Properties

Label 156.3.l.c.47.10
Level $156$
Weight $3$
Character 156.47
Analytic conductor $4.251$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [156,3,Mod(47,156)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("156.47"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(156, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 156 = 2^{2} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 156.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,0,0,0,-36,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.25069212402\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(48\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 47.10
Character \(\chi\) \(=\) 156.47
Dual form 156.3.l.c.83.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.63658 - 1.14961i) q^{2} +(2.64742 + 1.41109i) q^{3} +(1.35681 + 3.76285i) q^{4} +(3.10286 - 3.10286i) q^{5} +(-2.71053 - 5.35285i) q^{6} +(-7.50740 - 7.50740i) q^{7} +(2.10527 - 7.71802i) q^{8} +(5.01767 + 7.47148i) q^{9} +(-8.64517 + 1.51102i) q^{10} +(8.95288 - 8.95288i) q^{11} +(-1.71767 + 11.8764i) q^{12} +(11.6170 + 5.83481i) q^{13} +(3.65593 + 20.9170i) q^{14} +(12.5930 - 3.83617i) q^{15} +(-12.3181 + 10.2109i) q^{16} +10.5509 q^{17} +(0.377438 - 17.9960i) q^{18} +(5.32408 - 5.32408i) q^{19} +(15.8856 + 7.46564i) q^{20} +(-9.28165 - 30.4688i) q^{21} +(-24.9444 + 4.35984i) q^{22} -13.8259i q^{23} +(16.4643 - 17.4621i) q^{24} +5.74446i q^{25} +(-12.3045 - 22.9042i) q^{26} +(2.74096 + 26.8605i) q^{27} +(18.0632 - 38.4354i) q^{28} -40.6250i q^{29} +(-25.0196 - 8.19878i) q^{30} +(-32.5642 + 32.5642i) q^{31} +(31.8982 - 2.55003i) q^{32} +(36.3353 - 11.0687i) q^{33} +(-17.2674 - 12.1294i) q^{34} -46.5889 q^{35} +(-21.3061 + 29.0181i) q^{36} +(18.5545 - 18.5545i) q^{37} +(-14.8339 + 2.59270i) q^{38} +(22.5217 + 31.8398i) q^{39} +(-17.4156 - 30.4804i) q^{40} +(-31.6904 + 31.6904i) q^{41} +(-19.8370 + 60.5350i) q^{42} +56.9036 q^{43} +(45.8357 + 21.5410i) q^{44} +(38.7521 + 7.61385i) q^{45} +(-15.8944 + 22.6273i) q^{46} +(-41.9868 + 41.9868i) q^{47} +(-47.0198 + 9.65068i) q^{48} +63.7221i q^{49} +(6.60387 - 9.40129i) q^{50} +(27.9326 + 14.8882i) q^{51} +(-6.19349 + 51.6298i) q^{52} -1.52710i q^{53} +(26.3932 - 47.1105i) q^{54} -55.5591i q^{55} +(-73.7474 + 42.1371i) q^{56} +(21.6078 - 6.58233i) q^{57} +(-46.7028 + 66.4862i) q^{58} +(-29.4245 + 29.4245i) q^{59} +(31.5212 + 42.1807i) q^{60} -91.3759 q^{61} +(90.7301 - 15.8580i) q^{62} +(18.4218 - 93.7610i) q^{63} +(-55.1356 - 32.4971i) q^{64} +(54.1506 - 17.9414i) q^{65} +(-72.1905 - 23.6564i) q^{66} +(-24.1047 + 24.1047i) q^{67} +(14.3155 + 39.7014i) q^{68} +(19.5096 - 36.6030i) q^{69} +(76.2466 + 53.5589i) q^{70} +(-31.2001 - 31.2001i) q^{71} +(68.2286 - 22.9969i) q^{72} +(-17.5775 + 17.5775i) q^{73} +(-51.6965 + 9.03562i) q^{74} +(-8.10593 + 15.2080i) q^{75} +(27.2575 + 12.8100i) q^{76} -134.426 q^{77} +(-0.255338 - 77.9996i) q^{78} +102.844i q^{79} +(-6.53836 + 69.9047i) q^{80} +(-30.6461 + 74.9788i) q^{81} +(88.2956 - 15.4325i) q^{82} +(38.2900 + 38.2900i) q^{83} +(102.056 - 76.2658i) q^{84} +(32.7379 - 32.7379i) q^{85} +(-93.1274 - 65.4167i) q^{86} +(57.3254 - 107.551i) q^{87} +(-50.2502 - 87.9468i) q^{88} +(0.515880 + 0.515880i) q^{89} +(-54.6681 - 57.0104i) q^{90} +(-43.4093 - 131.018i) q^{91} +(52.0249 - 18.7591i) q^{92} +(-132.162 + 40.2602i) q^{93} +(116.983 - 20.4466i) q^{94} -33.0398i q^{95} +(88.0463 + 38.2602i) q^{96} +(-61.1704 - 61.1704i) q^{97} +(73.2554 - 104.287i) q^{98} +(111.814 + 21.9687i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 36 q^{6} - 64 q^{9} - 8 q^{13} + 80 q^{16} + 48 q^{18} + 8 q^{21} + 124 q^{24} - 8 q^{28} + 24 q^{33} + 64 q^{34} - 128 q^{37} - 136 q^{40} - 140 q^{42} - 160 q^{45} + 88 q^{46} - 108 q^{48} - 320 q^{52}+ \cdots + 336 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/156\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.63658 1.14961i −0.818292 0.574803i
\(3\) 2.64742 + 1.41109i 0.882473 + 0.470362i
\(4\) 1.35681 + 3.76285i 0.339202 + 0.940714i
\(5\) 3.10286 3.10286i 0.620573 0.620573i −0.325105 0.945678i \(-0.605400\pi\)
0.945678 + 0.325105i \(0.105400\pi\)
\(6\) −2.71053 5.35285i −0.451755 0.892142i
\(7\) −7.50740 7.50740i −1.07249 1.07249i −0.997159 0.0753268i \(-0.976000\pi\)
−0.0753268 0.997159i \(-0.524000\pi\)
\(8\) 2.10527 7.71802i 0.263159 0.964752i
\(9\) 5.01767 + 7.47148i 0.557518 + 0.830165i
\(10\) −8.64517 + 1.51102i −0.864517 + 0.151102i
\(11\) 8.95288 8.95288i 0.813898 0.813898i −0.171318 0.985216i \(-0.554802\pi\)
0.985216 + 0.171318i \(0.0548025\pi\)
\(12\) −1.71767 + 11.8764i −0.143140 + 0.989703i
\(13\) 11.6170 + 5.83481i 0.893616 + 0.448832i
\(14\) 3.65593 + 20.9170i 0.261138 + 1.49407i
\(15\) 12.5930 3.83617i 0.839533 0.255745i
\(16\) −12.3181 + 10.2109i −0.769884 + 0.638184i
\(17\) 10.5509 0.620640 0.310320 0.950632i \(-0.399564\pi\)
0.310320 + 0.950632i \(0.399564\pi\)
\(18\) 0.377438 17.9960i 0.0209688 0.999780i
\(19\) 5.32408 5.32408i 0.280215 0.280215i −0.552980 0.833195i \(-0.686509\pi\)
0.833195 + 0.552980i \(0.186509\pi\)
\(20\) 15.8856 + 7.46564i 0.794281 + 0.373282i
\(21\) −9.28165 30.4688i −0.441983 1.45090i
\(22\) −24.9444 + 4.35984i −1.13384 + 0.198174i
\(23\) 13.8259i 0.601127i −0.953762 0.300563i \(-0.902825\pi\)
0.953762 0.300563i \(-0.0971747\pi\)
\(24\) 16.4643 17.4621i 0.686014 0.727588i
\(25\) 5.74446i 0.229778i
\(26\) −12.3045 22.9042i −0.473249 0.880929i
\(27\) 2.74096 + 26.8605i 0.101517 + 0.994834i
\(28\) 18.0632 38.4354i 0.645113 1.37269i
\(29\) 40.6250i 1.40086i −0.713720 0.700431i \(-0.752991\pi\)
0.713720 0.700431i \(-0.247009\pi\)
\(30\) −25.0196 8.19878i −0.833986 0.273293i
\(31\) −32.5642 + 32.5642i −1.05046 + 1.05046i −0.0518016 + 0.998657i \(0.516496\pi\)
−0.998657 + 0.0518016i \(0.983504\pi\)
\(32\) 31.8982 2.55003i 0.996820 0.0796885i
\(33\) 36.3353 11.0687i 1.10107 0.335416i
\(34\) −17.2674 12.1294i −0.507864 0.356746i
\(35\) −46.5889 −1.33111
\(36\) −21.3061 + 29.0181i −0.591836 + 0.806059i
\(37\) 18.5545 18.5545i 0.501474 0.501474i −0.410422 0.911896i \(-0.634618\pi\)
0.911896 + 0.410422i \(0.134618\pi\)
\(38\) −14.8339 + 2.59270i −0.390365 + 0.0682289i
\(39\) 22.5217 + 31.8398i 0.577479 + 0.816405i
\(40\) −17.4156 30.4804i −0.435390 0.762009i
\(41\) −31.6904 + 31.6904i −0.772937 + 0.772937i −0.978619 0.205682i \(-0.934059\pi\)
0.205682 + 0.978619i \(0.434059\pi\)
\(42\) −19.8370 + 60.5350i −0.472310 + 1.44131i
\(43\) 56.9036 1.32334 0.661669 0.749796i \(-0.269848\pi\)
0.661669 + 0.749796i \(0.269848\pi\)
\(44\) 45.8357 + 21.5410i 1.04172 + 0.489569i
\(45\) 38.7521 + 7.61385i 0.861159 + 0.169197i
\(46\) −15.8944 + 22.6273i −0.345530 + 0.491897i
\(47\) −41.9868 + 41.9868i −0.893337 + 0.893337i −0.994836 0.101499i \(-0.967636\pi\)
0.101499 + 0.994836i \(0.467636\pi\)
\(48\) −47.0198 + 9.65068i −0.979580 + 0.201056i
\(49\) 63.7221i 1.30045i
\(50\) 6.60387 9.40129i 0.132077 0.188026i
\(51\) 27.9326 + 14.8882i 0.547698 + 0.291926i
\(52\) −6.19349 + 51.6298i −0.119106 + 0.992882i
\(53\) 1.52710i 0.0288132i −0.999896 0.0144066i \(-0.995414\pi\)
0.999896 0.0144066i \(-0.00458592\pi\)
\(54\) 26.3932 47.1105i 0.488763 0.872416i
\(55\) 55.5591i 1.01017i
\(56\) −73.7474 + 42.1371i −1.31692 + 0.752449i
\(57\) 21.6078 6.58233i 0.379084 0.115479i
\(58\) −46.7028 + 66.4862i −0.805221 + 1.14631i
\(59\) −29.4245 + 29.4245i −0.498720 + 0.498720i −0.911039 0.412319i \(-0.864719\pi\)
0.412319 + 0.911039i \(0.364719\pi\)
\(60\) 31.5212 + 42.1807i 0.525354 + 0.703011i
\(61\) −91.3759 −1.49797 −0.748983 0.662589i \(-0.769458\pi\)
−0.748983 + 0.662589i \(0.769458\pi\)
\(62\) 90.7301 15.8580i 1.46339 0.255774i
