\) 232.318 330.729i 0.749413 1.06687i
\(311\) 201.749i 0.648711i 0.945935 + 0.324355i \(0.105147\pi\)
−0.945935 + 0.324355i \(0.894853\pi\)
\(312\) 74.7848 302.905i 0.239695 0.970848i
\(313\) −103.265 −0.329919 −0.164959 0.986300i \(-0.552749\pi\)
−0.164959 + 0.986300i \(0.552749\pi\)
\(314\) 334.938 + 235.275i 1.06668 + 0.749284i
\(315\) 233.768 348.088i 0.742119 1.10504i
\(316\) −386.989 + 139.540i −1.22465 + 0.441583i
\(317\) 328.742 328.742i 1.03704 1.03704i 0.0377544 0.999287i \(-0.487980\pi\)
0.999287 0.0377544i \(-0.0120204\pi\)
\(318\) 1.12109 9.09374i 0.00352544 0.0285967i
\(319\) −363.711 363.711i −1.14016 1.14016i
\(320\) 271.913 70.2444i 0.849727 0.219514i
\(321\) −56.6321 + 30.1852i −0.176424 + 0.0940348i
\(322\) 289.197 50.5465i 0.898128 0.156977i
\(323\) −56.1737 + 56.1737i −0.173912 + 0.173912i
\(324\) 240.553 217.048i 0.742449 0.669903i
\(325\) −33.5178 + 66.7335i −0.103132 + 0.205334i
\(326\) 86.1643 + 492.981i 0.264308 + 1.51221i
\(327\) −157.677 48.0327i −0.482192 0.146889i
\(328\) 177.870 + 311.304i 0.542288 + 0.949099i
\(329\) −630.424 −1.91618
\(330\) −40.7877 + 330.850i −0.123599 + 1.00258i
\(331\) 233.012 233.012i 0.703964 0.703964i −0.261295 0.965259i \(-0.584150\pi\)
0.965259 + 0.261295i \(0.0841496\pi\)
\(332\) 92.1276 196.032i 0.277493 0.590458i
\(333\) −45.5294 231.730i −0.136725 0.695887i
\(334\) −269.189 + 47.0494i −0.805955 + 0.140867i
\(335\) 149.588i 0.446530i
\(336\) −470.094 + 196.783i −1.39909 + 0.585663i
\(337\) 571.366i 1.69545i −0.530438 0.847724i \(-0.677972\pi\)
0.530438 0.847724i \(-0.322028\pi\)
\(338\) 9.29973 + 337.872i 0.0275140 + 0.999621i
\(339\) 80.0488 + 150.184i 0.236132 + 0.443021i
\(340\) 167.607 + 78.7690i 0.492962 + 0.231674i
\(341\) 583.087i 1.70993i
\(342\) 55.0602 123.840i 0.160995 0.362106i
\(343\) 110.525 110.525i 0.322230 0.322230i
\(344\) −119.798 + 439.183i −0.348249 + 1.27669i
\(345\) 174.110 + 53.0386i 0.504666 + 0.153735i
\(346\) 335.318 + 235.542i 0.969127 + 0.680757i
\(347\) −66.7122 −0.192254 −0.0961270 0.995369i \(-0.530646\pi\)
−0.0961270 + 0.995369i \(0.530646\pi\)
\(348\) 326.921 361.634i 0.939428 1.03918i
\(349\) −380.088 + 380.088i −1.08908 + 1.08908i −0.0934534 + 0.995624i \(0.529791\pi\)
−0.995624 + 0.0934534i \(0.970209\pi\)
\(350\) 120.157 21.0013i 0.343306 0.0600038i
\(351\) −188.568 + 296.046i −0.537230 + 0.843436i
\(352\) 262.751 308.411i 0.746451 0.876168i
\(353\) 321.141 321.141i 0.909747 0.909747i −0.0865046 0.996251i \(-0.527570\pi\)
0.996251 + 0.0865046i \(0.0275697\pi\)
\(354\) −196.822 + 153.619i −0.555994 + 0.433952i
\(355\) −193.620 −0.545407
\(356\) 1.24123 2.64113i 0.00348660 0.00741890i
\(357\) −321.473 97.9295i −0.900485 0.274312i
\(358\) −260.203 + 370.425i −0.726823 + 1.03471i
\(359\) 124.499 124.499i 0.346794 0.346794i −0.512120 0.858914i \(-0.671140\pi\)
0.858914 + 0.512120i \(0.171140\pi\)
\(360\) −315.119 22.8200i −0.875330 0.0633888i
\(361\) 304.308i 0.842960i
\(362\) 139.718 198.903i 0.385962 0.549457i
\(363\) 55.4671 + 104.065i 0.152802 + 0.286680i
\(364\) 434.103 341.109i 1.19259 0.937112i
\(365\) 109.081i 0.298853i
\(366\) 544.136 + 67.0819i 1.48671 + 0.183284i
\(367\) 8.88159i 0.0242005i 0.999927 + 0.0121003i \(0.00385172\pi\)
−0.999927 + 0.0121003i \(0.996148\pi\)
\(368\) −141.176 170.310i −0.383629 0.462798i
\(369\) −77.7625 395.787i −0.210738 1.07259i
\(370\) −132.371 + 188.444i −0.357759 + 0.509307i
\(371\) 11.4645 11.4645i 0.0309017 0.0309017i
\(372\) 551.932 27.8253i 1.48369 0.0747992i
\(373\) 306.101 0.820647 0.410324 0.911940i \(-0.365416\pi\)
0.410324 + 0.911940i \(0.365416\pi\)
\(374\) 263.186 46.0001i 0.703705 0.122995i
\(375\) 387.165 + 117.941i 1.03244 + 0.314510i
\(376\) 235.661 + 412.449i 0.626759 + 1.09694i
\(377\) −237.039 + 471.941i −0.628752 + 1.25183i
\(378\) 571.863 40.8672i 1.51287 0.108114i
\(379\) 192.411 192.411i 0.507681 0.507681i −0.406133 0.913814i \(-0.633123\pi\)
0.913814 + 0.406133i \(0.133123\pi\)
\(380\) −124.324 + 44.8286i −0.327168 + 0.117970i
\(381\) 274.054 146.072i 0.719302 0.383391i
\(382\) −180.855 127.040i −0.473443 0.332567i
\(383\) −107.120 107.120i −0.279686 0.279686i 0.553298 0.832983i \(-0.313369\pi\)
−0.832983 + 0.553298i \(0.813369\pi\)
\(384\) 304.471 + 233.994i 0.792894 + 0.609360i
\(385\) −417.105 + 417.105i −1.08339 + 1.08339i
\(386\) 606.744 106.048i 1.57188 0.274736i
\(387\) 285.523 425.154i 0.737786 1.09859i
\(388\) 147.179 313.172i 0.379327 0.807144i
\(389\) 173.833 0.446871 0.223436 0.974719i \(-0.428273\pi\)
0.223436 + 0.974719i \(0.428273\pi\)
\(390\) 335.634 67.0858i 0.860600 0.172015i
\(391\) 145.876i 0.373083i
\(392\) −491.808 134.152i −1.25461 0.342226i
\(393\) −644.917 + 343.744i −1.64101 + 0.874666i
\(394\) −554.909 + 96.9882i −1.40840 + 0.246163i
\(395\) −319.112 319.112i −0.807879 0.807879i
\(396\) −390.932 + 234.375i −0.987201 + 0.591856i
