Properties

Label 1550.2.p.d
Level $1550$
Weight $2$
Character orbit 1550.p
Analytic conductor $12.377$
Analytic rank $1$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1550,2,Mod(149,1550)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1550, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1550.149"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1550 = 2 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1550.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,0,2,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.3768123133\)
Analytic rank: \(1\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 62)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{12}^{3} q^{2} + \zeta_{12} q^{3} - q^{4} + ( - \zeta_{12}^{2} + 1) q^{6} + \zeta_{12} q^{7} + \zeta_{12}^{3} q^{8} - 2 \zeta_{12}^{2} q^{9} - 3 \zeta_{12}^{2} q^{11} - \zeta_{12} q^{12} + (5 \zeta_{12}^{3} - 5 \zeta_{12}) q^{13} + \cdots + (6 \zeta_{12}^{2} - 6) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 2 q^{6} - 4 q^{9} - 6 q^{11} + 2 q^{14} + 4 q^{16} - 14 q^{19} + 2 q^{21} - 2 q^{24} + 10 q^{26} - 24 q^{29} - 8 q^{31} - 6 q^{34} + 4 q^{36} - 20 q^{39} - 6 q^{41} + 6 q^{44} - 12 q^{49}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1550\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(1427\)
\(\chi(n)\) \(-\zeta_{12}^{2}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
149.1
−0.866025 + 0.500000i
0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
1.00000i −0.866025 + 0.500000i −1.00000 0 0.500000 + 0.866025i −0.866025 + 0.500000i 1.00000i −1.00000 + 1.73205i 0
149.2 1.00000i 0.866025 0.500000i −1.00000 0 0.500000 + 0.866025i 0.866025 0.500000i 1.00000i −1.00000 + 1.73205i 0
749.1 1.00000i 0.866025 + 0.500000i −1.00000 0 0.500000 0.866025i 0.866025 + 0.500000i 1.00000i −1.00000 1.73205i 0
749.2 1.00000i −0.866025 0.500000i −1.00000 0 0.500000 0.866025i −0.866025 0.500000i 1.00000i −1.00000 1.73205i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
31.c even 3 1 inner
155.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1550.2.p.d 4
5.b even 2 1 inner 1550.2.p.d 4
5.c odd 4 1 62.2.c.a 2
5.c odd 4 1 1550.2.e.g 2
15.e even 4 1 558.2.e.c 2
20.e even 4 1 496.2.i.e 2
31.c even 3 1 inner 1550.2.p.d 4
155.j even 6 1 inner 1550.2.p.d 4
155.o odd 12 1 62.2.c.a 2
155.o odd 12 1 1550.2.e.g 2
155.o odd 12 1 1922.2.a.b 1
155.p even 12 1 1922.2.a.a 1
465.be even 12 1 558.2.e.c 2
620.be even 12 1 496.2.i.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
62.2.c.a 2 5.c odd 4 1
62.2.c.a 2 155.o odd 12 1
496.2.i.e 2 20.e even 4 1
496.2.i.e 2 620.be even 12 1
558.2.e.c 2 15.e even 4 1
558.2.e.c 2 465.be even 12 1
1550.2.e.g 2 5.c odd 4 1
1550.2.e.g 2 155.o odd 12 1
1550.2.p.d 4 1.a even 1 1 trivial
1550.2.p.d 4 5.b even 2 1 inner
1550.2.p.d 4 31.c even 3 1 inner
1550.2.p.d 4 155.j even 6 1 inner
1922.2.a.a 1 155.p even 12 1
1922.2.a.b 1 155.o odd 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1550, [\chi])\):

\( T_{3}^{4} - T_{3}^{2} + 1 \) Copy content Toggle raw display
\( T_{7}^{4} - T_{7}^{2} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$11$ \( (T^{2} + 3 T + 9)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} - 25T^{2} + 625 \) Copy content Toggle raw display
$17$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$19$ \( (T^{2} + 7 T + 49)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( (T + 6)^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} + 4 T + 31)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} - 49T^{2} + 2401 \) Copy content Toggle raw display
$41$ \( (T^{2} + 3 T + 9)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 25T^{2} + 625 \) Copy content Toggle raw display
$47$ \( (T^{2} + 144)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} - 81T^{2} + 6561 \) Copy content Toggle raw display
$59$ \( (T^{2} + 3 T + 9)^{2} \) Copy content Toggle raw display
$61$ \( (T + 10)^{4} \) Copy content Toggle raw display
$67$ \( T^{4} - 169 T^{2} + 28561 \) Copy content Toggle raw display
$71$ \( (T^{2} - 3 T + 9)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} - 169 T^{2} + 28561 \) Copy content Toggle raw display
$79$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} - 81T^{2} + 6561 \) Copy content Toggle raw display
$89$ \( (T + 6)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
show more
show less