\(63\) 18.4218 93.7610i 0.292409 1.48827i
\(64\) −55.1356 32.4971i −0.861494 0.507767i
\(65\) 54.1506 17.9414i 0.833087 0.276021i
\(66\) −72.1905 23.6564i −1.09380 0.358431i
\(67\) −24.1047 + 24.1047i −0.359772 + 0.359772i −0.863729 0.503957i \(-0.831877\pi\)
0.503957 + 0.863729i \(0.331877\pi\)
\(68\) 14.3155 + 39.7014i 0.210522 + 0.583844i
\(69\) 19.5096 36.6030i 0.282747 0.530478i
\(70\) 76.2466 + 53.5589i 1.08924 + 0.765127i
\(71\) −31.2001 31.2001i −0.439438 0.439438i 0.452385 0.891823i \(-0.350573\pi\)
−0.891823 + 0.452385i \(0.850573\pi\)
\(72\) 68.2286 22.9969i 0.947619 0.319402i
\(73\) −17.5775 + 17.5775i −0.240788 + 0.240788i −0.817176 0.576388i \(-0.804462\pi\)
0.576388 + 0.817176i \(0.304462\pi\)
\(74\) −51.6965 + 9.03562i −0.698601 + 0.122103i
\(75\) −8.10593 + 15.2080i −0.108079 + 0.202773i
\(76\) 27.2575 + 12.8100i 0.358651 + 0.168552i
\(77\) −134.426 −1.74579
\(78\) −0.255338 77.9996i −0.00327357 0.999995i
\(79\) 102.844i 1.30183i 0.759151 + 0.650914i \(0.225614\pi\)
−0.759151 + 0.650914i \(0.774386\pi\)
\(80\) −6.53836 + 69.9047i −0.0817295 + 0.873809i
\(81\) −30.6461 + 74.9788i −0.378346 + 0.925664i
\(82\) 88.2956 15.4325i 1.07678 0.188201i
\(83\) 38.2900 + 38.2900i 0.461326 + 0.461326i 0.899090 0.437764i \(-0.144230\pi\)
−0.437764 + 0.899090i \(0.644230\pi\)
\(84\) 102.056 76.2658i 1.21496 0.907927i
\(85\) 32.7379 32.7379i 0.385152 0.385152i
\(86\) −93.1274 65.4167i −1.08288 0.760660i
\(87\) 57.3254 107.551i 0.658913 1.23622i
\(88\) −50.2502 87.9468i −0.571025 0.999395i
\(89\) 0.515880 + 0.515880i 0.00579640 + 0.00579640i 0.709999 0.704203i \(-0.248695\pi\)
−0.704203 + 0.709999i \(0.748695\pi\)
\(90\) −54.6681 57.0104i −0.607424 0.633449i
\(91\) −43.4093 131.018i −0.477025 1.43976i
\(92\) 52.0249 18.7591i 0.565488 0.203903i
\(93\) −132.162 + 40.2602i −1.42110 + 0.432906i
\(94\) 116.983 20.4466i 1.24450 0.217517i
\(95\) 33.0398i 0.347787i
\(96\) 88.0463 + 38.2602i 0.917149 + 0.398544i
\(97\) −61.1704 61.1704i −0.630623 0.630623i 0.317602 0.948224i \(-0.397123\pi\)
−0.948224 + 0.317602i \(0.897123\pi\)
\(98\) 73.2554 104.287i 0.747504 1.06415i
\(99\) 111.814 + 21.9687i 1.12943 + 0.221906i
\(100\) −21.6156 + 7.79413i −0.216156 + 0.0779413i
\(101\) 154.942 1.53408 0.767040 0.641599i \(-0.221729\pi\)
0.767040 + 0.641599i \(0.221729\pi\)
\(102\) −28.5984 56.4773i −0.280377 0.553699i
\(103\) 98.4770 0.956088 0.478044 0.878336i \(-0.341346\pi\)
0.478044 + 0.878336i \(0.341346\pi\)
\(104\) 69.4902 77.3764i 0.668175 0.744004i
\(105\) −123.340 65.7410i −1.17467 0.626105i
\(106\) −1.75556 + 2.49922i −0.0165619 + 0.0235776i
\(107\) −21.3914 −0.199920 −0.0999600 0.994991i \(-0.531871\pi\)
−0.0999600 + 0.994991i \(0.531871\pi\)
\(108\) −97.3532 + 46.7584i −0.901419 + 0.432948i
\(109\) 38.8509 + 38.8509i 0.356430 + 0.356430i 0.862495 0.506065i \(-0.168900\pi\)
−0.506065 + 0.862495i \(0.668900\pi\)
\(110\) −63.8712 + 90.9272i −0.580647 + 0.826610i
\(111\) 75.3038 22.9396i 0.678412 0.206663i
\(112\) 169.135 + 15.8196i 1.51013 + 0.141246i
\(113\) 56.7285i 0.502022i 0.967984 + 0.251011i \(0.0807630\pi\)
−0.967984 + 0.251011i \(0.919237\pi\)
\(114\) −42.9301 14.0679i −0.376579 0.123403i
\(115\) −42.8999 42.8999i −0.373043 0.373043i
\(116\) 152.866 55.1204i 1.31781 0.475175i
\(117\) 14.6956 + 116.073i 0.125603 + 0.992081i
\(118\) 81.9822 14.3290i 0.694764 0.121432i
\(119\) −79.2097 79.2097i −0.665627 0.665627i
\(120\) −3.09595 105.269i −0.0257996 0.877243i
\(121\) 39.3081i 0.324860i
\(122\) 149.544 + 105.046i 1.22577 + 0.861036i
\(123\) −128.616 + 39.1799i −1.04566 + 0.318536i
\(124\) −166.718 78.3510i −1.34450 0.631863i
\(125\) 95.3959 + 95.3959i 0.763167 + 0.763167i
\(126\) −137.937 + 132.270i −1.09474 + 1.04976i
\(127\) −103.517 −0.815098 −0.407549 0.913183i \(-0.633616\pi\)
−0.407549 + 0.913183i \(0.633616\pi\)
\(128\) 52.8752 + 116.568i 0.413087 + 0.910691i
\(129\) 150.648 + 80.2959i 1.16781 + 0.622449i
\(130\) −109.248 32.8894i −0.840366 0.252995i
\(131\) −243.602 −1.85956 −0.929779 0.368119i \(-0.880002\pi\)
−0.929779 + 0.368119i \(0.880002\pi\)
\(132\) 90.9501 + 121.706i 0.689016 + 0.922018i
\(133\) −79.9399 −0.601052
\(134\) 67.1604 11.7384i 0.501197 0.0876003i
\(135\) 91.8494 + 74.8397i 0.680366 + 0.554368i
\(136\) 22.2125 81.4319i 0.163327 0.598764i
\(137\) −86.7590 86.7590i −0.633278 0.633278i 0.315611 0.948889i \(-0.397791\pi\)
−0.948889 + 0.315611i \(0.897791\pi\)
\(138\) −74.0081 + 37.4755i −0.536291 + 0.271562i
\(139\) 39.1343i 0.281542i 0.990042 + 0.140771i \(0.0449581\pi\)
−0.990042 + 0.140771i \(0.955042\pi\)
\(140\) −63.2122 175.307i −0.451516 1.25219i
\(141\) −170.404 + 51.9097i −1.20854 + 0.368154i
\(142\) 15.1937 + 86.9295i 0.106998 + 0.612179i
\(143\) 156.244 51.7673i 1.09262 0.362009i
\(144\) −138.099 40.7997i −0.959022 0.283331i
\(145\) −126.054 126.054i −0.869338 0.869338i
\(146\) 48.9743 8.55984i 0.335441 0.0586290i
\(147\) −89.9175 + 168.699i −0.611683 + 1.14761i
\(148\) 94.9930 + 44.6431i 0.641845 + 0.301643i
\(149\) 11.4387 11.4387i 0.0767695 0.0767695i −0.667679 0.744449i \(-0.732712\pi\)
0.744449 + 0.667679i \(0.232712\pi\)
\(150\) 30.7493 15.5705i 0.204995 0.103803i
\(151\) −30.7068 30.7068i −0.203356 0.203356i 0.598080 0.801436i \(-0.295930\pi\)
−0.801436 + 0.598080i \(0.795930\pi\)
\(152\) −29.8827 52.3000i −0.196597 0.344079i
\(153\) 52.9408 + 78.8307i 0.346018 + 0.515233i
\(154\) 219.999 + 154.537i 1.42856 + 1.00348i
\(155\) 202.085i 1.30377i
\(156\) −89.2510 + 127.946i −0.572122 + 0.820169i
\(157\) 204.657 1.30355 0.651774 0.758413i \(-0.274025\pi\)
0.651774 + 0.758413i \(0.274025\pi\)
\(158\) 118.231 168.313i 0.748295 1.06527i
\(159\) 2.15487 4.04287i 0.0135526 0.0254269i
\(160\) 91.0635 106.888i 0.569147 0.668052i
\(161\) −103.797 + 103.797i −0.644700 + 0.644700i
\(162\) 136.351 87.4781i 0.841672 0.539988i
\(163\) 176.937 + 176.937i 1.08551 + 1.08551i 0.995985 + 0.0895203i \(0.0285334\pi\)
0.0895203 + 0.995985i \(0.471467\pi\)
\(164\) −162.244 76.2487i −0.989295 0.464931i
\(165\) 78.3988 147.088i 0.475144 0.891445i
\(166\) −18.6463 106.683i −0.112327 0.642671i
\(167\) 96.6155 96.6155i 0.578536 0.578536i −0.355964 0.934500i \(-0.615847\pi\)
0.934500 + 0.355964i \(0.115847\pi\)
\(168\) −254.699 + 7.49068i −1.51607 + 0.0445874i
\(169\) 100.910 + 135.566i 0.597100 + 0.802167i
\(170\) −91.2141 + 15.9426i −0.536554 + 0.0937800i
\(171\) 66.4932 + 13.0643i 0.388849 + 0.0763994i
\(172\) 77.2072 + 214.120i 0.448879 + 1.24488i
\(173\) −204.889 −1.18433 −0.592165 0.805817i \(-0.701727\pi\)
−0.592165 + 0.805817i \(0.701727\pi\)
\(174\) −217.460 + 110.115i −1.24977 + 0.632846i
\(175\) 43.1260 43.1260i 0.246434 0.246434i
\(176\) −18.8655 + 201.700i −0.107190 + 1.14602i
\(177\) −119.419 + 36.3784i −0.674686 + 0.205528i
\(178\) −0.251221 1.43734i −0.00141135 0.00807494i
\(179\) 226.341i 1.26447i −0.774776 0.632236i \(-0.782137\pi\)
0.774776 0.632236i \(-0.217863\pi\)
\(180\) 23.9294 + 156.149i 0.132941 + 0.867495i
\(181\) 121.536i 0.671468i −0.941957 0.335734i \(-0.891016\pi\)
0.941957 0.335734i \(-0.108984\pi\)
\(182\) −79.5761 + 264.325i −0.437231 + 1.45234i
\(183\) −241.911 128.939i −1.32192 0.704587i
\(184\) −106.709 29.1073i −0.579938 0.158192i
\(185\) 115.145i 0.622403i
\(186\) 262.578 + 86.0453i 1.41171 + 0.462609i
\(187\) 94.4607 94.4607i 0.505138 0.505138i
\(188\) −214.958 101.022i −1.14340 0.537352i
\(189\) 181.075 222.230i 0.958069 1.17582i
\(190\) −37.9828 + 54.0723i −0.199909 + 0.284591i
\(191\) 110.508 0.578575 0.289287 0.957242i \(-0.406582\pi\)
0.289287 + 0.957242i \(0.406582\pi\)
\(192\) −100.111 163.835i −0.521411 0.853305i