\(397\) −55.4458 + 55.4458i −0.139662 + 0.139662i −0.773481 0.633819i \(-0.781486\pi\)
0.633819 + 0.773481i \(0.281486\pi\)
\(398\) −163.597 114.918i −0.411048 0.288738i
\(399\) 211.635 112.802i 0.530413 0.282712i
\(400\) −58.6564 70.7611i −0.146641 0.176903i
\(401\) 240.104 + 240.104i 0.598762 + 0.598762i 0.939983 0.341221i \(-0.110840\pi\)
−0.341221 + 0.939983i \(0.610840\pi\)
\(402\) 161.238 125.846i 0.401089 0.313049i
\(403\) −568.305 + 188.293i −1.41019 + 0.467228i
\(404\) −210.227 583.025i −0.520363 1.44313i
\(405\) 327.740 + 137.559i 0.809234 + 0.339651i
\(406\) 849.755 148.522i 2.09299 0.365818i
\(407\) 332.233i 0.816298i
\(408\) 56.1017 + 246.928i 0.137504 + 0.605216i
\(409\) 135.442 + 135.442i 0.331154 + 0.331154i 0.853025 0.521871i \(-0.174766\pi\)
−0.521871 + 0.853025i \(0.674766\pi\)
\(410\) −226.084 + 321.854i −0.551425 + 0.785010i
\(411\) −352.112 107.263i −0.856720 0.260981i
\(412\) 133.614 + 370.555i 0.324307 + 0.899405i
\(413\) −441.803 −1.06974
\(414\) 89.3065 + 232.290i 0.215716 + 0.561088i
\(415\) 237.618 0.572573
\(416\) −385.441 156.496i −0.926541 0.376193i
\(417\) −55.2219 103.605i −0.132427 0.248453i
\(418\) −109.594 + 156.018i −0.262186 + 0.373249i
\(419\) 728.814 1.73941 0.869706 0.493570i \(-0.164308\pi\)
0.869706 + 0.493570i \(0.164308\pi\)
\(420\) −414.723 374.914i −0.987436 0.892652i
\(421\) −210.705 210.705i −0.500487 0.500487i 0.411102 0.911589i \(-0.365144\pi\)
−0.911589 + 0.411102i \(0.865144\pi\)
\(422\) −214.499 + 305.361i −0.508292 + 0.723605i
\(423\) −103.028 524.380i −0.243565 1.23967i
\(424\) −11.7862 3.21496i −0.0277976 0.00758245i
\(425\) 60.6091i 0.142610i
\(426\) −162.889 208.699i −0.382369 0.489904i
\(427\) 685.996 + 685.996i 1.60655 + 1.60655i
\(428\) 29.0241 + 80.4929i 0.0678133 + 0.188067i
\(429\) 340.595 357.524i 0.793929 0.833389i
\(430\) −491.941 + 85.9825i −1.14405 + 0.199959i
\(431\) −18.9012 18.9012i −0.0438544 0.0438544i 0.684840 0.728694i \(-0.259872\pi\)
−0.728694 + 0.684840i \(0.759872\pi\)
\(432\) −240.508 358.859i −0.556731 0.830693i
\(433\) 191.361i 0.441943i 0.975280 + 0.220971i \(0.0709227\pi\)
−0.975280 + 0.220971i \(0.929077\pi\)
\(434\) 800.200 + 562.095i 1.84378 + 1.29515i
\(435\) 511.591 + 155.845i 1.17607 + 0.358264i
\(436\) −93.4771 + 198.904i −0.214397 + 0.456201i
\(437\) 73.6102 + 73.6102i 0.168444 + 0.168444i
\(438\) 117.577 91.7685i 0.268440 0.209517i
\(439\) −343.541 −0.782552 −0.391276 0.920273i \(-0.627966\pi\)
−0.391276 + 0.920273i \(0.627966\pi\)
\(440\) 428.807 + 116.967i 0.974560 + 0.265835i
\(441\) 476.099 + 319.736i 1.07959 + 0.725026i
\(442\) −129.823 241.659i −0.293717 0.546740i
\(443\) −281.590 −0.635644 −0.317822 0.948150i \(-0.602951\pi\)
−0.317822 + 0.948150i \(0.602951\pi\)
\(444\) −314.482 + 15.8544i −0.708292 + 0.0357081i
\(445\) 3.20141 0.00719418
\(446\) 204.168 35.6849i 0.457776 0.0800111i
\(447\) 14.1420 46.4239i 0.0316376 0.103857i
\(448\) 169.957 + 657.894i 0.379368 + 1.46851i
\(449\) −168.238 168.238i −0.374695 0.374695i 0.494489 0.869184i \(-0.335355\pi\)
−0.869184 + 0.494489i \(0.835355\pi\)
\(450\) 37.1055 + 96.5132i 0.0824567 + 0.214474i
\(451\) 567.441i 1.25818i
\(452\) 213.461 76.9696i 0.472259 0.170287i
\(453\) 124.624 + 37.9638i 0.275107 + 0.0838052i
\(454\) −78.1953 447.387i −0.172236 0.985435i
\(455\) 541.224 + 271.837i 1.18950 + 0.597445i
\(456\) −152.912 96.2929i −0.335333 0.211169i
\(457\) −499.399 499.399i −1.09278 1.09278i −0.995231 0.0975464i \(-0.968901\pi\)
−0.0975464 0.995231i \(-0.531099\pi\)
\(458\) −677.689 + 118.448i −1.47967 + 0.258620i
\(459\) 28.9195 283.402i 0.0630055 0.617433i
\(460\) 103.219 219.633i 0.224390 0.477463i
\(461\) −509.071 + 509.071i −1.10427 + 1.10427i −0.110386 + 0.993889i \(0.535209\pi\)
−0.993889 + 0.110386i \(0.964791\pi\)
\(462\) −800.494 98.6861i −1.73267 0.213606i
\(463\) −41.1500 41.1500i −0.0888770 0.0888770i 0.661271 0.750148i \(-0.270018\pi\)
−0.750148 + 0.661271i \(0.770018\pi\)
\(464\) −414.820 500.425i −0.894008 1.07850i
\(465\) 285.159 + 535.003i 0.613246 + 1.15054i
\(466\) 28.1135 + 19.7481i 0.0603293 + 0.0423779i
\(467\) 189.828i 0.406483i 0.979129 + 0.203242i \(0.0651477\pi\)
−0.979129 + 0.203242i \(0.934852\pi\)
\(468\) 354.675 + 305.336i 0.757852 + 0.652427i
\(469\) 361.928 0.771701
\(470\) −299.540 + 426.426i −0.637320 + 0.907290i
\(471\) −541.813 + 288.789i −1.15035 + 0.613140i
\(472\) 165.152 + 289.045i 0.349898 + 0.612384i
\(473\) −509.451 + 509.451i −1.07706 + 1.07706i
\(474\) 75.5013 612.430i 0.159285 1.29205i
\(475\) 30.5839 + 30.5839i 0.0643872 + 0.0643872i
\(476\) −190.582 + 405.527i −0.400383 + 0.851947i
\(477\) 11.4097 + 7.66247i 0.0239197 + 0.0160639i
\(478\) −41.6454 238.270i −0.0871243 0.498474i
\(479\) 19.6478 19.6478i 0.0410183 0.0410183i −0.686300 0.727318i \(-0.740766\pi\)
0.727318 + 0.686300i \(0.240766\pi\)
\(480\) −90.2546 + 411.477i −0.188030 + 0.857243i
\(481\) 323.811 107.286i 0.673203 0.223048i
