Properties

Label 1550.2.e.d
Level $1550$
Weight $2$
Character orbit 1550.e
Analytic conductor $12.377$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1550,2,Mod(501,1550)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1550, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1550.501"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1550 = 2 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1550.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.3768123133\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 62)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + ( - 3 \zeta_{6} + 3) q^{3} + q^{4} + (3 \zeta_{6} - 3) q^{6} + (3 \zeta_{6} - 3) q^{7} - q^{8} - 6 \zeta_{6} q^{9} + 3 \zeta_{6} q^{11} + ( - 3 \zeta_{6} + 3) q^{12} + 5 \zeta_{6} q^{13} + \cdots + ( - 18 \zeta_{6} + 18) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 3 q^{3} + 2 q^{4} - 3 q^{6} - 3 q^{7} - 2 q^{8} - 6 q^{9} + 3 q^{11} + 3 q^{12} + 5 q^{13} + 3 q^{14} + 2 q^{16} + 3 q^{17} + 6 q^{18} - 7 q^{19} + 9 q^{21} - 3 q^{22} + 8 q^{23} - 3 q^{24}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1550\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(1427\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
501.1
0.500000 + 0.866025i
0.500000 0.866025i
−1.00000 1.50000 2.59808i 1.00000 0 −1.50000 + 2.59808i −1.50000 + 2.59808i −1.00000 −3.00000 5.19615i 0
1451.1 −1.00000 1.50000 + 2.59808i 1.00000 0 −1.50000 2.59808i −1.50000 2.59808i −1.00000 −3.00000 + 5.19615i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
31.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1550.2.e.d 2
5.b even 2 1 62.2.c.b 2
5.c odd 4 2 1550.2.p.a 4
15.d odd 2 1 558.2.e.b 2
20.d odd 2 1 496.2.i.g 2
31.c even 3 1 inner 1550.2.e.d 2
155.i odd 6 1 1922.2.a.c 1
155.j even 6 1 62.2.c.b 2
155.j even 6 1 1922.2.a.e 1
155.o odd 12 2 1550.2.p.a 4
465.u odd 6 1 558.2.e.b 2
620.o odd 6 1 496.2.i.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
62.2.c.b 2 5.b even 2 1
62.2.c.b 2 155.j even 6 1
496.2.i.g 2 20.d odd 2 1
496.2.i.g 2 620.o odd 6 1
558.2.e.b 2 15.d odd 2 1
558.2.e.b 2 465.u odd 6 1
1550.2.e.d 2 1.a even 1 1 trivial
1550.2.e.d 2 31.c even 3 1 inner
1550.2.p.a 4 5.c odd 4 2
1550.2.p.a 4 155.o odd 12 2
1922.2.a.c 1 155.i odd 6 1
1922.2.a.e 1 155.j even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1550, [\chi])\):

\( T_{3}^{2} - 3T_{3} + 9 \) Copy content Toggle raw display
\( T_{7}^{2} + 3T_{7} + 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$11$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$13$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$17$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$19$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$23$ \( (T - 4)^{2} \) Copy content Toggle raw display
$29$ \( (T - 2)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 4T + 31 \) Copy content Toggle raw display
$37$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$41$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$43$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$47$ \( (T - 8)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$59$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$61$ \( (T - 6)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$71$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$73$ \( T^{2} - 7T + 49 \) Copy content Toggle raw display
$79$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$83$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$89$ \( (T - 6)^{2} \) Copy content Toggle raw display
$97$ \( (T + 14)^{2} \) Copy content Toggle raw display
show more
show less