\(193\) 217.768 217.768i 1.12833 1.12833i 0.137886 0.990448i \(-0.455969\pi\)
0.990448 0.137886i \(-0.0440306\pi\)
\(194\) 29.7885 + 170.432i 0.153549 + 0.878517i
\(195\) 168.676 + 28.9129i 0.865007 + 0.148271i
\(196\) −239.777 + 86.4587i −1.22335 + 0.441116i
\(197\) 199.164 199.164i 1.01099 1.01099i 0.0110466 0.999939i \(-0.496484\pi\)
0.999939 0.0110466i \(-0.00351630\pi\)
\(198\) −157.737 164.496i −0.796653 0.830786i
\(199\) −99.9625 −0.502324 −0.251162 0.967945i \(-0.580813\pi\)
−0.251162 + 0.967945i \(0.580813\pi\)
\(200\) 44.3359 + 12.0937i 0.221679 + 0.0604683i
\(201\) −97.8293 + 29.8015i −0.486713 + 0.148266i
\(202\) −253.576 178.123i −1.25532 0.881795i
\(203\) −304.988 + 304.988i −1.50241 + 1.50241i
\(204\) −18.1230 + 125.307i −0.0888381 + 0.614249i
\(205\) 196.662i 0.959328i
\(206\) −161.166 113.210i −0.782358 0.549562i
\(207\) 103.300 69.3738i 0.499034 0.335139i
\(208\) −202.679 + 46.7466i −0.974418 + 0.224743i
\(209\) 95.3316i 0.456132i
\(210\) 126.280 + 249.384i 0.601336 + 1.18754i
\(211\) 186.585i 0.884288i 0.896944 + 0.442144i \(0.145782\pi\)
−0.896944 + 0.442144i \(0.854218\pi\)
\(212\) 5.74625 2.07198i 0.0271049 0.00977348i
\(213\) −38.5737 126.626i −0.181097 0.594488i
\(214\) 35.0089 + 24.5917i 0.163593 + 0.114915i
\(215\) 176.564 176.564i 0.821228 0.821228i
\(216\) 213.080 + 35.3940i 0.986483 + 0.163861i
\(217\) 488.945 2.25320
\(218\) −18.9195 108.246i −0.0867865 0.496541i
\(219\) −71.3385 + 21.7317i −0.325747 + 0.0992314i
\(220\) 209.061 75.3831i 0.950277 0.342650i
\(221\) 122.570 + 61.5624i 0.554614 + 0.278563i
\(222\) −149.612 49.0272i −0.673930 0.220843i
\(223\) 73.2786 73.2786i 0.328604 0.328604i −0.523452 0.852055i \(-0.675356\pi\)
0.852055 + 0.523452i \(0.175356\pi\)
\(224\) −258.617 220.329i −1.15454 0.983610i
\(225\) −42.9196 + 28.8238i −0.190754 + 0.128106i
\(226\) 65.2154 92.8408i 0.288564 0.410800i
\(227\) 160.573 + 160.573i 0.707371 + 0.707371i 0.965982 0.258611i \(-0.0832647\pi\)
−0.258611 + 0.965982i \(0.583265\pi\)
\(228\) 54.0860 + 72.3760i 0.237219 + 0.317439i
\(229\) −243.232 + 243.232i −1.06215 + 1.06215i −0.0642103 + 0.997936i \(0.520453\pi\)
−0.997936 + 0.0642103i \(0.979547\pi\)
\(230\) 20.8912 + 119.527i 0.0908315 + 0.519684i
\(231\) −355.881 189.686i −1.54061 0.821153i
\(232\) −313.545 85.5268i −1.35149 0.368650i
\(233\) −17.1781 −0.0737259 −0.0368630 0.999320i \(-0.511737\pi\)
−0.0368630 + 0.999320i \(0.511737\pi\)
\(234\) 109.388 206.858i 0.467471 0.884008i
\(235\) 260.559i 1.10876i
\(236\) −150.643 70.7966i −0.638319 0.299986i
\(237\) −145.122 + 272.272i −0.612331 + 1.14883i
\(238\) 38.5732 + 220.693i 0.162072 + 0.927282i
\(239\) 85.5184 + 85.5184i 0.357818 + 0.357818i 0.863008 0.505190i \(-0.168578\pi\)
−0.505190 + 0.863008i \(0.668578\pi\)
\(240\) −115.951 + 175.841i −0.483131 + 0.732671i
\(241\) 84.5939 84.5939i 0.351012 0.351012i −0.509474 0.860486i \(-0.670160\pi\)
0.860486 + 0.509474i \(0.170160\pi\)
\(242\) −45.1888 + 64.3309i −0.186731 + 0.265830i
\(243\) −186.935 + 155.256i −0.769278 + 0.638914i
\(244\) −123.980 343.834i −0.508113 1.40916i
\(245\) 197.721 + 197.721i 0.807025 + 0.807025i
\(246\) 255.532 + 83.7365i 1.03875 + 0.340392i
\(247\) 92.9148 30.7849i 0.376173 0.124635i
\(248\) 182.775 + 319.888i 0.736995 + 1.28987i
\(249\) 47.3392 + 155.400i 0.190117 + 0.624098i
\(250\) −46.4555 265.791i −0.185822 1.06316i
\(251\) 5.28263i 0.0210463i −0.999945 0.0105232i \(-0.996650\pi\)
0.999945 0.0105232i \(-0.00334969\pi\)
\(252\) 377.804 57.8973i 1.49922 0.229751i
\(253\) −123.782 123.782i −0.489256 0.489256i
\(254\) 169.415 + 119.004i 0.666987 + 0.468521i
\(255\) 132.867 40.4750i 0.521048 0.158725i
\(256\) 47.4733 251.560i 0.185443 0.982655i
\(257\) −14.0684 −0.0547409 −0.0273705 0.999625i \(-0.508713\pi\)
−0.0273705 + 0.999625i \(0.508713\pi\)
\(258\) −154.239 304.596i −0.597824 1.18061i
\(259\) −278.593 −1.07565
\(260\) 140.983 + 179.418i 0.542242 + 0.690069i
\(261\) 303.529 203.843i 1.16295 0.781007i
\(262\) 398.675 + 280.046i 1.52166 + 1.06888i
\(263\) 87.7912 0.333807 0.166903 0.985973i \(-0.446623\pi\)
0.166903 + 0.985973i \(0.446623\pi\)
\(264\) −8.93294 303.739i −0.0338369 1.15053i
\(265\) −4.73838 4.73838i −0.0178807 0.0178807i
\(266\) 130.828 + 91.8995i 0.491836 + 0.345487i
\(267\) 0.637799 + 2.09370i 0.00238876 + 0.00784158i
\(268\) −123.408 57.9971i −0.460478 0.216407i
\(269\) 283.264i 1.05303i −0.850167 0.526513i \(-0.823499\pi\)
0.850167 0.526513i \(-0.176501\pi\)
\(270\) −64.2829 228.072i −0.238085 0.844711i
\(271\) −239.818 239.818i −0.884939 0.884939i 0.109093 0.994032i \(-0.465205\pi\)
−0.994032 + 0.109093i \(0.965205\pi\)
\(272\) −129.967 + 107.734i −0.477821 + 0.396082i
\(273\) 69.9549 408.114i 0.256245 1.49492i
\(274\) 42.2496 + 241.727i 0.154196 + 0.882216i
\(275\) 51.4295 + 51.4295i 0.187016 + 0.187016i
\(276\) 164.202 + 23.7484i 0.594937 + 0.0860450i
\(277\) 529.071i 1.91000i 0.296598 + 0.955002i \(0.404148\pi\)
−0.296598 + 0.955002i \(0.595852\pi\)
\(278\) 44.9890 64.0465i 0.161831 0.230383i
\(279\) −406.699 79.9066i −1.45770 0.286404i
\(280\) −98.0824 + 359.574i −0.350294 + 1.28419i
\(281\) −76.5718 76.5718i −0.272498 0.272498i 0.557607 0.830105i \(-0.311720\pi\)
−0.830105 + 0.557607i \(0.811720\pi\)
\(282\) 338.556 + 110.943i 1.20055 + 0.393415i
\(283\) 276.154 0.975810 0.487905 0.872897i \(-0.337761\pi\)
0.487905 + 0.872897i \(0.337761\pi\)
\(284\) 75.0689 159.734i 0.264327 0.562444i
\(285\) 46.6220 87.4702i 0.163586 0.306913i
\(286\) −315.218 94.8977i −1.10216 0.331810i
\(287\) 475.826 1.65793
\(288\) 179.107 + 225.532i 0.621900 + 0.783097i
\(289\) −177.679 −0.614806
\(290\) 61.3853 + 351.210i 0.211673 + 1.21107i
\(291\) −75.6270 248.261i −0.259887 0.853129i
\(292\) −89.9910 42.2923i −0.308188 0.144837i
\(293\) −172.341 172.341i −0.588195 0.588195i 0.348947 0.937142i \(-0.386539\pi\)
−0.937142 + 0.348947i \(0.886539\pi\)
\(294\) 341.095 172.721i 1.16019 0.587485i
\(295\) 182.600i 0.618984i
\(296\) −104.142 182.267i −0.351831 0.615766i
\(297\) 265.018 + 215.939i 0.892318 + 0.727069i
\(298\) −31.8703 + 5.57035i −0.106947 + 0.0186925i
\(299\) 80.6716 160.616i 0.269805 0.537177i
\(300\) −68.2237 9.86711i −0.227412 0.0328904i
\(301\) −427.198 427.198i −1.41926 1.41926i
\(302\) 14.9535 + 85.5548i 0.0495148 + 0.283294i
\(303\) 410.197 + 218.637i 1.35379 + 0.721574i
\(304\) −11.2189 + 119.947i −0.0369043 + 0.394561i
\(305\) −283.527 + 283.527i −0.929597 + 0.929597i
\(306\) 3.98230 189.874i 0.0130141 0.620503i
\(307\) −24.6801 24.6801i −0.0803911 0.0803911i 0.665768 0.746159i \(-0.268104\pi\)
−0.746159 + 0.665768i \(0.768104\pi\)
\(308\) −182.390 505.824i −0.592175 1.64229i
\(309\) 260.710 + 138.960i 0.843722 + 0.449708i
\(310\) 232.318 330.729i 0.749413 1.06687i
\(311\) 201.749i 0.648711i −0.945935 0.324355i \(-0.894853\pi\)
0.945935 0.324355i \(-0.105147\pi\)
\(312\) 293.155 106.791i 0.939598 0.342280i
\(313\) −103.265 −0.329919 −0.164959 0.986300i \(-0.552749\pi\)
−0.164959 + 0.986300i \(0.552749\pi\)
\(314\) −334.938 235.275i −1.06668 0.749284i
\(315\) −233.768 348.088i −0.742119 1.10504i
\(316\) −386.989 + 139.540i −1.22465 + 0.441583i
\(317\) −328.742 + 328.742i −1.03704 + 1.03704i −0.0377544 + 0.999287i \(0.512020\pi\)
−0.999287 + 0.0377544i \(0.987980\pi\)
\(318\) −8.17433 + 4.13924i −0.0257054 + 0.0130165i
\(319\) −363.711 363.711i −1.14016 1.14016i
\(320\) −271.913 + 70.2444i −0.849727 + 0.219514i
\(321\) −56.6321 30.1852i −0.176424 0.0940348i
\(322\) 289.197 50.5465i 0.898128 0.156977i
\(323\) 56.1737 56.1737i 0.173912 0.173912i
\(324\) −323.715 13.5848i −0.999121 0.0419283i
\(325\) −33.5178 + 66.7335i −0.103132 + 0.205334i
\(326\) −86.1643 492.981i −0.264308 1.51221i
