L(s) = 1 | − i·2-s + (0.866 + 0.5i)3-s − 4-s + (0.5 − 0.866i)6-s + (0.866 + 0.5i)7-s + i·8-s + (−1 − 1.73i)9-s + (−1.5 − 2.59i)11-s + (−0.866 − 0.5i)12-s + (−4.33 + 2.5i)13-s + (0.5 − 0.866i)14-s + 16-s + (−2.59 − 1.5i)17-s + (−1.73 + i)18-s + (−3.5 + 6.06i)19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + (0.499 + 0.288i)3-s − 0.5·4-s + (0.204 − 0.353i)6-s + (0.327 + 0.188i)7-s + 0.353i·8-s + (−0.333 − 0.577i)9-s + (−0.452 − 0.783i)11-s + (−0.249 − 0.144i)12-s + (−1.20 + 0.693i)13-s + (0.133 − 0.231i)14-s + 0.250·16-s + (−0.630 − 0.363i)17-s + (−0.408 + 0.235i)18-s + (−0.802 + 1.39i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.759 - 0.650i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.759 - 0.650i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 5 | \( 1 \) |
| 31 | \( 1 + (2 - 5.19i)T \) |
good | 3 | \( 1 + (-0.866 - 0.5i)T + (1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + (-0.866 - 0.5i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1.5 + 2.59i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (4.33 - 2.5i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (2.59 + 1.5i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3.5 - 6.06i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 23T^{2} \) |
| 29 | \( 1 + 6T + 29T^{2} \) |
| 37 | \( 1 + (-6.06 - 3.5i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.5 + 2.59i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.33 - 2.5i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 12iT - 47T^{2} \) |
| 53 | \( 1 + (7.79 - 4.5i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (1.5 - 2.59i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + 10T + 61T^{2} \) |
| 67 | \( 1 + (11.2 - 6.5i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.5 - 2.59i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-11.2 + 6.5i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-7.79 + 4.5i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 6T + 89T^{2} \) |
| 97 | \( 1 - 2iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.050133019398102179502571843807, −8.411507278648937130416585141480, −7.60058121389509469049801881583, −6.43937015299395863658424686031, −5.50548531292308467014568785590, −4.54050453330775112721863154012, −3.67913420818630152261207894454, −2.76289046709465694294026776076, −1.83019899775164290906252151275, 0,
2.03916536742807625926313588118, 2.83474652433311565140558379908, 4.39474656752294989892279453545, 4.90670875635124646282194689433, 5.89051520460781965306758479134, 6.93816700545911497925862044436, 7.77541004423454332330771047849, 7.899090518560633157924967188072, 9.131653289916896860633340548933