Properties

Label 155.7.c.a.154.1
Level $155$
Weight $7$
Character 155.154
Analytic conductor $35.658$
Analytic rank $0$
Dimension $2$
CM discriminant -31
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [155,7,Mod(154,155)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("155.154"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(155, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 7, names="a")
 
Level: \( N \) \(=\) \( 155 = 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 155.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,66,246] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(35.6583829611\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-31}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 154.1
Root \(0.500000 + 2.78388i\) of defining polynomial
Character \(\chi\) \(=\) 155.154
Dual form 155.7.c.a.154.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.56776i q^{2} +33.0000 q^{4} +(123.000 - 22.2711i) q^{5} -534.505i q^{7} -540.073i q^{8} -729.000 q^{9} +(-124.000 - 684.835i) q^{10} -2976.00 q^{14} -895.000 q^{16} +4058.90i q^{18} -10618.0 q^{19} +(4059.00 - 734.945i) q^{20} +(14633.0 - 5478.68i) q^{25} -17638.7i q^{28} +29791.0 q^{31} -29581.5i q^{32} +(-11904.0 - 65744.2i) q^{35} -24057.0 q^{36} +59118.5i q^{38} +(-12028.0 - 66429.0i) q^{40} -60558.0 q^{41} +(-89667.0 + 16235.6i) q^{45} +116611. i q^{47} -168047. q^{49} +(-30504.0 - 81473.1i) q^{50} -288672. q^{56} +136842. q^{59} -165869. i q^{62} +389654. i q^{63} -221983. q^{64} -586486. i q^{67} +(-366048. + 66278.7i) q^{70} -284178. q^{71} +393713. i q^{72} -350394. q^{76} +(-110085. + 19932.6i) q^{80} +531441. q^{81} +337173. i q^{82} +(90396.0 + 499245. i) q^{90} +649264. q^{94} +(-1.30601e6 + 236474. i) q^{95} +254692. i q^{97} +935646. i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 66 q^{4} + 246 q^{5} - 1458 q^{9} - 248 q^{10} - 5952 q^{14} - 1790 q^{16} - 21236 q^{19} + 8118 q^{20} + 29266 q^{25} + 59582 q^{31} - 23808 q^{35} - 48114 q^{36} - 24056 q^{40} - 121116 q^{41} - 179334 q^{45}+ \cdots - 2612028 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/155\mathbb{Z}\right)^\times\).

\(n\) \(32\) \(96\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.56776i 0.695971i −0.937500 0.347985i \(-0.886866\pi\)
0.937500 0.347985i \(-0.113134\pi\)
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 33.0000 0.515625
\(5\) 123.000 22.2711i 0.984000 0.178168i
\(6\) 0 0
\(7\) 534.505i 1.55832i −0.626822 0.779162i \(-0.715645\pi\)
0.626822 0.779162i \(-0.284355\pi\)
\(8\) 540.073i 1.05483i
\(9\) −729.000 −1.00000
\(10\) −124.000 684.835i −0.124000 0.684835i
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) −2976.00 −1.08455
\(15\) 0 0
\(16\) −895.000 −0.218506
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 4058.90i 0.695971i
\(19\) −10618.0 −1.54804 −0.774020 0.633162i \(-0.781757\pi\)
−0.774020 + 0.633162i \(0.781757\pi\)
\(20\) 4059.00 734.945i 0.507375 0.0918681i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 14633.0 5478.68i 0.936512 0.350636i
\(26\) 0 0
\(27\) 0 0
\(28\) 17638.7i 0.803511i
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 29791.0 1.00000
\(32\) 29581.5i 0.902757i
\(33\) 0 0
\(34\) 0 0
\(35\) −11904.0 65744.2i −0.277644 1.53339i
\(36\) −24057.0 −0.515625
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 59118.5i 1.07739i
\(39\) 0 0
\(40\) −12028.0 66429.0i −0.187938 1.03795i