\(327\) 48.0327 + 157.677i 0.146889 + 0.482192i
\(328\) 177.870 + 311.304i 0.542288 + 0.949099i
\(329\) 630.424 1.91618
\(330\) −297.400 + 150.595i −0.901212 + 0.456347i
\(331\) 233.012 233.012i 0.703964 0.703964i −0.261295 0.965259i \(-0.584150\pi\)
0.965259 + 0.261295i \(0.0841496\pi\)
\(332\) −92.1276 + 196.032i −0.277493 + 0.590458i
\(333\) 231.730 + 45.5294i 0.695887 + 0.136725i
\(334\) −269.189 + 47.0494i −0.805955 + 0.140867i
\(335\) 149.588i 0.446530i
\(336\) 425.448 + 280.545i 1.26621 + 0.834956i
\(337\) 571.366i 1.69545i −0.530438 0.847724i \(-0.677972\pi\)
0.530438 0.847724i \(-0.322028\pi\)
\(338\) −9.29973 337.872i −0.0275140 0.999621i
\(339\) −80.0488 + 150.184i −0.236132 + 0.443021i
\(340\) 167.607 + 78.7690i 0.492962 + 0.231674i
\(341\) 583.087i 1.70993i
\(342\) −93.8028 97.8218i −0.274277 0.286029i
\(343\) 110.525 110.525i 0.322230 0.322230i
\(344\) 119.798 439.183i 0.348249 1.27669i
\(345\) −53.0386 174.110i −0.153735 0.504666i
\(346\) 335.318 + 235.542i 0.969127 + 0.680757i
\(347\) 66.7122 0.192254 0.0961270 0.995369i \(-0.469354\pi\)
0.0961270 + 0.995369i \(0.469354\pi\)
\(348\) 482.480 + 69.7805i 1.38644 + 0.200519i
\(349\) −380.088 + 380.088i −1.08908 + 1.08908i −0.0934534 + 0.995624i \(0.529791\pi\)
−0.995624 + 0.0934534i \(0.970209\pi\)
\(350\) −120.157 + 21.0013i −0.343306 + 0.0600038i
\(351\) −124.884 + 328.032i −0.355796 + 0.934564i
\(352\) 262.751 308.411i 0.746451 0.876168i
\(353\) −321.141 + 321.141i −0.909747 + 0.909747i −0.996251 0.0865046i \(-0.972430\pi\)
0.0865046 + 0.996251i \(0.472430\pi\)
\(354\) 237.261 + 77.7491i 0.670228 + 0.219630i
\(355\) −193.620 −0.545407
\(356\) −1.24123 + 2.64113i −0.00348660 + 0.00741890i
\(357\) −97.9295 321.473i −0.274312 0.900485i
\(358\) −260.203 + 370.425i −0.726823 + 1.03471i
\(359\) −124.499 + 124.499i −0.346794 + 0.346794i −0.858914 0.512120i \(-0.828860\pi\)
0.512120 + 0.858914i \(0.328860\pi\)
\(360\) 140.348 283.060i 0.389855 0.786279i
\(361\) 304.308i 0.842960i
\(362\) −139.718 + 198.903i −0.385962 + 0.549457i
\(363\) 55.4671 104.065i 0.152802 0.286680i
\(364\) 434.103 341.109i 1.19259 0.937112i
\(365\) 109.081i 0.298853i
\(366\) 247.677 + 489.122i 0.676713 + 1.33640i
\(367\) 8.88159i 0.0242005i 0.999927 + 0.0121003i \(0.00385172\pi\)
−0.999927 + 0.0121003i \(0.996148\pi\)
\(368\) 141.176 + 170.310i 0.383629 + 0.462798i
\(369\) −395.787 77.7625i −1.07259 0.210738i
\(370\) −132.371 + 188.444i −0.357759 + 0.509307i
\(371\) −11.4645 + 11.4645i −0.0309017 + 0.0309017i
\(372\) −330.812 442.682i −0.889280 1.19000i
\(373\) 306.101 0.820647 0.410324 0.911940i \(-0.365416\pi\)
0.410324 + 0.911940i \(0.365416\pi\)
\(374\) −263.186 + 46.0001i −0.703705 + 0.122995i
\(375\) 117.941 + 387.165i 0.314510 + 1.03244i
\(376\) 235.661 + 412.449i 0.626759 + 1.09694i
\(377\) 237.039 471.941i 0.628752 1.25183i
\(378\) −551.822 + 155.533i −1.45985 + 0.411462i
\(379\) 192.411 192.411i 0.507681 0.507681i −0.406133 0.913814i \(-0.633123\pi\)
0.913814 + 0.406133i \(0.133123\pi\)
\(380\) 124.324 44.8286i 0.327168 0.117970i
\(381\) −274.054 146.072i −0.719302 0.383391i
\(382\) −180.855 127.040i −0.473443 0.332567i
\(383\) 107.120 + 107.120i 0.279686 + 0.279686i 0.832983 0.553298i \(-0.186631\pi\)
−0.553298 + 0.832983i \(0.686631\pi\)
\(384\) −24.5055 + 383.217i −0.0638164 + 0.997962i
\(385\) −417.105 + 417.105i −1.08339 + 1.08339i
\(386\) −606.744 + 106.048i −1.57188 + 0.274736i
\(387\) 285.523 + 425.154i 0.737786 + 1.09859i
\(388\) 147.179 313.172i 0.379327 0.807144i
\(389\) −173.833 −0.446871 −0.223436 0.974719i \(-0.571727\pi\)
−0.223436 + 0.974719i \(0.571727\pi\)
\(390\) −242.814 241.230i −0.622601 0.618538i
\(391\) 145.876i 0.373083i
\(392\) 491.808 + 134.152i 1.25461 + 0.342226i
\(393\) −644.917 343.744i −1.64101 0.874666i
\(394\) −554.909 + 96.9882i −1.40840 + 0.246163i
\(395\) 319.112 + 319.112i 0.807879 + 0.807879i
\(396\) 69.0449 + 450.546i 0.174356 + 1.13774i
\(397\) −55.4458 + 55.4458i −0.139662 + 0.139662i −0.773481 0.633819i \(-0.781486\pi\)
0.633819 + 0.773481i \(0.281486\pi\)
\(398\) 163.597 + 114.918i 0.411048 + 0.288738i
\(399\) −211.635 112.802i −0.530413 0.282712i
\(400\) −58.6564 70.7611i −0.146641 0.176903i
\(401\) −240.104 240.104i −0.598762 0.598762i 0.341221 0.939983i \(-0.389160\pi\)
−0.939983 + 0.341221i \(0.889160\pi\)
\(402\) 194.366 + 63.6926i 0.483497 + 0.158439i
\(403\) −568.305 + 188.293i −1.41019 + 0.467228i
\(404\) 210.227 + 583.025i 0.520363 + 1.44313i
\(405\) 137.559 + 327.740i 0.339651 + 0.809234i
\(406\) 849.755 148.522i 2.09299 0.365818i
\(407\) 332.233i 0.816298i
\(408\) 173.713 184.241i 0.425768 0.451570i
\(409\) 135.442 + 135.442i 0.331154 + 0.331154i 0.853025 0.521871i \(-0.174766\pi\)
−0.521871 + 0.853025i \(0.674766\pi\)
\(410\) 226.084 321.854i 0.551425 0.785010i
\(411\) −107.263 352.112i −0.260981 0.856720i
\(412\) 133.614 + 370.555i 0.324307 + 0.899405i
\(413\) 441.803 1.06974
\(414\) −248.812 5.21843i −0.600994 0.0126049i
\(415\) 237.618 0.572573
\(416\) 385.441 + 156.496i 0.926541 + 0.376193i
\(417\) −55.2219 + 103.605i −0.132427 + 0.248453i
\(418\) −109.594 + 156.018i −0.262186 + 0.373249i
\(419\) −728.814 −1.73941 −0.869706 0.493570i \(-0.835692\pi\)
−0.869706 + 0.493570i \(0.835692\pi\)
\(420\) 80.0245 553.310i 0.190535 1.31740i
\(421\) −210.705 210.705i −0.500487 0.500487i 0.411102 0.911589i \(-0.365144\pi\)
−0.911589 + 0.411102i \(0.865144\pi\)
\(422\) 214.499 305.361i 0.508292 0.723605i
\(423\) −524.380 103.028i −1.23967 0.243565i
\(424\) −11.7862 3.21496i −0.0277976 0.00758245i
\(425\) 60.6091i 0.142610i
\(426\) −82.4409 + 251.578i −0.193523 + 0.590560i
\(427\) 685.996 + 685.996i 1.60655 + 1.60655i
\(428\) −29.0241 80.4929i −0.0678133 0.188067i
\(429\) 486.692 + 83.4241i 1.13448 + 0.194462i
\(430\) −491.941 + 85.9825i −1.14405 + 0.199959i
\(431\) 18.9012 + 18.9012i 0.0438544 + 0.0438544i 0.728694 0.684840i \(-0.240128\pi\)
−0.684840 + 0.728694i \(0.740128\pi\)
\(432\) −308.035 302.884i −0.713043 0.701120i
\(433\) 191.361i 0.441943i 0.975280 + 0.220971i \(0.0709227\pi\)
−0.975280 + 0.220971i \(0.929077\pi\)
\(434\) −800.200 562.095i −1.84378 1.29515i
\(435\) −155.845 511.591i −0.358264 1.17607i
\(436\) −93.4771 + 198.904i −0.214397 + 0.456201i
\(437\) −73.6102 73.6102i −0.168444 0.168444i
\(438\) 141.734 + 46.4456i 0.323594 + 0.106040i
\(439\) −343.541 −0.782552 −0.391276 0.920273i \(-0.627966\pi\)
−0.391276 + 0.920273i \(0.627966\pi\)
\(440\) −428.807 116.967i −0.974560 0.265835i
\(441\) −476.099 + 319.736i −1.07959 + 0.725026i
\(442\) −129.823 241.659i −0.293717 0.546740i
\(443\) 281.590 0.635644 0.317822 0.948150i \(-0.397049\pi\)
0.317822 + 0.948150i \(0.397049\pi\)
\(444\) 188.491 + 252.232i 0.424530 + 0.568091i
\(445\) 3.20141 0.00719418
\(446\) −204.168 + 35.6849i −0.457776 + 0.0800111i
\(447\) 46.4239 14.1420i 0.103857 0.0316376i
\(448\) 169.957 + 657.894i 0.379368 + 1.46851i
\(449\) 168.238 + 168.238i 0.374695 + 0.374695i 0.869184 0.494489i \(-0.164645\pi\)
−0.494489 + 0.869184i \(0.664645\pi\)
\(450\) 103.378 + 2.16818i 0.229728 + 0.00481817i
\(451\) 567.441i 1.25818i
\(452\) −213.461 + 76.9696i −0.472259 + 0.170287i
\(453\) −37.9638 124.624i −0.0838052 0.275107i
\(454\) −78.1953 447.387i −0.172236 0.985435i
\(455\) −541.224 271.837i −1.18950 0.597445i
\(456\) −5.31222 180.627i −0.0116496 0.396112i
\(457\) −499.399 499.399i −1.09278 1.09278i −0.995231 0.0975464i \(-0.968901\pi\)
−0.0975464 0.995231i \(-0.531099\pi\)
\(458\) 677.689 118.448i 1.47967 0.258620i
\(459\) 28.9195 + 283.402i 0.0630055 + 0.617433i
\(460\) 103.219 219.633i 0.224390 0.477463i