\(482\) 235.695 41.1952i 0.488993 0.0854673i
\(483\) −128.327 + 421.260i −0.265688 + 0.872173i
\(484\) 147.911 53.3335i 0.305600 0.110193i
\(485\) 379.607 0.782695
\(486\) 127.450 + 468.991i 0.262244 + 0.965002i
\(487\) −44.1216 + 44.1216i −0.0905988 + 0.0905988i −0.750954 0.660355i \(-0.770406\pi\)
0.660355 + 0.750954i \(0.270406\pi\)
\(488\) 192.371 705.241i 0.394204 1.44517i
\(489\) −718.102 218.753i −1.46851 0.447349i
\(490\) −96.2855 550.889i −0.196501 1.12426i
\(491\) 12.3013i 0.0250535i −0.999922 0.0125268i \(-0.996013\pi\)
0.999922 0.0125268i \(-0.00398750\pi\)
\(492\) −537.122 + 27.0787i −1.09171 + 0.0550380i
\(493\) 428.630i 0.869431i
\(494\) 187.453 + 56.4335i 0.379460 + 0.114238i
\(495\) −415.109 278.777i −0.838604 0.563186i
\(496\) 68.6194 733.642i 0.138346 1.47912i
\(497\) 468.464i 0.942583i
\(498\) 199.904 + 256.124i 0.401414 + 0.514305i
\(499\) 126.349 126.349i 0.253205 0.253205i −0.569078 0.822283i \(-0.692700\pi\)
0.822283 + 0.569078i \(0.192700\pi\)
\(500\) 229.527 488.395i 0.459054 0.976790i
\(501\) 119.449 392.115i 0.238421 0.782664i
\(502\) −6.07295 + 8.64547i −0.0120975 + 0.0172220i
\(503\) −301.791 −0.599982 −0.299991 0.953942i \(-0.596984\pi\)
−0.299991 + 0.953942i \(0.596984\pi\)
\(504\) 55.2131 762.432i 0.109550 1.51276i
\(505\) 480.764 480.764i 0.952009 0.952009i
\(506\) −60.2788 344.879i −0.119128 0.681580i
\(507\) −458.447 216.508i −0.904234 0.427037i
\(508\) −140.453 389.521i −0.276483 0.766773i
\(509\) 284.202 284.202i 0.558353 0.558353i −0.370485 0.928838i \(-0.620809\pi\)
0.928838 + 0.370485i \(0.120809\pi\)
\(510\) −218.986 + 170.918i −0.429384 + 0.335133i
\(511\) 263.923 0.516483
\(512\) 366.889 357.123i 0.716580 0.697505i
\(513\) 128.414 + 157.600i 0.250320 + 0.307213i
\(514\) 23.0241 + 16.1731i 0.0447940 + 0.0314653i
\(515\) −305.561 + 305.561i −0.593322 + 0.593322i
\(516\) −506.542 457.919i −0.981670 0.887440i
\(517\) 751.806i 1.45417i
\(518\) −455.940 320.272i −0.880194 0.618286i
\(519\) −542.428 + 289.116i −1.04514 + 0.557064i
\(520\) −24.4700 455.707i −0.0470577 0.876360i
\(521\) 10.0392i 0.0192691i −0.999954 0.00963453i \(-0.996933\pi\)
0.999954 0.00963453i \(-0.00306681\pi\)
\(522\) 262.411 + 682.545i 0.502704 + 1.30756i
\(523\) 215.956i 0.412917i −0.978455 0.206459i \(-0.933806\pi\)
0.978455 0.206459i \(-0.0661938\pi\)
\(524\) 330.521 + 916.639i 0.630766 + 1.74931i
\(525\) −53.3180 + 175.027i −0.101558 + 0.333385i
\(526\) −143.678 100.925i −0.273151 0.191873i
\(527\) 343.581 343.581i 0.651957 0.651957i
\(528\) 234.672 + 560.606i 0.444454 + 1.06175i
\(529\) 337.844 0.638647
\(530\) −2.30748 13.2020i −0.00435373 0.0249095i
\(531\) −72.2022 367.487i −0.135974 0.692065i
\(532\) −108.463 300.802i −0.203878 0.565418i
\(533\) 553.056 183.240i 1.03763 0.343791i
\(534\) 2.69330 + 3.45074i 0.00504363 + 0.00646207i
\(535\) −66.3747 + 66.3747i −0.124065 + 0.124065i
\(536\) −135.294 236.788i −0.252414 0.441769i
\(537\) −319.386 599.219i −0.594760 1.11586i
\(538\) −325.642 + 463.585i −0.605283 + 0.861682i
\(539\) −570.496 570.496i −1.05843 1.05843i
\(540\) 244.073 406.233i 0.451986 0.752283i
\(541\) 444.062 444.062i 0.820818 0.820818i −0.165408 0.986225i \(-0.552894\pi\)
0.986225 + 0.165408i \(0.0528940\pi\)
\(542\) −116.786 668.180i −0.215472 1.23280i
\(543\) 171.498 + 321.756i 0.315833 + 0.592553i
\(544\) 336.554 26.9051i 0.618666 0.0494579i
\(545\) −241.098 −0.442382
\(546\) 162.315 + 812.069i 0.297279 + 1.48731i
\(547\) 944.412i 1.72653i −0.504752 0.863265i \(-0.668416\pi\)
0.504752 0.863265i \(-0.331584\pi\)
\(548\) −208.746 + 444.177i −0.380924 + 0.810542i
\(549\) −458.494 + 682.714i −0.835144 + 1.24356i
\(550\) −25.0449 143.292i −0.0455362 0.260531i
\(551\) 216.291 + 216.291i 0.392542 + 0.392542i
\(552\) 323.576 73.5159i 0.586188 0.133181i
\(553\) 772.094 772.094i 1.39619 1.39619i
\(554\) −608.224 + 865.869i −1.09788 + 1.56294i
\(555\) −162.479 304.836i −0.292755 0.549254i
\(556\) −147.257 + 53.0977i −0.264850 + 0.0954995i
\(557\) 521.219 + 521.219i 0.935762 + 0.935762i 0.998058 0.0622958i \(-0.0198422\pi\)
−0.0622958 + 0.998058i \(0.519842\pi\)
\(558\) −336.771 + 757.459i −0.603532 + 1.35745i
\(559\) 661.049 + 332.022i 1.18256 + 0.593956i
\(560\) −573.889 + 475.717i −1.02480 + 0.849494i
\(561\) −116.785 + 383.370i −0.208173 + 0.683368i
\(562\) 37.2887 + 213.344i 0.0663499 + 0.379615i
\(563\) 829.523i 1.47340i 0.676221 + 0.736699i \(0.263617\pi\)
−0.676221 + 0.736699i \(0.736383\pi\)
\(564\) −711.636 + 35.8767i −1.26177 + 0.0636112i
\(565\) 176.021 + 176.021i 0.311541 + 0.311541i
\(566\) 451.949 + 317.469i 0.798497 + 0.560899i
\(567\) −332.824 + 792.968i −0.586991 + 1.39853i
\(568\) −306.488 + 175.118i −0.539591 + 0.308307i
\(569\) −171.340 −0.301125 −0.150563 0.988600i \(-0.548108\pi\)
−0.150563 + 0.988600i \(0.548108\pi\)
\(570\) 24.2555 196.749i 0.0425536 0.345174i