\(41\) −60558.0 −0.878658 −0.439329 0.898326i \(-0.644784\pi\)
−0.439329 + 0.898326i \(0.644784\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) −89667.0 + 16235.6i −0.984000 + 0.178168i
\(46\) 0 0
\(47\) 116611.i 1.12317i 0.827418 + 0.561587i \(0.189809\pi\)
−0.827418 + 0.561587i \(0.810191\pi\)
\(48\) 0 0
\(49\) −168047. −1.42838
\(50\) −30504.0 81473.1i −0.244032 0.651785i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −288672. −1.64377
\(57\) 0 0
\(58\) 0 0
\(59\) 136842. 0.666290 0.333145 0.942876i \(-0.391890\pi\)
0.333145 + 0.942876i \(0.391890\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 165869.i 0.695971i
\(63\) 389654.i 1.55832i
\(64\) −221983. −0.846798
\(65\) 0 0
\(66\) 0 0
\(67\) 586486.i 1.94999i −0.222218 0.974997i \(-0.571330\pi\)
0.222218 0.974997i \(-0.428670\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −366048. + 66278.7i −1.06720 + 0.193232i
\(71\) −284178. −0.793991 −0.396995 0.917821i \(-0.629947\pi\)
−0.396995 + 0.917821i \(0.629947\pi\)
\(72\) 393713.i 1.05483i
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −350394. −0.798208
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) −110085. + 19932.6i −0.215010 + 0.0389309i
\(81\) 531441. 1.00000
\(82\) 337173.i 0.611520i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 90396.0 + 499245.i 0.124000 + 0.684835i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 649264. 0.781696
\(95\) −1.30601e6 + 236474.i −1.52327 + 0.275812i
\(96\) 0 0
\(97\) 254692.i 0.279061i 0.990218 + 0.139531i \(0.0445594\pi\)
−0.990218 + 0.139531i \(0.955441\pi\)
\(98\) 935646.i 0.994108i
\(99\) 0 0
\(100\) 482889. 180796.i 0.482889 0.180796i
\(101\) −1.14350e6 −1.10987 −0.554934 0.831894i \(-0.687256\pi\)
−0.554934 + 0.831894i \(0.687256\pi\)
\(102\) 0 0
\(103\) 2.11049e6i 1.93140i −0.259658 0.965701i \(-0.583610\pi\)
0.259658 0.965701i \(-0.416390\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.44701e6i 1.99749i −0.0500921 0.998745i \(-0.515951\pi\)
0.0500921 0.998745i \(-0.484049\pi\)
\(108\) 0 0
\(109\) 199942. 0.154392 0.0771960 0.997016i \(-0.475403\pi\)
0.0771960 + 0.997016i \(0.475403\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 478382.i 0.340503i
\(113\) 106990.i 0.0741495i −0.999312 0.0370748i \(-0.988196\pi\)
0.999312 0.0370748i \(-0.0118040\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 761904.i 0.463718i
\(119\) 0 0
\(120\) 0 0
\(121\) 1.77156e6 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 983103. 0.515625
\(125\) 1.67784e6 999770.i 0.859056 0.511882i
\(126\) 2.16950e6 1.08455
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 657269.i 0.313410i
\(129\) 0 0
\(130\) 0 0
\(131\) 4.47658e6 1.99128 0.995641 0.0932711i \(-0.0297323\pi\)
0.995641 + 0.0932711i \(0.0297323\pi\)
\(132\) 0 0
\(133\) 5.67538e6i 2.41235i
\(134\) −3.26542e6 −1.35714
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) −392832. 2.16956e6i −0.143160 0.790655i
\(141\) 0 0
\(142\) 1.58224e6i 0.552594i
\(143\) 0 0
\(144\) 652455. 0.218506
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.42500e6 1.63999 0.819995 0.572371i \(-0.193976\pi\)
0.819995 + 0.572371i \(0.193976\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 5.73450e6i 1.63292i
\(153\) 0 0
\(154\) 0 0
\(155\) 3.66429e6 663477.i 0.984000 0.178168i
\(156\) 0 0
\(157\) 4.31332e6i 1.11459i −0.830316 0.557293i \(-0.811840\pi\)