\(461\) 509.071 509.071i 1.10427 1.10427i 0.110386 0.993889i \(-0.464791\pi\)
0.993889 0.110386i \(-0.0352087\pi\)
\(462\) 364.365 + 719.561i 0.788668 + 1.55749i
\(463\) −41.1500 41.1500i −0.0888770 0.0888770i 0.661271 0.750148i \(-0.270018\pi\)
−0.750148 + 0.661271i \(0.770018\pi\)
\(464\) 414.820 + 500.425i 0.894008 + 1.07850i
\(465\) −285.159 + 535.003i −0.613246 + 1.15054i
\(466\) 28.1135 + 19.7481i 0.0603293 + 0.0423779i
\(467\) 189.828i 0.406483i −0.979129 0.203242i \(-0.934852\pi\)
0.979129 0.203242i \(-0.0651477\pi\)
\(468\) −416.828 + 212.787i −0.890659 + 0.454673i
\(469\) 361.928 0.771701
\(470\) 299.540 426.426i 0.637320 0.907290i
\(471\) 541.813 + 288.789i 1.15035 + 0.613140i
\(472\) 165.152 + 289.045i 0.349898 + 0.612384i
\(473\) 509.451 509.451i 1.07706 1.07706i
\(474\) 550.511 278.763i 1.16142 0.588107i
\(475\) 30.5839 + 30.5839i 0.0643872 + 0.0643872i
\(476\) 190.582 405.527i 0.400383 0.851947i
\(477\) 11.4097 7.66247i 0.0239197 0.0160639i
\(478\) −41.6454 238.270i −0.0871243 0.498474i
\(479\) −19.6478 + 19.6478i −0.0410183 + 0.0410183i −0.727318 0.686300i \(-0.759234\pi\)
0.686300 + 0.727318i \(0.259234\pi\)
\(480\) 391.912 154.480i 0.816483 0.321833i
\(481\) 323.811 107.286i 0.673203 0.223048i
\(482\) −235.695 + 41.1952i −0.488993 + 0.0854673i
\(483\) −421.260 + 128.327i −0.872173 + 0.265688i
\(484\) 147.911 53.3335i 0.305600 0.110193i
\(485\) −379.607 −0.782695
\(486\) 484.417 39.1883i 0.996744 0.0806343i
\(487\) −44.1216 + 44.1216i −0.0905988 + 0.0905988i −0.750954 0.660355i \(-0.770406\pi\)
0.660355 + 0.750954i \(0.270406\pi\)
\(488\) −192.371 + 705.241i −0.394204 + 1.44517i
\(489\) 218.753 + 718.102i 0.447349 + 1.46851i
\(490\) −96.2855 550.889i −0.196501 1.12426i
\(491\) 12.3013i 0.0250535i 0.999922 + 0.0125268i \(0.00398750\pi\)
−0.999922 + 0.0125268i \(0.996013\pi\)
\(492\) −321.935 430.803i −0.654340 0.875616i
\(493\) 428.630i 0.869431i
\(494\) −187.453 56.4335i −0.379460 0.114238i
\(495\) 415.109 278.777i 0.838604 0.563186i
\(496\) 68.6194 733.642i 0.138346 1.47912i
\(497\) 468.464i 0.942583i
\(498\) 101.175 308.747i 0.203162 0.619974i
\(499\) 126.349 126.349i 0.253205 0.253205i −0.569078 0.822283i \(-0.692700\pi\)
0.822283 + 0.569078i \(0.192700\pi\)
\(500\) −229.527 + 488.395i −0.459054 + 0.976790i
\(501\) 392.115 119.449i 0.782664 0.238421i
\(502\) −6.07295 + 8.64547i −0.0120975 + 0.0172220i
\(503\) 301.791 0.599982 0.299991 0.953942i \(-0.403016\pi\)
0.299991 + 0.953942i \(0.403016\pi\)
\(504\) −684.867 339.572i −1.35886 0.673754i
\(505\) 480.764 480.764i 0.952009 0.952009i
\(506\) 60.2788 + 344.879i 0.119128 + 0.681580i
\(507\) 75.8554 + 501.293i 0.149616 + 0.988744i
\(508\) −140.453 389.521i −0.276483 0.766773i
\(509\) −284.202 + 284.202i −0.558353 + 0.558353i −0.928838 0.370485i \(-0.879191\pi\)
0.370485 + 0.928838i \(0.379191\pi\)
\(510\) −263.979 86.5043i −0.517605 0.169616i
\(511\) 263.923 0.516483
\(512\) −366.889 + 357.123i −0.716580 + 0.697505i
\(513\) 157.600 + 128.414i 0.307213 + 0.250320i
\(514\) 23.0241 + 16.1731i 0.0447940 + 0.0314653i
\(515\) 305.561 305.561i 0.593322 0.593322i
\(516\) −97.7418 + 675.811i −0.189422 + 1.30971i
\(517\) 751.806i 1.45417i
\(518\) 455.940 + 320.272i 0.880194 + 0.618286i
\(519\) −542.428 289.116i −1.04514 0.557064i
\(520\) −24.4700 455.707i −0.0470577 0.876360i
\(521\) 10.0392i 0.0192691i 0.999954 + 0.00963453i \(0.00306681\pi\)
−0.999954 + 0.00963453i \(0.996933\pi\)
\(522\) −731.090 15.3334i −1.40055 0.0293744i
\(523\) 215.956i 0.412917i −0.978455 0.206459i \(-0.933806\pi\)
0.978455 0.206459i \(-0.0661938\pi\)
\(524\) −330.521 916.639i −0.630766 1.74931i
\(525\) 175.027 53.3180i 0.333385 0.101558i
\(526\) −143.678 100.925i −0.273151 0.191873i
\(527\) −343.581 + 343.581i −0.651957 + 0.651957i
\(528\) −334.561 + 507.364i −0.633639 + 0.960917i
\(529\) 337.844 0.638647
\(530\) 2.30748 + 13.2020i 0.00435373 + 0.0249095i
\(531\) −367.487 72.2022i −0.692065 0.135974i
\(532\) −108.463 300.802i −0.203878 0.565418i
\(533\) −553.056 + 183.240i −1.03763 + 0.343791i
\(534\) 1.36312 4.15973i 0.00255266 0.00778976i
\(535\) −66.3747 + 66.3747i −0.124065 + 0.124065i
\(536\) 135.294 + 236.788i 0.252414 + 0.441769i
\(537\) 319.386 599.219i 0.594760 1.11586i
\(538\) −325.642 + 463.585i −0.605283 + 0.861682i
\(539\) 570.496 + 570.496i 1.05843 + 1.05843i
\(540\) −156.989 + 447.159i −0.290720 + 0.828072i
\(541\) 444.062 444.062i 0.820818 0.820818i −0.165408 0.986225i \(-0.552894\pi\)
0.986225 + 0.165408i \(0.0528940\pi\)
\(542\) 116.786 + 668.180i 0.215472 + 1.23280i
\(543\) 171.498 321.756i 0.315833 0.592553i
\(544\) 336.554 26.9051i 0.618666 0.0494579i
\(545\) 241.098 0.442382
\(546\) −583.657 + 587.491i −1.06897 + 1.07599i
\(547\) 944.412i 1.72653i −0.504752 0.863265i \(-0.668416\pi\)
0.504752 0.863265i \(-0.331584\pi\)
\(548\) 208.746 444.177i 0.380924 0.810542i
\(549\) −458.494 682.714i −0.835144 1.24356i
\(550\) −25.0449 143.292i −0.0455362 0.260531i
\(551\) −216.291 216.291i −0.392542 0.392542i
\(552\) −241.430 227.635i −0.437373 0.412381i
\(553\) 772.094 772.094i 1.39619 1.39619i
\(554\) 608.224 865.869i 1.09788 1.56294i
\(555\) 162.479 304.836i 0.292755 0.549254i
\(556\) −147.257 + 53.0977i −0.264850 + 0.0954995i
\(557\) −521.219 521.219i −0.935762 0.935762i 0.0622958 0.998058i \(-0.480158\pi\)
−0.998058 + 0.0622958i \(0.980158\pi\)
\(558\) 573.736 + 598.318i 1.02820 + 1.07225i
\(559\) 661.049 + 332.022i 1.18256 + 0.593956i
\(560\) 573.889 475.717i 1.02480 0.849494i
\(561\) 383.370 116.785i 0.683368 0.208173i
\(562\) 37.2887 + 213.344i 0.0663499 + 0.379615i
\(563\) 829.523i 1.47340i −0.676221 0.736699i \(-0.736383\pi\)
0.676221 0.736699i \(-0.263617\pi\)
\(564\) −426.534 570.773i −0.756266 1.01201i
\(565\) 176.021 + 176.021i 0.311541 + 0.311541i
\(566\) −451.949 317.469i −0.798497 0.560899i
\(567\) 792.968 332.824i 1.39853 0.586991i
\(568\) −306.488 + 175.118i −0.539591 + 0.308307i
\(569\) 171.340 0.301125 0.150563 0.988600i \(-0.451892\pi\)
0.150563 + 0.988600i \(0.451892\pi\)
\(570\) −176.857 + 89.5552i −0.310276 + 0.157114i
\(571\) −387.748 −0.679069 −0.339535 0.940594i \(-0.610270\pi\)
−0.339535 + 0.940594i \(0.610270\pi\)
\(572\) 406.786 + 517.685i 0.711165 + 0.905044i
\(573\) 292.560 + 155.936i 0.510577 + 0.272140i
\(574\) −778.728 547.012i −1.35667 0.952983i
\(575\) 79.4224 0.138126
\(576\) −33.8509 575.004i −0.0587689 0.998272i
\(577\) 300.732 + 300.732i 0.521200 + 0.521200i 0.917934 0.396734i \(-0.129856\pi\)
−0.396734 + 0.917934i \(0.629856\pi\)
\(578\) 290.786 + 204.261i 0.503091 + 0.353393i
\(579\) 883.815 269.234i 1.52645 0.464999i
\(580\) 303.292 645.354i 0.522917 1.11268i
\(581\) 574.917i 0.989530i
\(582\) −161.632 + 493.240i −0.277718 + 0.847492i
\(583\) −13.6719 13.6719i −0.0234510 0.0234510i
\(584\) 98.6582 + 172.669i 0.168935 + 0.295666i
\(585\) 405.759 + 314.562i 0.693604 + 0.537712i
\(586\) 83.9260 + 480.175i 0.143218 + 0.819411i
\(587\) 48.2499 + 48.2499i 0.0821974 + 0.0821974i 0.747010 0.664813i \(-0.231489\pi\)
−0.664813 + 0.747010i \(0.731489\pi\)
\(588\) −756.791 109.454i −1.28706 0.186146i
\(589\) 346.749i 0.588708i
\(590\) 209.919 298.841i 0.355794 0.506510i
\(591\) 808.309 246.233i 1.36770 0.416638i
\(592\) −39.0982 + 418.017i −0.0660442 + 0.706110i
\(593\) −99.9109 99.9109i −0.168484 0.168484i 0.617829 0.786313i \(-0.288012\pi\)
−0.786313 + 0.617829i \(0.788012\pi\)
\(594\) −185.479 658.070i −0.312254 1.10786i
\(595\) −491.554 −0.826141
\(596\) 58.5621 + 27.5219i 0.0982585 + 0.0461777i
\(597\) −264.643 141.056i −0.443288 0.236274i
\(598\) −316.671 + 170.120i −0.529550 + 0.284482i
\(599\) −922.144 −1.53947 −0.769736 0.638362i \(-0.779612\pi\)