\(571\) −387.748 −0.679069 −0.339535 0.940594i \(-0.610270\pi\)
−0.339535 + 0.940594i \(0.610270\pi\)
\(572\) −406.786 517.685i −0.711165 0.905044i
\(573\) 292.560 155.936i 0.510577 0.272140i
\(574\) −778.728 547.012i −1.35667 0.952983i
\(575\) −79.4224 −0.138126
\(576\) −519.454 + 248.885i −0.901829 + 0.432093i
\(577\) 300.732 + 300.732i 0.521200 + 0.521200i 0.917934 0.396734i \(-0.129856\pi\)
−0.396734 + 0.917934i \(0.629856\pi\)
\(578\) −290.786 204.261i −0.503091 0.353393i
\(579\) −269.234 + 883.815i −0.464999 + 1.52645i
\(580\) 303.292 645.354i 0.522917 1.11268i
\(581\) 574.917i 0.989530i
\(582\) 319.358 + 409.172i 0.548725 + 0.703044i
\(583\) −13.6719 13.6719i −0.0234510 0.0234510i
\(584\) −98.6582 172.669i −0.168935 0.295666i
\(585\) −137.661 + 494.609i −0.235318 + 0.845486i
\(586\) 83.9260 + 480.175i 0.143218 + 0.819411i
\(587\) −48.2499 48.2499i −0.0821974 0.0821974i 0.664813 0.747010i \(-0.268511\pi\)
−0.747010 + 0.664813i \(0.768511\pi\)
\(588\) 512.790 567.239i 0.872091 0.964692i
\(589\) 346.749i 0.588708i
\(590\) −209.919 + 298.841i −0.355794 + 0.506510i
\(591\) 246.233 808.309i 0.416638 1.36770i
\(592\) −39.0982 + 418.017i −0.0660442 + 0.706110i
\(593\) 99.9109 + 99.9109i 0.168484 + 0.168484i 0.786313 0.617829i \(-0.211988\pi\)
−0.617829 + 0.786313i \(0.711988\pi\)
\(594\) −48.7358 681.970i −0.0820469 1.14810i
\(595\) −491.554 −0.826141
\(596\) −58.5621 27.5219i −0.0982585 0.0461777i
\(597\) 264.643 141.056i 0.443288 0.236274i
\(598\) −316.671 + 170.120i −0.529550 + 0.284482i
\(599\) 922.144 1.53947 0.769736 0.638362i \(-0.220388\pi\)
0.769736 + 0.638362i \(0.220388\pi\)
\(600\) 134.441 30.5448i 0.224068 0.0509079i
\(601\) 473.733 0.788242 0.394121 0.919059i \(-0.371049\pi\)
0.394121 + 0.919059i \(0.371049\pi\)
\(602\) −208.035 1190.25i −0.345573 1.97717i
\(603\) 59.1486 + 301.048i 0.0980905 + 0.499250i
\(604\) 73.8819 157.208i 0.122321 0.260278i
\(605\) 121.968 + 121.968i 0.201599 + 0.201599i
\(606\) 922.668 + 113.748i 1.52255 + 0.187703i
\(607\) 633.569i 1.04377i −0.853015 0.521886i \(-0.825229\pi\)
0.853015 0.521886i \(-0.174771\pi\)
\(608\) −156.252 + 183.405i −0.256993 + 0.301653i
\(609\) −377.067 + 1237.80i −0.619158 + 2.03251i
\(610\) 789.961 138.071i 1.29502 0.226346i
\(611\) 732.747 242.776i 1.19926 0.397343i
\(612\) −368.459 92.2503i −0.602057 0.150736i
\(613\) −433.178 433.178i −0.706652 0.706652i 0.259177 0.965830i \(-0.416549\pi\)
−0.965830 + 0.259177i \(0.916549\pi\)
\(614\) −12.0186 68.7634i −0.0195743 0.111992i
\(615\) −277.508 520.648i −0.451232 0.846582i
\(616\) −283.003 + 1037.50i −0.459420 + 1.68425i
\(617\) 740.860 740.860i 1.20075 1.20075i 0.226806 0.973940i \(-0.427172\pi\)
0.973940 0.226806i \(-0.0728285\pi\)
\(618\) −586.423 72.2950i −0.948904 0.116982i
\(619\) −283.799 283.799i −0.458480 0.458480i 0.439676 0.898156i \(-0.355093\pi\)
−0.898156 + 0.439676i \(0.855093\pi\)
\(620\) 760.416 274.190i 1.22648 0.442242i
\(621\) −371.371 37.8963i −0.598021 0.0610246i
\(622\) −231.932 + 330.179i −0.372881 + 0.530834i
\(623\) 7.74583i 0.0124331i
\(624\) 470.613 409.756i 0.754187 0.656660i
\(625\) 448.390 0.717423
\(626\) −169.001 118.714i −0.269970 0.189638i
\(627\) −134.521 252.383i −0.214547 0.402524i
\(628\) 277.680 + 770.094i 0.442166 + 1.22626i
\(629\) −195.767 + 195.767i −0.311235 + 0.311235i
\(630\) 782.744 300.934i 1.24245 0.477673i
\(631\) 818.322 + 818.322i 1.29687 + 1.29687i 0.930452 + 0.366414i \(0.119415\pi\)
0.366414 + 0.930452i \(0.380585\pi\)
\(632\) −793.755 216.516i −1.25594 0.342588i
\(633\) −263.287 493.968i −0.415936 0.780360i
\(634\) 915.938 160.090i 1.44470 0.252507i
\(635\) 321.200 321.200i 0.505828 0.505828i
\(636\) 12.2890 13.5939i 0.0193223 0.0213740i
\(637\) −371.807 + 740.261i −0.583684 + 1.16210i
\(638\) −177.119 1013.37i −0.277615 1.58835i
\(639\) 389.663 76.5593i 0.609801 0.119811i
\(640\) 525.761 + 197.632i 0.821501 + 0.308800i
\(641\) −962.325 −1.50129 −0.750643 0.660707i \(-0.770256\pi\)
−0.750643 + 0.660707i \(0.770256\pi\)
\(642\) −127.384 15.7041i −0.198418 0.0244612i
\(643\) −491.770 + 491.770i −0.764806 + 0.764806i −0.977187 0.212381i \(-0.931878\pi\)
0.212381 + 0.977187i \(0.431878\pi\)
\(644\) 531.404 + 249.740i 0.825161 + 0.387794i
\(645\) 218.292 716.587i 0.338437 1.11099i
\(646\) −156.511 + 27.3552i −0.242276 + 0.0423456i
\(647\) 1220.24i 1.88599i −0.332800 0.942997i \(-0.607993\pi\)
0.332800 0.942997i \(-0.392007\pi\)
\(648\) 643.206 78.6759i 0.992602 0.121413i
\(649\) 526.868i 0.811814i
\(650\) −131.572 + 70.6825i −0.202418 + 0.108742i
\(651\) −1294.44 + 689.945i −1.98839 + 1.05982i
\(652\) −425.719 + 905.860i −0.652944 + 1.38936i
\(653\) 257.945i 0.395015i 0.980301 + 0.197507i \(0.0632846\pi\)
−0.980301 + 0.197507i \(0.936715\pi\)
\(654\) −202.832 259.876i −0.310141 0.397363i
\(655\) −755.864 + 755.864i −1.15399 + 1.15399i
\(656\) −66.7781 + 713.957i −0.101796 + 1.08835i