0.830316 0.557293i \(-0.188160\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −658812. 3.63853e6i −0.160843 0.888313i
\(161\) 0 0
\(162\) 2.95894e6i 0.695971i
\(163\) 8.46403e6i 1.95440i 0.212313 + 0.977202i \(0.431900\pi\)
−0.212313 + 0.977202i \(0.568100\pi\)
\(164\) −1.99841e6 −0.453058
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −4.82681e6 −1.00000
\(170\) 0 0
\(171\) 7.74052e6 1.54804
\(172\) 0 0
\(173\) 2.31632e6i 0.447364i 0.974662 + 0.223682i \(0.0718077\pi\)
−0.974662 + 0.223682i \(0.928192\pi\)
\(174\) 0 0
\(175\) −2.92838e6 7.82142e6i −0.546404 1.45939i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) −2.95901e6 + 535775.i −0.507375 + 0.0918681i
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 3.84817e6i 0.579136i
\(189\) 0 0
\(190\) 1.31663e6 + 7.27158e6i 0.191957 + 1.06015i
\(191\) 1.38582e7 1.98888 0.994439 0.105316i \(-0.0335855\pi\)
0.994439 + 0.105316i \(0.0335855\pi\)
\(192\) 0 0
\(193\) 1.29479e7i 1.80105i 0.434803 + 0.900525i \(0.356818\pi\)
−0.434803 + 0.900525i \(0.643182\pi\)
\(194\) 1.41806e6 0.194219
\(195\) 0 0
\(196\) −5.54555e6 −0.736506
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −2.95889e6 7.90289e6i −0.369861 0.987861i
\(201\) 0 0
\(202\) 6.36673e6i 0.772435i
\(203\) 0 0
\(204\) 0 0
\(205\) −7.44863e6 + 1.34869e6i −0.864600 + 0.156549i
\(206\) −1.17507e7 −1.34420
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 1.23363e7 1.31322 0.656608 0.754232i \(-0.271991\pi\)
0.656608 + 0.754232i \(0.271991\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −1.36244e7 −1.39019
\(215\) 0 0
\(216\) 0 0
\(217\) 1.59234e7i 1.55832i
\(218\) 1.11323e6i 0.107452i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) −1.58115e7 −1.40679
\(225\) −1.06675e7 + 3.99396e6i −0.936512 + 0.350636i
\(226\) −595696. −0.0516059
\(227\) 1.78880e7i 1.52927i −0.644465 0.764634i \(-0.722920\pi\)
0.644465 0.764634i \(-0.277080\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.50056e7i 1.97683i −0.151776 0.988415i \(-0.548499\pi\)
0.151776 0.988415i \(-0.451501\pi\)
\(234\) 0 0
\(235\) 2.59706e6 + 1.43432e7i 0.200114 + 1.10520i
\(236\) 4.51579e6 0.343556
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 9.86363e6i 0.695971i
\(243\) 0 0
\(244\) 0 0
\(245\) −2.06698e7 + 3.74258e6i −1.40552 + 0.254492i
\(246\) 0 0
\(247\) 0 0
\(248\) 1.60893e7i 1.05483i
\(249\) 0 0
\(250\) −5.56648e6 9.34183e6i −0.356255 0.597877i
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 1.28586e7i 0.803511i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −1.78664e7 −1.06492
\(257\) 3.01634e7i 1.77697i 0.458903 + 0.888486i \(0.348242\pi\)
−0.458903 + 0.888486i \(0.651758\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 2.49246e7i 1.38587i
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 3.15992e7 1.67892
\(267\) 0 0
\(268\) 1.93540e7i 1.00547i
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) −2.17176e7 −1.00000
\(280\) −3.55067e7 + 6.42903e6i −1.61747 + 0.292868i
\(281\) 4.39536e7 1.98096 0.990479 0.137663i \(-0.0439591\pi\)
0.990479 + 0.137663i \(0.0439591\pi\)
\(282\) 0 0
\(283\) 2.97200e7i 1.31126i 0.755082 + 0.655630i \(0.227597\pi\)
−0.755082 + 0.655630i \(0.772403\pi\)
\(284\) −9.37787e6 −0.409401
\(285\) 0 0
\(286\) 0 0
\(287\) 3.23686e7i 1.36923i
\(288\) 2.15649e7i 0.902757i
\(289\) −2.41376e7 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4.50204e7i 1.78981i −0.446260 0.894903i \(-0.647244\pi\)