−0.769736 + 0.638362i \(0.779612\pi\)
\(600\) 100.310 + 94.5788i 0.167184 + 0.157631i
\(601\) 473.733 0.788242 0.394121 0.919059i \(-0.371049\pi\)
0.394121 + 0.919059i \(0.371049\pi\)
\(602\) 208.035 + 1190.25i 0.345573 + 1.97717i
\(603\) −301.048 59.1486i −0.499250 0.0980905i
\(604\) 73.8819 157.208i 0.122321 0.260278i
\(605\) −121.968 121.968i −0.201599 0.201599i
\(606\) −419.975 829.382i −0.693028 1.36862i
\(607\) 633.569i 1.04377i −0.853015 0.521886i \(-0.825229\pi\)
0.853015 0.521886i \(-0.174771\pi\)
\(608\) 156.252 183.405i 0.256993 0.301653i
\(609\) −1237.80 + 377.067i −2.03251 + 0.619158i
\(610\) 789.961 138.071i 1.29502 0.226346i
\(611\) −732.747 + 242.776i −1.19926 + 0.397343i
\(612\) −224.798 + 306.167i −0.367317 + 0.500272i
\(613\) −433.178 433.178i −0.706652 0.706652i 0.259177 0.965830i \(-0.416549\pi\)
−0.965830 + 0.259177i \(0.916549\pi\)
\(614\) 12.0186 + 68.7634i 0.0195743 + 0.111992i
\(615\) −277.508 + 520.648i −0.451232 + 0.846582i
\(616\) −283.003 + 1037.50i −0.459420 + 1.68425i
\(617\) −740.860 + 740.860i −1.20075 + 1.20075i −0.226806 + 0.973940i \(0.572828\pi\)
−0.973940 + 0.226806i \(0.927172\pi\)
\(618\) −266.925 527.133i −0.431917 0.852966i
\(619\) −283.799 283.799i −0.458480 0.458480i 0.439676 0.898156i \(-0.355093\pi\)
−0.898156 + 0.439676i \(0.855093\pi\)
\(620\) −760.416 + 274.190i −1.22648 + 0.442242i
\(621\) 371.371 37.8963i 0.598021 0.0610246i
\(622\) −231.932 + 330.179i −0.372881 + 0.530834i
\(623\) 7.74583i 0.0124331i
\(624\) −602.540 162.240i −0.965609 0.260000i
\(625\) 448.390 0.717423
\(626\) 169.001 + 118.714i 0.269970 + 0.189638i
\(627\) 134.521 252.383i 0.214547 0.402524i
\(628\) 277.680 + 770.094i 0.442166 + 1.22626i
\(629\) 195.767 195.767i 0.311235 0.311235i
\(630\) −17.5844 + 838.416i −0.0279118 + 1.33082i
\(631\) 818.322 + 818.322i 1.29687 + 1.29687i 0.930452 + 0.366414i \(0.119415\pi\)
0.366414 + 0.930452i \(0.380585\pi\)
\(632\) 793.755 + 216.516i 1.25594 + 0.342588i
\(633\) −263.287 + 493.968i −0.415936 + 0.780360i
\(634\) 915.938 160.090i 1.44470 0.252507i
\(635\) −321.200 + 321.200i −0.505828 + 0.505828i
\(636\) 18.1365 + 2.62306i 0.0285165 + 0.00412430i
\(637\) −371.807 + 740.261i −0.583684 + 1.16210i
\(638\) 177.119 + 1013.37i 0.277615 + 1.58835i
\(639\) 76.5593 389.663i 0.119811 0.609801i
\(640\) 525.761 + 197.632i 0.821501 + 0.308800i
\(641\) 962.325 1.50129 0.750643 0.660707i \(-0.229744\pi\)
0.750643 + 0.660707i \(0.229744\pi\)
\(642\) 57.9821 + 114.505i 0.0903148 + 0.178357i
\(643\) −491.770 + 491.770i −0.764806 + 0.764806i −0.977187 0.212381i \(-0.931878\pi\)
0.212381 + 0.977187i \(0.431878\pi\)
\(644\) −531.404 249.740i −0.825161 0.387794i
\(645\) 716.587 218.292i 1.11099 0.338437i
\(646\) −156.511 + 27.3552i −0.242276 + 0.0423456i
\(647\) 1220.24i 1.88599i 0.332800 + 0.942997i \(0.392007\pi\)
−0.332800 + 0.942997i \(0.607993\pi\)
\(648\) 514.169 + 394.378i 0.793471 + 0.608608i
\(649\) 526.868i 0.811814i
\(650\) 131.572 70.6825i 0.202418 0.108742i
\(651\) 1294.44 + 689.945i 1.98839 + 1.05982i
\(652\) −425.719 + 905.860i −0.652944 + 1.38936i
\(653\) 257.945i 0.395015i −0.980301 0.197507i \(-0.936715\pi\)
0.980301 0.197507i \(-0.0632846\pi\)
\(654\) 102.657 313.270i 0.156968 0.479006i
\(655\) −755.864 + 755.864i −1.15399 + 1.15399i
\(656\) 66.7781 713.957i 0.101796 1.08835i
\(657\) −219.528 43.1320i −0.334137 0.0656499i
\(658\) −1031.74 724.740i −1.56800 1.10143i
\(659\) 167.489 0.254156 0.127078 0.991893i \(-0.459440\pi\)
0.127078 + 0.991893i \(0.459440\pi\)
\(660\) 659.844 + 95.4325i 0.999764 + 0.144595i
\(661\) 87.0778 87.0778i 0.131736 0.131736i −0.638164 0.769900i \(-0.720306\pi\)
0.769900 + 0.638164i \(0.220306\pi\)
\(662\) −649.216 + 113.471i −0.980688 + 0.171407i
\(663\) 237.624 + 335.938i 0.358407 + 0.506694i
\(664\) 376.134 214.912i 0.566467 0.323663i
\(665\) −248.043 + 248.043i −0.372997 + 0.372997i
\(666\) −326.905 340.912i −0.490849 0.511879i
\(667\) −561.678 −0.842096
\(668\) 494.639 + 232.461i 0.740477 + 0.347996i
\(669\) 297.402 90.5968i 0.444547 0.135421i
\(670\) 171.967 244.812i 0.256667 0.365392i
\(671\) −818.078 + 818.078i −1.21919 + 1.21919i
\(672\) −373.765 948.234i −0.556197 1.41106i
\(673\) 632.512i 0.939840i −0.882709 0.469920i \(-0.844283\pi\)
0.882709 0.469920i \(-0.155717\pi\)
\(674\) −656.846 + 935.088i −0.974549 + 1.38737i
\(675\) −154.299 + 15.7453i −0.228591 + 0.0233264i
\(676\) −373.200 + 563.647i −0.552071 + 0.833797i
\(677\) 689.930i 1.01910i −0.860442 0.509549i \(-0.829812\pi\)
0.860442 0.509549i \(-0.170188\pi\)
\(678\) 303.659 153.764i 0.447875 0.226791i
\(679\) 918.461i 1.35267i
\(680\) −183.750 321.594i −0.270220 0.472933i
\(681\) 198.522 + 651.687i 0.291515 + 0.956956i
\(682\) 670.321 954.271i 0.982875 1.39922i
\(683\) 178.495 178.495i 0.261339 0.261339i −0.564259 0.825598i \(-0.690838\pi\)
0.825598 + 0.564259i \(0.190838\pi\)
\(684\) 41.0594 + 267.930i 0.0600284 + 0.391710i
\(685\) −538.403 −0.785990
\(686\) −307.943 + 53.8229i −0.448897 + 0.0784591i
\(687\) −987.157 + 300.715i −1.43691 + 0.437722i
\(688\) −700.946 + 581.039i −1.01882 + 0.844534i
\(689\) 8.91033 17.7403i 0.0129323 0.0257479i
\(690\) −113.356 + 345.919i −0.164284 + 0.501331i
\(691\) 639.614 639.614i 0.925635 0.925635i −0.0717849 0.997420i \(-0.522870\pi\)
0.997420 + 0.0717849i \(0.0228695\pi\)
\(692\) −277.995 770.968i −0.401727 1.11412i
\(693\) −674.503 1004.36i −0.973309 1.44929i
\(694\) −109.180 76.6928i −0.157320 0.110508i
\(695\) 121.428 + 121.428i 0.174717 + 0.174717i
\(696\) −709.399 668.864i −1.01925 0.961012i
\(697\) −334.362 + 334.362i −0.479716 + 0.479716i
\(698\) 1059.00 185.094i 1.51719 0.265177i
\(699\) −45.4778 24.2399i −0.0650612 0.0346779i
\(700\) 220.790 + 103.763i 0.315415 + 0.148233i
\(701\) 282.058 0.402365 0.201183 0.979554i \(-0.435522\pi\)
0.201183 + 0.979554i \(0.435522\pi\)
\(702\) 581.491 393.284i 0.828335 0.560233i
\(703\) 197.572i 0.281041i
\(704\) −784.565 + 202.680i −1.11444 + 0.287898i
\(705\) −367.671 + 689.809i −0.521520 + 0.978452i
\(706\) 894.759 156.388i 1.26736 0.221513i
\(707\) −1163.21 1163.21i −1.64528 1.64528i
\(708\) −298.916 399.999i −0.422198 0.564971i
\(709\) −329.957 + 329.957i −0.465383 + 0.465383i −0.900415 0.435032i \(-0.856737\pi\)
0.435032 + 0.900415i \(0.356737\pi\)
\(710\) 316.874 + 222.586i 0.446302 + 0.313502i
\(711\) −768.400 + 516.039i −1.08073 + 0.725793i
\(712\) 5.06764 2.89550i 0.00711747 0.00406671i
\(713\) 450.230 + 450.230i 0.631459 + 0.631459i
\(714\) −209.298 + 638.698i −0.293134 + 0.894535i
\(715\) 324.177 645.431i 0.453395 0.902701i
\(716\) 851.687 307.101i 1.18951 0.428912i
\(717\) 105.729 + 347.077i 0.147461 + 0.484068i
\(718\) 346.878 60.6281i 0.483117 0.0844403i
\(719\) 467.890i 0.650751i −0.945585 0.325375i \(-0.894509\pi\)
0.945585 0.325375i \(-0.105491\pi\)
\(720\) −555.099 + 301.907i −0.770971 + 0.419316i
\(721\) −739.306 739.306i −1.02539 1.02539i
\(722\) 349.835 498.026i 0.484536 0.689787i
\(723\) 343.325 104.586i 0.474862 0.144656i
\(724\) 457.321 164.901i 0.631659 0.227763i
\(725\) 233.369 0.321888
\(726\) −210.410 + 106.546i −0.289821 + 0.146757i
\(727\) 722.849 0.994290 0.497145 0.867668i \(-0.334382\pi\)
0.497145 + 0.867668i \(0.334382\pi\)
\(728\) −1102.59 + 59.2054i −1.51454 + 0.0813261i
\(729\) −713.974 + 147.247i −0.979389 + 0.201985i
\(730\) 125.401 178.521i 0.171782 0.244549i
\(731\) 600.383 0.821317
\(732\) 156.954 1085.22i 0.214418 1.48254i
\(733\) −326.050 326.050i −0.444815 0.444815i 0.448811 0.893627i \(-0.351848\pi\)
−0.893627 + 0.448811i \(0.851848\pi\)
\(734\) 10.2103 14.5355i 0.0139105 0.0198031i
\(735\) 244.449 + 802.453i 0.332584 + 1.09177i