\(657\) 43.1320 + 219.528i 0.0656499 + 0.334137i
\(658\) −1031.74 724.740i −1.56800 1.10143i
\(659\) −167.489 −0.254156 −0.127078 0.991893i \(-0.540560\pi\)
−0.127078 + 0.991893i \(0.540560\pi\)
\(660\) −447.100 + 494.574i −0.677424 + 0.749354i
\(661\) 87.0778 87.0778i 0.131736 0.131736i −0.638164 0.769900i \(-0.720306\pi\)
0.769900 + 0.638164i \(0.220306\pi\)
\(662\) 649.216 113.471i 0.980688 0.171407i
\(663\) 411.363 9.97500i 0.620457 0.0150453i
\(664\) 376.134 214.912i 0.566467 0.323663i
\(665\) 248.043 248.043i 0.372997 0.372997i
\(666\) 191.886 431.587i 0.288118 0.648029i
\(667\) −561.678 −0.842096
\(668\) −494.639 232.461i −0.740477 0.347996i
\(669\) −90.5968 + 297.402i −0.135421 + 0.444547i
\(670\) 171.967 244.812i 0.256667 0.365392i
\(671\) 818.078 818.078i 1.21919 1.21919i
\(672\) −995.571 218.372i −1.48150 0.324958i
\(673\) 632.512i 0.939840i −0.882709 0.469920i \(-0.844283\pi\)
0.882709 0.469920i \(-0.155717\pi\)
\(674\) 656.846 935.088i 0.974549 1.38737i
\(675\) −154.299 15.7453i −0.228591 0.0233264i
\(676\) −373.200 + 563.647i −0.552071 + 0.833797i
\(677\) 689.930i 1.01910i 0.860442 + 0.509549i \(0.170188\pi\)
−0.860442 + 0.509549i \(0.829812\pi\)
\(678\) −41.6461 + 337.813i −0.0614250 + 0.498250i
\(679\) 918.461i 1.35267i
\(680\) 183.750 + 321.594i 0.270220 + 0.472933i
\(681\) 651.687 + 198.522i 0.956956 + 0.291515i
\(682\) 670.321 954.271i 0.982875 1.39922i
\(683\) −178.495 + 178.495i −0.261339 + 0.261339i −0.825598 0.564259i \(-0.809162\pi\)
0.564259 + 0.825598i \(0.309162\pi\)
\(684\) 232.478 139.378i 0.339881 0.203768i
\(685\) −538.403 −0.785990
\(686\) 307.943 53.8229i 0.448897 0.0784591i
\(687\) 300.715 987.157i 0.437722 1.43691i
\(688\) −700.946 + 581.039i −1.01882 + 0.844534i
\(689\) −8.91033 + 17.7403i −0.0129323 + 0.0257479i
\(690\) 223.971 + 286.960i 0.324596 + 0.415884i
\(691\) 639.614 639.614i 0.925635 0.925635i −0.0717849 0.997420i \(-0.522870\pi\)
0.997420 + 0.0717849i \(0.0228695\pi\)
\(692\) 277.995 + 770.968i 0.401727 + 1.11412i
\(693\) 674.503 1004.36i 0.973309 1.44929i
\(694\) −109.180 76.6928i −0.157320 0.110508i
\(695\) −121.428 121.428i −0.174717 0.174717i
\(696\) 950.770 216.014i 1.36605 0.310364i
\(697\) −334.362 + 334.362i −0.479716 + 0.479716i
\(698\) −1059.00 + 185.094i −1.51719 + 0.265177i
\(699\) −45.4778 + 24.2399i −0.0650612 + 0.0346779i
\(700\) 220.790 + 103.763i 0.315415 + 0.148233i
\(701\) −282.058 −0.402365 −0.201183 0.979554i \(-0.564478\pi\)
−0.201183 + 0.979554i \(0.564478\pi\)
\(702\) −648.943 + 267.725i −0.924421 + 0.381374i
\(703\) 197.572i 0.281041i
\(704\) 784.565 202.680i 1.11444 0.287898i
\(705\) −367.671 689.809i −0.521520 0.978452i
\(706\) 894.759 156.388i 1.26736 0.221513i
\(707\) 1163.21 + 1163.21i 1.64528 + 1.64528i
\(708\) −498.717 + 25.1425i −0.704402 + 0.0355120i
\(709\) −329.957 + 329.957i −0.465383 + 0.465383i −0.900415 0.435032i \(-0.856737\pi\)
0.435032 + 0.900415i \(0.356737\pi\)
\(710\) −316.874 222.586i −0.446302 0.313502i
\(711\) 768.400 + 516.039i 1.08073 + 0.725793i
\(712\) 5.06764 2.89550i 0.00711747 0.00406671i
\(713\) −450.230 450.230i −0.631459 0.631459i
\(714\) −413.537 529.837i −0.579183 0.742069i
\(715\) 324.177 645.431i 0.453395 0.902701i
\(716\) −851.687 + 307.101i −1.18951 + 0.428912i
\(717\) 347.077 + 105.729i 0.484068 + 0.147461i
\(718\) 346.878 60.6281i 0.483117 0.0844403i
\(719\) 467.890i 0.650751i 0.945585 + 0.325375i \(0.105491\pi\)
−0.945585 + 0.325375i \(0.894509\pi\)
\(720\) −489.484 399.610i −0.679839 0.555014i
\(721\) −739.306 739.306i −1.02539 1.02539i
\(722\) −349.835 + 498.026i −0.484536 + 0.689787i
\(723\) −104.586 + 343.325i −0.144656 + 0.474862i
\(724\) 457.321 164.901i 0.631659 0.227763i
\(725\) −233.369 −0.321888
\(726\) −28.8573 + 234.076i −0.0397483 + 0.322419i
\(727\) 722.849 0.994290 0.497145 0.867668i \(-0.334382\pi\)
0.497145 + 0.867668i \(0.334382\pi\)
\(728\) 1102.59 59.2054i 1.51454 0.0813261i
\(729\) −713.974 147.247i −0.979389 0.201985i
\(730\) 125.401 178.521i 0.171782 0.244549i
\(731\) −600.383 −0.821317
\(732\) 813.406 + 735.328i 1.11121 + 1.00455i
\(733\) −326.050 326.050i −0.444815 0.444815i 0.448811 0.893627i \(-0.351848\pi\)
−0.893627 + 0.448811i \(0.851848\pi\)
\(734\) −10.2103 + 14.5355i −0.0139105 + 0.0198031i
\(735\) 802.453 + 244.449i 1.09177 + 0.332584i
\(736\) −35.2565 441.022i −0.0479029 0.599215i
\(737\) 431.614i 0.585636i
\(738\) 327.734 737.134i 0.444084 0.998826i
\(739\) 406.384 + 406.384i 0.549911 + 0.549911i 0.926415 0.376504i \(-0.122874\pi\)
−0.376504 + 0.926415i \(0.622874\pi\)
\(740\) −433.272 + 156.229i −0.585503 + 0.211120i
\(741\) −202.544 + 212.611i −0.273339 + 0.286925i
\(742\) 31.9424 5.58296i 0.0430490 0.00752420i
\(743\) 743.337 + 743.337i 1.00045 + 1.00045i 1.00000 0.000454295i \(0.000144606\pi\)
0.000454295 1.00000i \(0.499855\pi\)
\(744\) 935.271 + 588.967i 1.25709 + 0.791622i
\(745\) 70.9852i 0.0952822i