0.446260 0.894903i \(-0.352756\pi\)
\(294\) 0 0
\(295\) 1.68316e7 3.04762e6i 0.655629 0.118712i
\(296\) 0 0
\(297\) 0 0
\(298\) 3.02051e7i 1.14138i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 9.50311e6 0.338256
\(305\) 0 0
\(306\) 0 0
\(307\) 4.12199e7i 1.42459i 0.701878 + 0.712297i \(0.252345\pi\)
−0.701878 + 0.712297i \(0.747655\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −3.69408e6 2.04019e7i −0.124000 0.684835i
\(311\) 4.45334e7 1.48049 0.740243 0.672339i \(-0.234710\pi\)
0.740243 + 0.672339i \(0.234710\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) −2.40156e7 −0.775718
\(315\) 8.67802e6 + 4.79275e7i 0.277644 + 1.53339i
\(316\) 0 0
\(317\) 1.52237e7i 0.477907i 0.971031 + 0.238954i \(0.0768044\pi\)
−0.971031 + 0.238954i \(0.923196\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −2.73039e7 + 4.94380e6i −0.833249 + 0.150873i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 1.75376e7 0.515625
\(325\) 0 0
\(326\) 4.71257e7 1.36021
\(327\) 0 0
\(328\) 3.27057e7i 0.926835i
\(329\) 6.23293e7 1.75027
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1.30617e7 7.21378e7i −0.347427 1.91879i
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 2.68745e7i 0.695971i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 4.30974e7i 1.07739i
\(343\) 2.69380e7i 0.667549i
\(344\) 0 0
\(345\) 0 0
\(346\) 1.28967e7 0.311352
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) −6.55690e7 −1.54249 −0.771245 0.636539i \(-0.780366\pi\)
−0.771245 + 0.636539i \(0.780366\pi\)
\(350\) −4.35478e7 + 1.63046e7i −1.01569 + 0.380281i
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) −3.49539e7 + 6.32894e6i −0.781287 + 0.141464i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 7.57593e7 1.63739 0.818696 0.574227i \(-0.194697\pi\)
0.818696 + 0.574227i \(0.194697\pi\)
\(360\) 8.76841e6 + 4.84267e7i 0.187938 + 1.03795i
\(361\) 6.56960e7 1.39642
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 4.41468e7 0.878658
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 2.95313e7i 0.569057i −0.958668 0.284529i \(-0.908163\pi\)
0.958668 0.284529i \(-0.0918371\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 6.29786e7 1.18476
\(377\) 0 0
\(378\) 0 0
\(379\) 1.08388e8 1.99096 0.995480 0.0949732i \(-0.0302766\pi\)
0.995480 + 0.0949732i \(0.0302766\pi\)
\(380\) −4.30985e7 + 7.80364e6i −0.785436 + 0.142215i
\(381\) 0 0
\(382\) 7.71594e7i 1.38420i
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 7.20906e7 1.25348
\(387\) 0 0
\(388\) 8.40483e6i 0.143891i
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 9.07577e7i 1.50669i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 3.86288e7i 0.617362i 0.951166 + 0.308681i \(0.0998876\pi\)
−0.951166 + 0.308681i \(0.900112\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −1.30965e7 + 4.90342e6i −0.204633 + 0.0766159i
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −3.77354e7 −0.572276
\(405\) 6.53672e7 1.18358e7i 0.984000 0.178168i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 7.50919e6 + 4.14722e7i 0.108954 + 0.601736i
\(411\) 0 0
\(412\) 6.96463e7i 0.995879i
\(413\) 7.31428e7i 1.03830i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1.38240e8 −1.87928 −0.939638 0.342169i \(-0.888838\pi\)
−0.939638 + 0.342169i \(0.888838\pi\)
\(420\) 0 0
\(421\) −9.09868e6 −0.121936 −0.0609680 0.998140i \(-0.519419\pi\)
−0.0609680 + 0.998140i \(0.519419\pi\)
\(422\) 6.86854e7i 0.913960i