\(736\) −35.2565 441.022i −0.0479029 0.599215i
\(737\) 431.614i 0.585636i
\(738\) 558.341 + 582.264i 0.756560 + 0.788975i
\(739\) 406.384 + 406.384i 0.549911 + 0.549911i 0.926415 0.376504i \(-0.122874\pi\)
−0.376504 + 0.926415i \(0.622874\pi\)
\(740\) 433.272 156.229i 0.585503 0.211120i
\(741\) 289.425 + 49.6104i 0.390587 + 0.0669506i
\(742\) 31.9424 5.58296i 0.0430490 0.00752420i
\(743\) −743.337 743.337i −1.00045 1.00045i −1.00000 0.000454295i \(-0.999855\pi\)
−0.000454295 1.00000i \(-0.500145\pi\)
\(744\) 32.4917 + 1104.79i 0.0436716 + 1.48493i
\(745\) 70.9852i 0.0952822i
\(746\) −500.960 351.896i −0.671529 0.471711i
\(747\) −93.9566 + 478.210i −0.125779 + 0.640174i
\(748\) 483.607 + 227.277i 0.646533 + 0.303846i
\(749\) 160.594 + 160.594i 0.214411 + 0.214411i
\(750\) 252.067 769.214i 0.336089 1.02562i
\(751\) 761.694 1.01424 0.507120 0.861876i \(-0.330710\pi\)
0.507120 + 0.861876i \(0.330710\pi\)
\(752\) 88.4747 945.925i 0.117653 1.25788i
\(753\) 7.45425 13.9853i 0.00989941 0.0185728i
\(754\) −930.482 + 499.869i −1.23406 + 0.662956i
\(755\) −190.558 −0.252394
\(756\) 1081.90 + 379.836i 1.43109 + 0.502428i
\(757\) 24.4538 0.0323036 0.0161518 0.999870i \(-0.494858\pi\)
0.0161518 + 0.999870i \(0.494858\pi\)
\(758\) −536.093 + 93.6995i −0.707247 + 0.123614i
\(759\) −153.035 502.369i −0.201628 0.661883i
\(760\) −255.002 69.5578i −0.335528 0.0915234i
\(761\) −855.917 855.917i −1.12473 1.12473i −0.991021 0.133706i \(-0.957312\pi\)
−0.133706 0.991021i \(-0.542688\pi\)
\(762\) 280.587 + 554.113i 0.368224 + 0.727183i
\(763\) 583.339i 0.764533i
\(764\) 149.938 + 415.825i 0.196254 + 0.544273i
\(765\) 408.869 + 80.3328i 0.534469 + 0.105010i
\(766\) −52.1647 298.456i −0.0681001 0.389629i
\(767\) −513.511 + 170.138i −0.669506 + 0.221823i
\(768\) 480.654 598.995i 0.625852 0.779942i
\(769\) 220.319 + 220.319i 0.286501 + 0.286501i 0.835695 0.549194i \(-0.185065\pi\)
−0.549194 + 0.835695i \(0.685065\pi\)
\(770\) 1162.13 203.120i 1.50926 0.263792i
\(771\) −37.2450 19.8518i −0.0483074 0.0257481i
\(772\) 1114.90 + 523.961i 1.44417 + 0.678706i
\(773\) −812.134 + 812.134i −1.05063 + 1.05063i −0.0519779 + 0.998648i \(0.516553\pi\)
−0.998648 + 0.0519779i \(0.983447\pi\)
\(774\) 21.4776 1024.04i 0.0277488 1.32305i
\(775\) −187.064 187.064i −0.241373 0.241373i
\(776\) −600.895 + 343.334i −0.774349 + 0.442441i
\(777\) −737.552 393.119i −0.949231 0.505944i
\(778\) 284.492 + 199.840i 0.365671 + 0.256863i
\(779\) 337.445i 0.433177i
\(780\) 120.066 + 673.934i 0.153931 + 0.864018i
\(781\) −558.662 −0.715316
\(782\) −167.699 + 238.737i −0.214449 + 0.305291i
\(783\) 1091.21 111.352i 1.39363 0.142211i
\(784\) −650.663 784.938i −0.829927 1.00120i
\(785\) 635.023 635.023i 0.808946 0.808946i
\(786\) 660.290 + 1303.97i 0.840063 + 1.65899i
\(787\) −862.612 862.612i −1.09608 1.09608i −0.994865 0.101211i \(-0.967728\pi\)
−0.101211 0.994865i \(-0.532272\pi\)
\(788\) 1019.65 + 479.198i 1.29398 + 0.608119i
\(789\) 232.420 + 123.881i 0.294576 + 0.157010i
\(790\) −155.400 889.108i −0.196709 1.12545i
\(791\) 425.883 425.883i 0.538411 0.538411i
\(792\) 404.954 816.731i 0.511305 1.03123i
\(793\) −1061.52 533.161i −1.33861 0.672335i
\(794\) 154.483 27.0008i 0.194563 0.0340061i
\(795\) −5.85821 19.2307i −0.00736882 0.0241896i
\(796\) −135.630 376.144i −0.170389 0.472543i
\(797\) −94.0730 −0.118034 −0.0590169 0.998257i \(-0.518797\pi\)
−0.0590169 + 0.998257i \(0.518797\pi\)
\(798\) 216.679 + 427.907i 0.271528 + 0.536224i
\(799\) −442.998 + 442.998i −0.554440 + 0.554440i
\(800\) 14.6486 + 183.238i 0.0183107 + 0.229048i
\(801\) −1.26587 + 6.44290i −0.00158037 + 0.00804357i
\(802\) 116.925 + 668.975i 0.145792 + 0.834133i
\(803\) 314.739i 0.391954i
\(804\) −244.874 327.682i −0.304570 0.407565i
\(805\) 644.134i 0.800166i
\(806\) 1146.54 + 345.171i 1.42251 + 0.428251i
\(807\) 399.710 749.919i 0.495304 0.929267i
\(808\) 326.196 1195.85i 0.403707 1.48001i
\(809\) 278.849i 0.344684i −0.985037 0.172342i \(-0.944867\pi\)
0.985037 0.172342i \(-0.0551334\pi\)
\(810\) 151.646 694.511i 0.187217 0.857421i
\(811\) 153.941 153.941i 0.189816 0.189816i −0.605801 0.795617i \(-0.707147\pi\)
0.795617 + 0.605801i \(0.207147\pi\)
\(812\) −1561.44 733.816i −1.92295 0.903714i
\(813\) −296.495 973.305i −0.364693 1.19718i
\(814\) −381.938 + 543.727i −0.469211 + 0.667970i
\(815\) 1098.03 1.34727
\(816\) −496.100 + 101.823i −0.607966 + 0.124783i
\(817\) 302.959 302.959i 0.370819 0.370819i
\(818\) −65.9570 377.367i −0.0806320 0.461329i
\(819\) 761.084 981.735i 0.929284 1.19870i
\(820\) −740.011 + 266.833i −0.902453 + 0.325406i
\(821\) −220.394 + 220.394i −0.268446 + 0.268446i −0.828474 0.560028i \(-0.810791\pi\)
0.560028 + 0.828474i \(0.310791\pi\)
\(822\) −229.246 + 699.571i −0.278888 + 0.851060i
\(823\) −336.446 −0.408805 −0.204402 0.978887i \(-0.565525\pi\)
−0.204402 + 0.978887i \(0.565525\pi\)
\(824\) 207.321 760.048i 0.251603 0.922388i
\(825\) 63.5839 + 208.727i 0.0770714 + 0.253002i
\(826\) −723.047 507.899i −0.875359 0.614890i
\(827\) 760.113 760.113i 0.919121 0.919121i −0.0778447 0.996965i \(-0.524804\pi\)
0.996965 + 0.0778447i \(0.0248038\pi\)
\(828\) 401.202 + 294.576i 0.484543 + 0.355768i
\(829\) 1192.06i 1.43795i 0.695035 + 0.718976i \(0.255389\pi\)
−0.695035 + 0.718976i \(0.744611\pi\)
\(830\) −388.881 273.167i −0.468531 0.329117i
\(831\) −746.566 + 1400.67i −0.898394 + 1.68553i
\(832\) −450.897 699.225i −0.541944 0.840415i
\(833\) 672.324i 0.807112i
\(834\) 209.480 106.075i 0.251175 0.127188i
\(835\) 599.569i 0.718047i
\(836\) 358.719 129.347i 0.429090 0.154721i
\(837\) −963.949 785.435i −1.15167 0.938393i
\(838\) 1192.76 + 837.849i 1.42335 + 0.999820i
\(839\) −39.3907 + 39.3907i −0.0469496 + 0.0469496i −0.730192 0.683242i \(-0.760569\pi\)
0.683242 + 0.730192i \(0.260569\pi\)
\(840\) −767.055 + 813.541i −0.913161 + 0.968501i
\(841\) −809.392 −0.962416
\(842\) 102.608 + 587.064i 0.121863 + 0.697226i
\(843\) −94.6683 310.767i −0.112299 0.368645i
\(844\) −702.091 + 253.160i −0.831861 + 0.299952i
\(845\) 733.753 + 107.534i 0.868347 + 0.127259i
\(846\) 739.749 + 771.444i 0.874408 + 0.911873i
\(847\) −295.101 + 295.101i −0.348408 + 0.348408i
\(848\) 15.5931 + 18.8110i 0.0183881 + 0.0221828i
\(849\) 731.096 + 389.678i 0.861126 + 0.458984i
\(850\) 69.6766 99.1918i 0.0819725 0.116696i
\(851\) −256.534 256.534i −0.301450 0.301450i
\(852\) 424.138 316.954i 0.497814 0.372012i
\(853\) −535.536 + 535.536i −0.627827 + 0.627827i −0.947521 0.319694i \(-0.896420\pi\)
0.319694 + 0.947521i \(0.396420\pi\)
\(854\) −334.064 1911.31i −0.391175 2.23807i
\(855\) 246.856 165.783i 0.288721 0.193898i
\(856\) −45.0348 + 165.100i −0.0526108 + 0.192873i
\(857\) 796.605 0.929527 0.464764 0.885435i \(-0.346139\pi\)
0.464764 + 0.885435i \(0.346139\pi\)
\(858\) −700.607 696.035i −0.816558 0.811229i
\(859\) 673.316i 0.783837i 0.920000 + 0.391919i \(0.128188\pi\)
−0.920000 + 0.391919i \(0.871812\pi\)
\(860\) 903.948 + 424.821i 1.05110 + 0.493978i
\(861\) 1259.71 + 671.431i 1.46308 + 0.779827i
\(862\) −9.20445 52.6624i −0.0106780 0.0610933i
\(863\) 864.784 + 864.784i 1.00207 + 1.00207i 0.999998 + 0.00206905i \(0.000658599\pi\)
0.00206905 + 0.999998i \(0.499341\pi\)
\(864\) 155.927 + 849.813i 0.180471 + 0.983580i
\(865\) −635.743 + 635.743i −0.734963 + 0.734963i
\(866\) 219.990 313.178i 0.254030 0.361638i
\(867\) −470.391 250.721i −0.542550 0.289182i
\(868\) 663.405 + 1839.83i 0.764292 + 2.11962i
\(869\) 920.754 + 920.754i 1.05956 + 1.05956i
\(870\) −333.076 + 1016.42i −0.382846 + 1.16830i
\(871\) −420.672 + 139.378i −0.482976 + 0.160021i
\(872\) 381.644 218.060i 0.437665 0.250069i