\(746\) 500.960 + 351.896i 0.671529 + 0.471711i
\(747\) −478.210 + 93.9566i −0.640174 + 0.125779i
\(748\) 483.607 + 227.277i 0.646533 + 0.303846i
\(749\) −160.594 160.594i −0.214411 0.214411i
\(750\) 498.042 + 638.108i 0.664056 + 0.850811i
\(751\) 761.694 1.01424 0.507120 0.861876i \(-0.330710\pi\)
0.507120 + 0.861876i \(0.330710\pi\)
\(752\) −88.4747 + 945.925i −0.117653 + 1.25788i
\(753\) −7.45425 13.9853i −0.00989941 0.0185728i
\(754\) −930.482 + 499.869i −1.23406 + 0.662956i
\(755\) 190.558 0.252394
\(756\) 982.883 + 590.535i 1.30011 + 0.781131i
\(757\) 24.4538 0.0323036 0.0161518 0.999870i \(-0.494858\pi\)
0.0161518 + 0.999870i \(0.494858\pi\)
\(758\) 536.093 93.6995i 0.707247 0.123614i
\(759\) 502.369 + 153.035i 0.661883 + 0.201628i
\(760\) −255.002 69.5578i −0.335528 0.0915234i
\(761\) 855.917 + 855.917i 1.12473 + 1.12473i 0.991021 + 0.133706i \(0.0426878\pi\)
0.133706 + 0.991021i \(0.457312\pi\)
\(762\) 616.438 + 75.9953i 0.808973 + 0.0997314i
\(763\) 583.339i 0.764533i
\(764\) −149.938 415.825i −0.196254 0.544273i
\(765\) −80.3328 408.869i −0.105010 0.534469i
\(766\) −52.1647 298.456i −0.0681001 0.389629i
\(767\) 513.511 170.138i 0.669506 0.221823i
\(768\) 229.291 + 732.973i 0.298556 + 0.954392i
\(769\) 220.319 + 220.319i 0.286501 + 0.286501i 0.835695 0.549194i \(-0.185065\pi\)
−0.549194 + 0.835695i \(0.685065\pi\)
\(770\) −1162.13 + 203.120i −1.50926 + 0.263792i
\(771\) −37.2450 + 19.8518i −0.0483074 + 0.0257481i
\(772\) 1114.90 + 523.961i 1.44417 + 0.678706i
\(773\) 812.134 812.134i 1.05063 1.05063i 0.0519779 0.998648i \(-0.483447\pi\)
0.998648 0.0519779i \(-0.0165525\pi\)
\(774\) 956.042 367.560i 1.23520 0.474884i
\(775\) −187.064 187.064i −0.241373 0.241373i
\(776\) 600.895 343.334i 0.774349 0.442441i
\(777\) 737.552 393.119i 0.949231 0.505944i
\(778\) 284.492 + 199.840i 0.365671 + 0.256863i
\(779\) 337.445i 0.433177i
\(780\) 626.415 + 276.056i 0.803097 + 0.353918i
\(781\) −558.662 −0.715316
\(782\) 167.699 238.737i 0.214449 0.305291i
\(783\) −1091.21 111.352i −1.39363 0.142211i
\(784\) −650.663 784.938i −0.829927 1.00120i
\(785\) −635.023 + 635.023i −0.808946 + 0.808946i
\(786\) −1450.63 178.836i −1.84558 0.227526i
\(787\) −862.612 862.612i −1.09608 1.09608i −0.994865 0.101211i \(-0.967728\pi\)
−0.101211 0.994865i \(-0.532272\pi\)
\(788\) −1019.65 479.198i −1.29398 0.608119i
\(789\) 232.420 123.881i 0.294576 0.157010i
\(790\) −155.400 889.108i −0.196709 1.12545i
\(791\) −425.883 + 425.883i −0.538411 + 0.538411i
\(792\) −909.231 65.8438i −1.14802 0.0831361i
\(793\) −1061.52 533.161i −1.33861 0.672335i
\(794\) −154.483 + 27.0008i −0.194563 + 0.0340061i
\(795\) 19.2307 + 5.85821i 0.0241896 + 0.00736882i
\(796\) −135.630 376.144i −0.170389 0.472543i
\(797\) 94.0730 0.118034 0.0590169 0.998257i \(-0.481203\pi\)
0.0590169 + 0.998257i \(0.481203\pi\)
\(798\) 476.036 + 58.6864i 0.596536 + 0.0735418i
\(799\) −442.998 + 442.998i −0.554440 + 0.554440i
\(800\) −14.6486 183.238i −0.0183107 0.229048i
\(801\) −6.44290 + 1.26587i −0.00804357 + 0.00158037i
\(802\) 116.925 + 668.975i 0.145792 + 0.834133i
\(803\) 314.739i 0.391954i
\(804\) 408.552 20.5969i 0.508150 0.0256180i
\(805\) 644.134i 0.800166i
\(806\) −1146.54 345.171i −1.42251 0.428251i
\(807\) −399.710 749.919i −0.495304 0.929267i
\(808\) 326.196 1195.85i 0.403707 1.48001i
\(809\) 278.849i 0.344684i 0.985037 + 0.172342i \(0.0551334\pi\)
−0.985037 + 0.172342i \(0.944867\pi\)
\(810\) 378.235 + 601.898i 0.466957 + 0.743083i
\(811\) 153.941 153.941i 0.189816 0.189816i −0.605801 0.795617i \(-0.707147\pi\)
0.795617 + 0.605801i \(0.207147\pi\)
\(812\) 1561.44 + 733.816i 1.92295 + 0.903714i
\(813\) 973.305 + 296.495i 1.19718 + 0.364693i
\(814\) −381.938 + 543.727i −0.469211 + 0.667970i
\(815\) −1098.03 −1.34727
\(816\) −192.055 + 468.613i −0.235362 + 0.574281i
\(817\) 302.959 302.959i 0.370819 0.370819i
\(818\) 65.9570 + 377.367i 0.0806320 + 0.461329i
\(819\) −1196.71 333.072i −1.46118 0.406681i
\(820\) −740.011 + 266.833i −0.902453 + 0.325406i
\(821\) 220.394 220.394i 0.268446 0.268446i −0.560028 0.828474i \(-0.689209\pi\)
0.828474 + 0.560028i \(0.189209\pi\)
\(822\) −452.950 580.335i −0.551035 0.706004i
\(823\) −336.446 −0.408805 −0.204402 0.978887i \(-0.565525\pi\)
−0.204402 + 0.978887i \(0.565525\pi\)
\(824\) −207.321 + 760.048i −0.251603 + 0.922388i
\(825\) 208.727 + 63.5839i 0.253002 + 0.0770714i
\(826\) −723.047 507.899i −0.875359 0.614890i
\(827\) −760.113 + 760.113i −0.919121 + 0.919121i −0.996965 0.0778447i \(-0.975196\pi\)
0.0778447 + 0.996965i \(0.475196\pi\)
\(828\) −120.885 + 482.830i −0.145997 + 0.583128i
\(829\) 1192.06i 1.43795i 0.695035 + 0.718976i \(0.255389\pi\)
−0.695035 + 0.718976i \(0.744611\pi\)
\(830\) 388.881 + 273.167i 0.468531 + 0.329117i
\(831\) −746.566 1400.67i −0.898394 1.68553i
\(832\) −450.897 699.225i −0.541944 0.840415i
\(833\) 672.324i 0.807112i