\(423\) 8.50096e7i 1.12317i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 8.07513e7i 1.02996i
\(429\) 0 0
\(430\) 0 0
\(431\) 9.32758e6 0.116503 0.0582515 0.998302i \(-0.481447\pi\)
0.0582515 + 0.998302i \(0.481447\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) −8.86580e7 −1.08455
\(435\) 0 0
\(436\) 6.59809e6 0.0796083
\(437\) 0 0
\(438\) 0 0
\(439\) −1.65523e8 −1.95643 −0.978214 0.207599i \(-0.933435\pi\)
−0.978214 + 0.207599i \(0.933435\pi\)
\(440\) 0 0
\(441\) 1.22506e8 1.42838
\(442\) 0 0
\(443\) 1.22971e8i 1.41447i −0.706980 0.707233i \(-0.749943\pi\)
0.706980 0.707233i \(-0.250057\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 1.18651e8i 1.31959i
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 2.22374e7 + 5.93939e7i 0.244032 + 0.651785i
\(451\) 0 0
\(452\) 3.53068e6i 0.0382334i
\(453\) 0 0
\(454\) −9.95961e7 −1.06433
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −1.39225e8 −1.37582
\(467\) 1.55952e8i 1.53123i 0.643297 + 0.765616i \(0.277566\pi\)
−0.643297 + 0.765616i \(0.722434\pi\)
\(468\) 0 0
\(469\) −3.13480e8 −3.03872
\(470\) 7.98595e7 1.44598e7i 0.769189 0.139274i
\(471\) 0 0
\(472\) 7.39047e7i 0.702823i
\(473\) 0 0
\(474\) 0 0
\(475\) −1.55373e8 + 5.81726e7i −1.44976 + 0.542797i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 7.32899e7 0.666865 0.333432 0.942774i \(-0.391793\pi\)
0.333432 + 0.942774i \(0.391793\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 5.84615e7 0.515625
\(485\) 5.67226e6 + 3.13271e7i 0.0497199 + 0.274596i
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 2.08378e7 + 1.15084e8i 0.177119 + 0.978202i
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −2.66629e7 −0.218506
\(497\) 1.51895e8i 1.23730i
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 5.53688e7 3.29924e7i 0.442951 0.263939i
\(501\) 0 0
\(502\) 0 0
\(503\) 1.53188e7i 0.120371i 0.998187 + 0.0601855i \(0.0191692\pi\)
−0.998187 + 0.0601855i \(0.980831\pi\)
\(504\) 2.10442e8 1.64377
\(505\) −1.40650e8 + 2.54669e7i −1.09211 + 0.197743i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 5.74109e7i 0.427744i
\(513\) 0 0
\(514\) 1.67943e8 1.23672
\(515\) −4.70029e7 2.59591e8i −0.344115 1.90050i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 6.88046e7 0.486524 0.243262 0.969961i \(-0.421782\pi\)
0.243262 + 0.969961i \(0.421782\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 1.47727e8 1.02675
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −1.48036e8 −1.00000
\(530\) 0 0
\(531\) −9.97578e7 −0.666290
\(532\) 1.87287e8i 1.24387i
\(533\) 0 0
\(534\) 0 0
\(535\) −5.44975e7 3.00982e8i −0.355890 1.96553i
\(536\) −3.16745e8 −2.05691
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −3.01836e8 −1.90625 −0.953124 0.302580i \(-0.902152\pi\)
−0.953124 + 0.302580i \(0.902152\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.45929e7 4.45292e6i 0.151922 0.0275078i
\(546\) 0 0
\(547\) 1.45575e8i 0.889457i −0.895665 0.444729i \(-0.853300\pi\)
0.895665 0.444729i \(-0.146700\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 1.20919e8i 0.695971i
\(559\) 0 0
\(560\) 1.06541e7 + 5.88410e7i 0.0606669 + 0.335055i
\(561\) 0 0
\(562\) 2.44723e8i 1.37869i
\(563\) 3.26319e8i 1.82859i 0.405046 + 0.914296i \(0.367255\pi\)
−0.405046 + 0.914296i \(0.632745\pi\)
\(564\) 0 0
\(565\) −2.38278e6 1.31598e7i −0.0132111 0.0729632i
\(566\) 1.65474e8 0.912599
\(567\) 2.84058e8i 1.55832i
