L(s) = 1 | − 2-s + (1.5 + 2.59i)3-s + 4-s + (−1.5 − 2.59i)6-s + (−1.5 − 2.59i)7-s − 8-s + (−3 + 5.19i)9-s + (1.5 − 2.59i)11-s + (1.5 + 2.59i)12-s + (2.5 − 4.33i)13-s + (1.5 + 2.59i)14-s + 16-s + (1.5 + 2.59i)17-s + (3 − 5.19i)18-s + (−3.5 − 6.06i)19-s + ⋯ |
L(s) = 1 | − 0.707·2-s + (0.866 + 1.49i)3-s + 0.5·4-s + (−0.612 − 1.06i)6-s + (−0.566 − 0.981i)7-s − 0.353·8-s + (−1 + 1.73i)9-s + (0.452 − 0.783i)11-s + (0.433 + 0.749i)12-s + (0.693 − 1.20i)13-s + (0.400 + 0.694i)14-s + 0.250·16-s + (0.363 + 0.630i)17-s + (0.707 − 1.22i)18-s + (−0.802 − 1.39i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.970 - 0.242i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.970 - 0.242i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.557388645\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.557388645\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 5 | \( 1 \) |
| 31 | \( 1 + (-2 - 5.19i)T \) |
good | 3 | \( 1 + (-1.5 - 2.59i)T + (-1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + (1.5 + 2.59i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.5 + 2.59i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.5 + 4.33i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.5 - 2.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3.5 + 6.06i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 4T + 23T^{2} \) |
| 29 | \( 1 - 2T + 29T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.5 + 7.79i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 8T + 47T^{2} \) |
| 53 | \( 1 + (1.5 - 2.59i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (1.5 + 2.59i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 - 6T + 61T^{2} \) |
| 67 | \( 1 + (1.5 - 2.59i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.5 + 0.866i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-3.5 + 6.06i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-2.5 + 4.33i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 6T + 89T^{2} \) |
| 97 | \( 1 + 14T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.400532687095453127680890499248, −8.748572182046043934737968065037, −8.316115792887110502293531384250, −7.27467291218636123288388393236, −6.30824855979043637895948867889, −5.24255841094099411474680145174, −4.11909092469512741639154040748, −3.43474117563923714093981951373, −2.73475127062637814312660478101, −0.78741968891294778729276024837,
1.22720013501620624514225641620, 2.11074717237648254619311801577, 2.85927476941320107729774456271, 4.08146242983836378487279421890, 5.82305616963007530066873494108, 6.50166608988406819120841605408, 7.03396242678118190309843241181, 7.953143473278664439508058534772, 8.540756854176018731855620390925, 9.304035029967151177625657420809