\(873\) 150.101 763.966i 0.171937 0.875104i
\(874\) 35.8464 + 205.092i 0.0410142 + 0.234659i
\(875\) 1432.35i 1.63697i
\(876\) −178.566 238.951i −0.203842 0.272775i
\(877\) −538.632 538.632i −0.614176 0.614176i 0.329856 0.944031i \(-0.393000\pi\)
−0.944031 + 0.329856i \(0.893000\pi\)
\(878\) 562.233 + 394.937i 0.640356 + 0.449814i
\(879\) −213.071 699.448i −0.242402 0.795731i
\(880\) 567.311 + 684.386i 0.644672 + 0.777711i
\(881\) −1705.76 −1.93616 −0.968082 0.250634i \(-0.919361\pi\)
−0.968082 + 0.250634i \(0.919361\pi\)
\(882\) 1146.75 + 24.0512i 1.30017 + 0.0272689i
\(883\) 224.488 0.254233 0.127117 0.991888i \(-0.459428\pi\)
0.127117 + 0.991888i \(0.459428\pi\)
\(884\) −65.3467 + 544.740i −0.0739216 + 0.616222i
\(885\) −257.665 + 483.420i −0.291147 + 0.546237i
\(886\) −460.846 323.718i −0.520142 0.365370i
\(887\) −1033.75 −1.16545 −0.582724 0.812670i \(-0.698013\pi\)
−0.582724 + 0.812670i \(0.698013\pi\)
\(888\) −18.5132 629.490i −0.0208482 0.708885i
\(889\) 777.147 + 777.147i 0.874181 + 0.874181i
\(890\) −5.23937 3.68036i −0.00588693 0.00413524i
\(891\) 396.906 + 945.646i 0.445461 + 1.06133i
\(892\) 375.162 + 176.312i 0.420585 + 0.197659i
\(893\) 447.082i 0.500652i
\(894\) −92.2343 30.2247i −0.103170 0.0338083i
\(895\) −702.304 702.304i −0.784697 0.784697i
\(896\) 478.171 1272.08i 0.533673 1.41973i
\(897\) 440.215 311.383i 0.490763 0.347138i
\(898\) −81.9278 468.743i −0.0912337 0.521985i
\(899\) 1322.92 + 1322.92i 1.47155 + 1.47155i
\(900\) −166.693 122.392i −0.185215 0.135991i
\(901\) 16.1122i 0.0178826i
\(902\) 652.334 928.665i 0.723209 1.02956i
\(903\) −528.159 1733.79i −0.584893 1.92003i
\(904\) 437.831 + 119.429i 0.484327 + 0.132112i
\(905\) −377.109 377.109i −0.416695 0.416695i
\(906\) −81.1373 + 247.600i −0.0895555 + 0.273289i
\(907\) 638.599 0.704079 0.352039 0.935985i \(-0.385488\pi\)
0.352039 + 0.935985i \(0.385488\pi\)
\(908\) −386.346 + 822.080i −0.425492 + 0.905375i
\(909\) 777.448 + 1157.65i 0.855278 + 1.27354i
\(910\) 573.251 + 1067.08i 0.629947 + 1.17261i
\(911\) −529.454 −0.581178 −0.290589 0.956848i \(-0.593851\pi\)
−0.290589 + 0.956848i \(0.593851\pi\)
\(912\) −198.956 + 301.718i −0.218154 + 0.330831i
\(913\) 685.612 0.750944
\(914\) 243.196 + 1391.42i 0.266078 + 1.52234i
\(915\) −1150.70 + 350.534i −1.25759 + 0.383097i
\(916\) −1245.26 585.226i −1.35946 0.638893i
\(917\) 1828.82 + 1828.82i 1.99435 + 1.99435i
\(918\) 278.472 497.057i 0.303346 0.541456i
\(919\) 888.214i 0.966501i −0.875482 0.483250i \(-0.839456\pi\)
0.875482 0.483250i \(-0.160544\pi\)
\(920\) −421.419 + 240.786i −0.458064 + 0.261724i
\(921\) −30.5128 100.164i −0.0331301 0.108756i
\(922\) −1418.37 + 247.905i −1.53836 + 0.268878i
\(923\) −180.405 544.499i −0.195455 0.589923i
\(924\) 230.900 1596.50i 0.249891 1.72781i
\(925\) 106.586 + 106.586i 0.115228 + 0.115228i
\(926\) 20.0391 + 114.652i 0.0216405 + 0.123814i
\(927\) 494.125 + 735.769i 0.533037 + 0.793710i
\(928\) −103.595 1295.87i −0.111633 1.39641i
\(929\) 809.963 809.963i 0.871865 0.871865i −0.120810 0.992676i \(-0.538549\pi\)
0.992676 + 0.120810i \(0.0385493\pi\)
\(930\) 1081.73 547.756i 1.16315 0.588985i
\(931\) 339.261 + 339.261i 0.364405 + 0.364405i
\(932\) −23.3074 64.6388i −0.0250080 0.0693550i
\(933\) 284.685 534.114i 0.305129 0.572470i
\(934\) −218.227 + 310.669i −0.233648 + 0.332622i
\(935\) 586.198i 0.626949i
\(936\) 926.795 + 130.945i 0.990166 + 0.139899i
\(937\) 866.894 0.925180 0.462590 0.886572i \(-0.346920\pi\)
0.462590 + 0.886572i \(0.346920\pi\)
\(938\) −592.325 416.075i −0.631477 0.443577i
\(939\) −273.385 145.715i −0.291144 0.155181i
\(940\) −980.445 + 353.528i −1.04303 + 0.376094i
\(941\) −1106.16 + 1106.16i −1.17552 + 1.17552i −0.194642 + 0.980874i \(0.562354\pi\)
−0.980874 + 0.194642i \(0.937646\pi\)
\(942\) −554.728 1095.50i −0.588884 1.16295i
\(943\) 438.149 + 438.149i 0.464633 + 0.464633i
\(944\) 62.0033 662.907i 0.0656814 0.702231i
\(945\) −127.698 1251.40i −0.135130 1.32423i
\(946\) −1419.43 + 248.090i −1.50045 + 0.262252i
\(947\) 1088.12 1088.12i 1.14902 1.14902i 0.162276 0.986745i \(-0.448117\pi\)
0.986745 0.162276i \(-0.0518835\pi\)
\(948\) −1221.42 176.653i −1.28842 0.186343i
\(949\) −306.760 + 101.637i −0.323245 + 0.107099i
\(950\) −14.8937 85.2127i −0.0156775 0.0896975i
\(951\) −1334.20 + 406.435i −1.40295 + 0.427376i
\(952\) −778.100 + 444.584i −0.817332 + 0.467000i
\(953\) −1839.51 −1.93023 −0.965116 0.261822i \(-0.915677\pi\)
−0.965116 + 0.261822i \(0.915677\pi\)
\(954\) −27.4817 0.576385i −0.0288068 0.000604177i
\(955\) 342.891 342.891i 0.359048 0.359048i
\(956\) −205.761 + 437.825i −0.215231 + 0.457976i
\(957\) −449.668 1476.12i −0.469872 1.54245i
\(958\) 54.7424 9.56799i 0.0571424 0.00998747i
\(959\) 1302.67i 1.35836i
\(960\) −818.988 197.726i −0.853112 0.205964i
\(961\) 1159.86i 1.20693i
\(962\) −653.280 196.672i −0.679085 0.204441i
\(963\) −107.335 159.826i −0.111459 0.165966i
\(964\) 433.092 + 203.537i 0.449266 + 0.211138i
\(965\) 1351.41i 1.40043i
\(966\) 836.952 + 274.265i 0.866410 + 0.283918i
\(967\) −874.943 + 874.943i −0.904801 + 0.904801i −0.995847 0.0910455i \(-0.970979\pi\)
0.0910455 + 0.995847i \(0.470979\pi\)
\(968\) −303.380 82.7543i −0.313410 0.0854899i
\(969\) 227.981 69.4494i 0.235275 0.0716712i
\(970\) 621.258 + 436.399i 0.640473 + 0.449896i
\(971\) 717.583 0.739015 0.369507 0.929228i \(-0.379526\pi\)
0.369507 + 0.929228i \(0.379526\pi\)
\(972\) −837.840 492.755i −0.861976 0.506949i
\(973\) 293.797 293.797i 0.301949 0.301949i
\(974\) 122.931 21.4862i 0.126213 0.0220597i
\(975\) −182.903 + 129.375i −0.187592 + 0.132692i
\(976\) 1125.58 933.035i 1.15326 0.955978i
\(977\) 1232.22 1232.22i 1.26122 1.26122i 0.310724 0.950500i \(-0.399429\pi\)
0.950500 0.310724i \(-0.100571\pi\)
\(978\) 467.526 1426.71i 0.478043 1.45881i
\(979\) 9.23721 0.00943536
\(980\) −475.726 + 1012.27i −0.485435 + 1.03292i
\(981\) −95.3329 + 485.215i −0.0971793 + 0.494612i
\(982\) 14.1416 20.1321i 0.0144009 0.0205011i
\(983\) −743.295 + 743.295i −0.756149 + 0.756149i −0.975619 0.219470i \(-0.929567\pi\)
0.219470 + 0.975619i \(0.429567\pi\)
\(984\) 31.6199 + 1075.14i 0.0321340 + 1.09263i
\(985\) 1235.96i 1.25478i
\(986\) −492.756 + 701.488i −0.499752 + 0.711448i
\(987\) 1669.00 + 889.583i 1.69098 + 0.901300i
\(988\) 241.907 + 307.856i 0.244845 + 0.311595i
\(989\) 786.744i 0.795494i
\(990\) −999.845 20.9701i −1.00994 0.0211820i
\(991\) 1572.92i 1.58721i −0.608434 0.793604i \(-0.708202\pi\)
0.608434 0.793604i \(-0.291798\pi\)
\(992\) −955.702 + 1121.78i −0.963409 + 1.13083i
\(993\) 945.681 288.080i 0.952347 0.290111i
\(994\) 538.549 766.680i 0.541800 0.771307i
\(995\) −310.170 + 310.170i −0.311729 + 0.311729i
\(996\) −520.519 + 388.979i −0.522609 + 0.390541i
\(997\) 866.961 0.869570 0.434785 0.900534i \(-0.356824\pi\)
0.434785 + 0.900534i \(0.356824\pi\)
\(998\) −352.033 + 61.5292i −0.352739 + 0.0616525i
\(999\) 549.242 + 447.527i 0.549792 + 0.447975i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 156.3.l.c.47.10 96
3.2 odd 2 inner 156.3.l.c.47.39 yes 96
4.3 odd 2 inner 156.3.l.c.47.34 yes 96
12.11 even 2 inner 156.3.l.c.47.15 yes 96
13.5 odd 4 inner 156.3.l.c.83.15 yes 96
39.5 even 4 inner 156.3.l.c.83.34 yes 96
52.31 even 4 inner 156.3.l.c.83.39 yes 96
156.83 odd 4 inner 156.3.l.c.83.10 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.3.l.c.47.10 96 1.1 even 1 trivial
156.3.l.c.47.15 yes 96 12.11 even 2 inner
156.3.l.c.47.34 yes 96 4.3 odd 2 inner
156.3.l.c.47.39 yes 96 3.2 odd 2 inner
156.3.l.c.83.10 yes 96 156.83 odd 4 inner
156.3.l.c.83.15 yes 96 13.5 odd 4 inner
156.3.l.c.83.34 yes 96 39.5 even 4 inner
156.3.l.c.83.39 yes 96 52.31 even 4 inner