\(568\) 1.53477e8i 0.837525i
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 1.80221e8 0.952947
\(575\) 0 0
\(576\) 1.61826e8 0.846798
\(577\) 2.85403e8i 1.48570i 0.669459 + 0.742849i \(0.266526\pi\)
−0.669459 + 0.742849i \(0.733474\pi\)
\(578\) 1.34392e8i 0.695971i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −2.50663e8 −1.24565
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) −3.16321e8 −1.54804
\(590\) −1.69684e7 9.37142e7i −0.0826200 0.456299i
\(591\) 0 0
\(592\) 0 0
\(593\) 3.51053e8i 1.68348i −0.539883 0.841740i \(-0.681531\pi\)
0.539883 0.841740i \(-0.318469\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.79025e8 0.845620
\(597\) 0 0
\(598\) 0 0
\(599\) 2.87376e8 1.33712 0.668558 0.743660i \(-0.266912\pi\)
0.668558 + 0.743660i \(0.266912\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 4.27548e8i 1.94999i
\(604\) 0 0
\(605\) 2.17902e8 3.94545e7i 0.984000 0.178168i
\(606\) 0 0
\(607\) 4.38108e8i 1.95891i −0.201657 0.979456i \(-0.564633\pi\)
0.201657 0.979456i \(-0.435367\pi\)
\(608\) 3.14097e8i 1.39750i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 2.29502e8 0.991476
\(615\) 0 0
\(616\) 0 0
\(617\) 1.78161e8i 0.758505i −0.925293 0.379252i \(-0.876181\pi\)
0.925293 0.379252i \(-0.123819\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 1.20922e8 2.18947e7i 0.507375 0.0918681i
\(621\) 0 0
\(622\) 2.47951e8i 1.03037i
\(623\) 0 0
\(624\) 0 0
\(625\) 1.84109e8 1.60339e8i 0.754109 0.656749i
\(626\) 0 0
\(627\) 0 0
\(628\) 1.42340e8i 0.574708i
\(629\) 0 0
\(630\) 2.66849e8 4.83171e7i 1.06720 0.193232i
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 8.47622e7 0.332609
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 2.07166e8 0.793991
\(640\) −1.46381e7 8.08441e7i −0.0558398 0.308396i
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 2.87017e8i 1.05483i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 2.79313e8i 1.00774i
\(653\) 2.35311e8i 0.845090i 0.906342 + 0.422545i \(0.138863\pi\)
−0.906342 + 0.422545i \(0.861137\pi\)
\(654\) 0 0
\(655\) 5.50620e8 9.96982e7i 1.95942 0.354784i
\(656\) 5.41994e7 0.191992
\(657\) 0 0
\(658\) 3.47035e8i 1.21814i
\(659\) 5.69810e8 1.99101 0.995505 0.0947082i \(-0.0301918\pi\)
0.995505 + 0.0947082i \(0.0301918\pi\)
\(660\) 0 0
\(661\) −3.43513e8 −1.18943 −0.594715 0.803937i \(-0.702735\pi\)
−0.594715 + 0.803937i \(0.702735\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.26397e8 + 6.98072e8i 0.429804 + 2.37375i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) −4.01646e8 + 7.27243e7i −1.33542 + 0.241799i
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −1.59285e8 −0.515625
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 1.36134e8 0.434868
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 6.37188e8i 1.99989i 0.0106906 + 0.999943i \(0.496597\pi\)
−0.0106906 + 0.999943i \(0.503403\pi\)
\(684\) 2.55437e8 0.798208
\(685\) 0 0
\(686\) 1.49984e8 0.464594
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 3.40452e8 1.03186 0.515931 0.856630i \(-0.327446\pi\)
0.515931 + 0.856630i \(0.327446\pi\)
\(692\) 7.64387e7i 0.230672i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 3.65073e8i 1.07353i
\(699\) 0 0
\(700\) −9.66367e7 2.58107e8i −0.281740 0.752498i
\(701\) −3.75583e8 −1.09032 −0.545158 0.838333i \(-0.683530\pi\)
−0.545158 + 0.838333i \(0.683530\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.11206e8i 1.72953i