\(834\) 28.7297 233.041i 0.0344481 0.279426i
\(835\) 599.569i 0.718047i
\(836\) −358.719 + 129.347i −0.429090 + 0.154721i
\(837\) −785.435 963.949i −0.938393 1.15167i
\(838\) 1192.76 + 837.849i 1.42335 + 0.999820i
\(839\) 39.3907 39.3907i 0.0469496 0.0469496i −0.683242 0.730192i \(-0.739431\pi\)
0.730192 + 0.683242i \(0.239431\pi\)
\(840\) −247.725 1090.35i −0.294911 1.29803i
\(841\) −809.392 −0.962416
\(842\) −102.608 587.064i −0.121863 0.697226i
\(843\) −310.767 94.6683i −0.368645 0.112299i
\(844\) −702.091 + 253.160i −0.831861 + 0.299952i
\(845\) −733.753 107.534i −0.868347 0.127259i
\(846\) 434.217 976.633i 0.513259 1.15441i
\(847\) −295.101 + 295.101i −0.348408 + 0.348408i
\(848\) −15.5931 18.8110i −0.0183881 0.0221828i
\(849\) −731.096 + 389.678i −0.861126 + 0.458984i
\(850\) 69.6766 99.1918i 0.0819725 0.116696i
\(851\) 256.534 + 256.534i 0.301450 + 0.301450i
\(852\) −26.6597 528.812i −0.0312908 0.620671i
\(853\) −535.536 + 535.536i −0.627827 + 0.627827i −0.947521 0.319694i \(-0.896420\pi\)
0.319694 + 0.947521i \(0.396420\pi\)
\(854\) 334.064 + 1911.31i 0.391175 + 2.23807i
\(855\) 246.856 + 165.783i 0.288721 + 0.193898i
\(856\) −45.0348 + 165.100i −0.0526108 + 0.192873i
\(857\) −796.605 −0.929527 −0.464764 0.885435i \(-0.653861\pi\)
−0.464764 + 0.885435i \(0.653861\pi\)
\(858\) 968.425 193.567i 1.12870 0.225602i
\(859\) 673.316i 0.783837i 0.920000 + 0.391919i \(0.128188\pi\)
−0.920000 + 0.391919i \(0.871812\pi\)
\(860\) −903.948 424.821i −1.05110 0.493978i
\(861\) 1259.71 671.431i 1.46308 0.779827i
\(862\) −9.20445 52.6624i −0.0106780 0.0610933i
\(863\) −864.784 864.784i −1.00207 1.00207i −0.999998 0.00206905i \(-0.999341\pi\)
−0.00206905 0.999998i \(-0.500659\pi\)
\(864\) 18.9366 863.792i 0.0219174 0.999760i
\(865\) −635.743 + 635.743i −0.734963 + 0.734963i
\(866\) −219.990 + 313.178i −0.254030 + 0.361638i
\(867\) 470.391 250.721i 0.542550 0.289182i
\(868\) 663.405 + 1839.83i 0.764292 + 2.11962i
\(869\) −920.754 920.754i −1.05956 1.05956i
\(870\) 658.101 + 843.181i 0.756438 + 0.969174i
\(871\) −420.672 + 139.378i −0.482976 + 0.160021i
\(872\) −381.644 + 218.060i −0.437665 + 0.250069i
\(873\) −763.966 + 150.101i −0.875104 + 0.171937i
\(874\) 35.8464 + 205.092i 0.0410142 + 0.234659i
\(875\) 1432.35i 1.63697i
\(876\) 297.922 15.0196i 0.340094 0.0171456i
\(877\) −538.632 538.632i −0.614176 0.614176i 0.329856 0.944031i \(-0.393000\pi\)
−0.944031 + 0.329856i \(0.893000\pi\)
\(878\) −562.233 394.937i −0.640356 0.449814i
\(879\) −699.448 213.071i −0.795731 0.242402i
\(880\) 567.311 + 684.386i 0.644672 + 0.777711i
\(881\) 1705.76 1.93616 0.968082 0.250634i \(-0.0806389\pi\)
0.968082 + 0.250634i \(0.0806389\pi\)
\(882\) 411.604 + 1070.60i 0.466671 + 1.21383i
\(883\) 224.488 0.254233 0.127117 0.991888i \(-0.459428\pi\)
0.127117 + 0.991888i \(0.459428\pi\)
\(884\) 65.3467 544.740i 0.0739216 0.616222i
\(885\) −257.665 483.420i −0.291147 0.546237i
\(886\) −460.846 323.718i −0.520142 0.365370i
\(887\) 1033.75 1.16545 0.582724 0.812670i \(-0.301987\pi\)
0.582724 + 0.812670i \(0.301987\pi\)
\(888\) −532.902 335.583i −0.600115 0.377909i
\(889\) 777.147 + 777.147i 0.874181 + 0.874181i
\(890\) 5.23937 + 3.68036i 0.00588693 + 0.00413524i
\(891\) 945.646 + 396.906i 1.06133 + 0.445461i
\(892\) 375.162 + 176.312i 0.420585 + 0.197659i
\(893\) 447.082i 0.500652i
\(894\) 76.5137 59.7188i 0.0855858 0.0667995i
\(895\) −702.304 702.304i −0.784697 0.784697i
\(896\) −478.171 + 1272.08i −0.533673 + 1.41973i
\(897\) −13.0713 539.052i −0.0145722 0.600950i
\(898\) −81.9278 468.743i −0.0912337 0.521985i
\(899\) −1322.92 1322.92i −1.47155 1.47155i
\(900\) −50.2260 + 200.609i −0.0558067 + 0.222898i
\(901\) 16.1122i 0.0178826i
\(902\) −652.334 + 928.665i −0.723209 + 1.02956i
\(903\) 1733.79 + 528.159i 1.92003 + 0.584893i
\(904\) 437.831 + 119.429i 0.484327 + 0.132112i
\(905\) 377.109 + 377.109i 0.416695 + 0.416695i
\(906\) 160.313 + 205.399i 0.176946 + 0.226710i
\(907\) 638.599 0.704079 0.352039 0.935985i \(-0.385488\pi\)
0.352039 + 0.935985i \(0.385488\pi\)
\(908\) 386.346 822.080i 0.425492 0.905375i
\(909\) −777.448 + 1157.65i −0.855278 + 1.27354i
\(910\) 573.251 + 1067.08i 0.629947 + 1.17261i
\(911\) 529.454 0.581178 0.290589 0.956848i \(-0.406149\pi\)
0.290589 + 0.956848i \(0.406149\pi\)
\(912\) −139.554 333.380i −0.153020 0.365548i
\(913\) 685.612 0.750944
\(914\) −243.196 1391.42i −0.266078 1.52234i
\(915\) −350.534 + 1150.70i −0.383097 + 1.25759i
\(916\) −1245.26 585.226i −1.35946 0.638893i
\(917\) −1828.82 1828.82i −1.99435 1.99435i
\(918\) 373.130 430.565i 0.406460 0.469025i
\(919\) 888.214i 0.966501i −0.875482 0.483250i \(-0.839456\pi\)
0.875482 0.483250i \(-0.160544\pi\)
\(920\) 421.419 240.786i 0.458064 0.261724i
\(921\) 100.164 + 30.5128i 0.108756 + 0.0331301i
\(922\) −1418.37 + 247.905i −1.53836 + 0.268878i
\(923\) 180.405 + 544.499i 0.195455 + 0.589923i
\(924\) −1196.62 1081.76i −1.29505 1.17074i