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 3.52381e7 + 1.94615e8i 0.0984548 + 0.543753i
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 4.21810e8i 1.13958i
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 8.02520e7 1.45309e7i 0.215010 0.0389309i
\(721\) −1.12807e9 −3.00975
\(722\) 3.65780e8i 0.971871i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 7.30472e8i 1.90108i 0.310603 + 0.950540i \(0.399469\pi\)
−0.310603 + 0.950540i \(0.600531\pi\)
\(728\) 0 0
\(729\) −3.87420e8 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 7.85782e8i 1.99522i −0.0691253 0.997608i \(-0.522021\pi\)
0.0691253 0.997608i \(-0.477979\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 2.45799e8i 0.611520i
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 6.67275e8 1.20821e8i 1.61375 0.292194i
\(746\) −1.64423e8 −0.396047
\(747\) 0 0
\(748\) 0 0
\(749\) −1.30794e9 −3.11274
\(750\) 0 0
\(751\) −7.88264e8 −1.86102 −0.930512 0.366262i \(-0.880638\pi\)
−0.930512 + 0.366262i \(0.880638\pi\)
\(752\) 1.04367e8i 0.245420i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 6.03477e8i 1.38565i
\(759\) 0 0
\(760\) 1.27713e8 + 7.05343e8i 0.290935 + 1.60679i
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 1.06870e8i 0.240593i
\(764\) 4.57322e8 1.02551
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −2.75984e8 −0.606884 −0.303442 0.952850i \(-0.598136\pi\)
−0.303442 + 0.952850i \(0.598136\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 4.27279e8i 0.928667i
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 4.35932e8 1.63215e8i 0.936512 0.350636i
\(776\) 1.37552e8 0.294362
\(777\) 0 0
\(778\) 0 0
\(779\) 6.43005e8 1.36020
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 1.50402e8 0.312109
\(785\) −9.60623e7 5.30539e8i −0.198584 1.09675i
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −5.71868e7 −0.115549
\(792\) 0 0
\(793\) 0 0
\(794\) 2.15076e8 0.429666
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −1.62068e8 4.32867e8i −0.316539 0.845442i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 6.17573e8i 1.17072i
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) −6.58987e7 3.63949e8i −0.124000 0.684835i
\(811\) −3.12332e8 −0.585537 −0.292769 0.956183i \(-0.594577\pi\)
−0.292769 + 0.956183i \(0.594577\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.88503e8 + 1.04108e9i 0.348213 + 1.92313i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) −2.45805e8 + 4.45068e7i −0.445809 + 0.0807207i
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) −1.13982e9 −2.03730
\(825\) 0 0
\(826\) −4.07242e8 −0.722624
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 7.69686e8i 1.30792i
\(839\) −1.27524e8 −0.215926 −0.107963 0.994155i \(-0.534433\pi\)
−0.107963 + 0.994155i \(0.534433\pi\)
\(840\) 0 0
\(841\) 5.94823e8 1.00000
\(842\) 5.06593e7i 0.0848639i
\(843\) 0 0
\(844\) 4.07097e8 0.677127
\(845\) −5.93698e8 + 1.07498e8i −0.984000 + 0.178168i
\(846\) −4.73313e8 −0.781696
\(847\) 9.46909e8i 1.55832i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 8.85731e8i 1.42710i −0.700603 0.713551i \(-0.747086\pi\)
0.700603 0.713551i \(-0.252914\pi\)
\(854\) 0 0
\(855\) 9.52084e8 1.72390e8i 1.52327 0.275812i
\(856\) −1.32156e9 −2.10701
\(857\) 1.11974e9i 1.77899i −0.456943 0.889496i \(-0.651056\pi\)
0.456943 0.889496i \(-0.348944\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 5.19338e7i 0.0810827i
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 5.15870e7 + 2.84908e8i 0.0797061 + 0.440206i
\(866\) 0 0
\(867\) 0 0
\(868\) 5.25474e8i 0.803511i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 1.07983e8i 0.162857i
\(873\) 1.85670e8i 0.279061i
\(874\) 0 0
\(875\) −5.34382e8 8.96816e8i −0.797679 1.33869i
\(876\) 0 0
\(877\) 1.34139e9i 1.98865i 0.106396 + 0.994324i \(0.466069\pi\)
−0.106396 + 0.994324i \(0.533931\pi\)
\(878\) 9.21591e8i 1.36162i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 6.82086e8i 0.994108i
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −6.84675e8 −0.984427
\(887\) 5.82243e8i 0.834322i −0.908833 0.417161i \(-0.863025\pi\)
0.908833 0.417161i \(-0.136975\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.23818e9i 1.73872i
\(894\) 0 0
\(895\) 0 0
\(896\) −3.51314e8 −0.488395
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −3.52026e8 + 1.31801e8i −0.482889 + 0.180796i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −5.77825e7 −0.0782152
\(905\) 0 0
\(906\) 0 0
\(907\) 1.01488e9i 1.36017i 0.733133 + 0.680085i \(0.238057\pi\)
−0.733133 + 0.680085i \(0.761943\pi\)
\(908\) 5.90303e8i 0.788529i
\(909\) 8.33610e8 1.10987
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.39276e9i 3.10306i
\(918\) 0 0
\(919\) −1.18759e9 −1.53010 −0.765051 0.643970i \(-0.777286\pi\)
−0.765051 + 0.643970i \(0.777286\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 1.53855e9i 1.93140i
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 1.78432e9 2.21118
\(932\) 8.25184e8i 1.01930i
\(933\) 0 0
\(934\) 8.68306e8 1.06569
\(935\) 0 0
\(936\) 0 0
\(937\) 1.61984e9i 1.96904i 0.175285 + 0.984518i \(0.443915\pi\)
−0.175285 + 0.984518i \(0.556085\pi\)
\(938\) 1.74538e9i 2.11486i
\(939\) 0 0
\(940\) 8.57028e7 + 4.73325e8i 0.103184 + 0.569870i
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −1.22474e8 −0.145588
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 3.23891e8 + 8.65081e8i 0.377771 + 1.00899i
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 1.70456e9 3.08638e8i 1.95706 0.354355i
\(956\) 0 0
\(957\) 0 0
\(958\) 4.08061e8i 0.464118i
\(959\) 0 0
\(960\) 0 0
\(961\) 8.87504e8 1.00000
\(962\) 0 0
\(963\) 1.78387e9i 1.99749i
\(964\) 0 0
\(965\) 2.88362e8 + 1.59259e9i 0.320890 + 1.77223i
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 9.56773e8i 1.05483i
\(969\) 0 0
\(970\) 1.74422e8 3.15818e7i 0.191111 0.0346036i
\(971\) 1.72259e9 1.88159 0.940795 0.338976i \(-0.110080\pi\)
0.940795 + 0.338976i \(0.110080\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.31292e9i 1.40784i 0.710277 + 0.703922i \(0.248570\pi\)
−0.710277 + 0.703922i \(0.751430\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −6.82103e8 + 1.23505e8i −0.724722 + 0.131222i
\(981\) −1.45758e8 −0.154392
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 8.81263e8i 0.902757i
\(993\) 0 0
\(994\) 8.45714e8 0.861121
\(995\) 0 0
\(996\) 0 0
\(997\) 1.70630e9i 1.72175i 0.508818 + 0.860874i \(0.330083\pi\)
−0.508818 + 0.860874i \(0.669917\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 155.7.c.a.154.1 2
5.4 even 2 inner 155.7.c.a.154.2 yes 2
31.30 odd 2 CM 155.7.c.a.154.1 2
155.154 odd 2 inner 155.7.c.a.154.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
155.7.c.a.154.1 2 1.1 even 1 trivial
155.7.c.a.154.1 2 31.30 odd 2 CM
155.7.c.a.154.2 yes 2 5.4 even 2 inner
155.7.c.a.154.2 yes 2 155.154 odd 2 inner