\(925\) 106.586 + 106.586i 0.115228 + 0.115228i
\(926\) −20.0391 114.652i −0.0216405 0.123814i
\(927\) 494.125 735.769i 0.533037 0.793710i
\(928\) −103.595 1295.87i −0.111633 1.39641i
\(929\) −809.963 + 809.963i −0.871865 + 0.871865i −0.992676 0.120810i \(-0.961451\pi\)
0.120810 + 0.992676i \(0.461451\pi\)
\(930\) −148.357 + 1203.40i −0.159523 + 1.29398i
\(931\) 339.261 + 339.261i 0.364405 + 0.364405i
\(932\) 23.3074 + 64.6388i 0.0250080 + 0.0693550i
\(933\) −284.685 534.114i −0.305129 0.572470i
\(934\) −218.227 + 310.669i −0.233648 + 0.332622i
\(935\) 586.198i 0.626949i
\(936\) 229.438 + 907.444i 0.245126 + 0.969491i
\(937\) 866.894 0.925180 0.462590 0.886572i \(-0.346920\pi\)
0.462590 + 0.886572i \(0.346920\pi\)
\(938\) 592.325 + 416.075i 0.631477 + 0.443577i
\(939\) 273.385 145.715i 0.291144 0.155181i
\(940\) −980.445 + 353.528i −1.04303 + 0.376094i
\(941\) 1106.16 1106.16i 1.17552 1.17552i 0.194642 0.980874i \(-0.437646\pi\)
0.980874 0.194642i \(-0.0623545\pi\)
\(942\) −1218.72 150.245i −1.29375 0.159496i
\(943\) 438.149 + 438.149i 0.464633 + 0.464633i
\(944\) −62.0033 + 662.907i −0.0656814 + 0.702231i
\(945\) −127.698 + 1251.40i −0.135130 + 1.32423i
\(946\) −1419.43 + 248.090i −1.50045 + 0.262252i
\(947\) −1088.12 + 1088.12i −1.14902 + 1.14902i −0.162276 + 0.986745i \(0.551883\pi\)
−0.986745 + 0.162276i \(0.948117\pi\)
\(948\) 827.618 915.496i 0.873015 0.965713i
\(949\) −306.760 + 101.637i −0.323245 + 0.107099i
\(950\) 14.8937 + 85.2127i 0.0156775 + 0.0896975i
\(951\) −406.435 + 1334.20i −0.427376 + 1.40295i
\(952\) −778.100 + 444.584i −0.817332 + 0.467000i
\(953\) 1839.51 1.93023 0.965116 0.261822i \(-0.0843232\pi\)
0.965116 + 0.261822i \(0.0843232\pi\)
\(954\) 9.86407 + 25.6569i 0.0103397 + 0.0268940i
\(955\) 342.891 342.891i 0.359048 0.359048i
\(956\) 205.761 437.825i 0.215231 0.457976i
\(957\) 1476.12 + 449.668i 1.54245 + 0.469872i
\(958\) 54.7424 9.56799i 0.0571424 0.00998747i
\(959\) 1302.67i 1.35836i
\(960\) −620.746 + 569.659i −0.646610 + 0.593394i
\(961\) 1159.86i 1.20693i
\(962\) 653.280 + 196.672i 0.679085 + 0.204441i
\(963\) 107.335 159.826i 0.111459 0.165966i
\(964\) 433.092 + 203.537i 0.449266 + 0.211138i
\(965\) 1351.41i 1.40043i
\(966\) −694.301 + 541.900i −0.718738 + 0.560973i
\(967\) −874.943 + 874.943i −0.904801 + 0.904801i −0.995847 0.0910455i \(-0.970979\pi\)
0.0910455 + 0.995847i \(0.470979\pi\)
\(968\) 303.380 + 82.7543i 0.313410 + 0.0854899i
\(969\) 69.4494 227.981i 0.0716712 0.235275i
\(970\) 621.258 + 436.399i 0.640473 + 0.449896i
\(971\) −717.583 −0.739015 −0.369507 0.929228i \(-0.620474\pi\)
−0.369507 + 0.929228i \(0.620474\pi\)
\(972\) −330.572 + 914.060i −0.340094 + 0.940391i
\(973\) 293.797 293.797i 0.301949 0.301949i
\(974\) −122.931 + 21.4862i −0.126213 + 0.0220597i
\(975\) −5.43092 223.968i −0.00557018 0.229711i
\(976\) 1125.58 933.035i 1.15326 0.955978i
\(977\) −1232.22 + 1232.22i −1.26122 + 1.26122i −0.310724 + 0.950500i \(0.600571\pi\)
−0.950500 + 0.310724i \(0.899429\pi\)
\(978\) −923.752 1183.54i −0.944532 1.21017i
\(979\) 9.23721 0.00943536
\(980\) 475.726 1012.27i 0.485435 1.03292i
\(981\) 485.215 95.3329i 0.494612 0.0971793i
\(982\) 14.1416 20.1321i 0.0144009 0.0205011i
\(983\) 743.295 743.295i 0.756149 0.756149i −0.219470 0.975619i \(-0.570433\pi\)
0.975619 + 0.219470i \(0.0704328\pi\)
\(984\) −910.175 573.163i −0.924975 0.582483i
\(985\) 1235.96i 1.25478i
\(986\) 492.756 701.488i 0.499752 0.711448i
\(987\) 1669.00 889.583i 1.69098 0.901300i
\(988\) 241.907 + 307.856i 0.244845 + 0.311595i
\(989\) 786.744i 0.795494i
\(990\) −358.876 933.454i −0.362501 0.942883i
\(991\) 1572.92i 1.58721i −0.608434 0.793604i \(-0.708202\pi\)
0.608434 0.793604i \(-0.291798\pi\)
\(992\) 955.702 1121.78i 0.963409 1.13083i
\(993\) −288.080 + 945.681i −0.290111 + 0.952347i
\(994\) 538.549 766.680i 0.541800 0.771307i
\(995\) 310.170 310.170i 0.311729 0.311729i
\(996\) 32.7179 + 648.979i 0.0328493 + 0.651586i
\(997\) 866.961 0.869570 0.434785 0.900534i \(-0.356824\pi\)
0.434785 + 0.900534i \(0.356824\pi\)
\(998\) 352.033 61.5292i 0.352739 0.0616525i
\(999\) 447.527 + 549.242i 0.447975 + 0.549792i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 156.3.l.c.47.39 yes 96
3.2 odd 2 inner 156.3.l.c.47.10 96
4.3 odd 2 inner 156.3.l.c.47.15 yes 96
12.11 even 2 inner 156.3.l.c.47.34 yes 96
13.5 odd 4 inner 156.3.l.c.83.34 yes 96
39.5 even 4 inner 156.3.l.c.83.15 yes 96
52.31 even 4 inner 156.3.l.c.83.10 yes 96
156.83 odd 4 inner 156.3.l.c.83.39 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.3.l.c.47.10 96 3.2 odd 2 inner
156.3.l.c.47.15 yes 96 4.3 odd 2 inner
156.3.l.c.47.34 yes 96 12.11 even 2 inner
156.3.l.c.47.39 yes 96 1.1 even 1 trivial
156.3.l.c.83.10 yes 96 52.31 even 4 inner
156.3.l.c.83.15 yes 96 39.5 even 4 inner
156.3.l.c.83.34 yes 96 13.5 odd 4 inner
156.3.l.c.83.39 yes 96 156.83 odd 4 inner