Defining parameters
Level: | \( N \) | = | \( 155 = 5 \cdot 31 \) |
Weight: | \( k \) | = | \( 7 \) |
Nonzero newspaces: | \( 12 \) | ||
Sturm bound: | \(13440\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{7}(\Gamma_1(155))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 5880 | 5354 | 526 |
Cusp forms | 5640 | 5182 | 458 |
Eisenstein series | 240 | 172 | 68 |
Trace form
Decomposition of \(S_{7}^{\mathrm{new}}(\Gamma_1(155))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
155.7.c | \(\chi_{155}(154, \cdot)\) | 155.7.c.a | 2 | 1 |
155.7.c.b | 2 | |||
155.7.c.c | 2 | |||
155.7.c.d | 4 | |||
155.7.c.e | 84 | |||
155.7.d | \(\chi_{155}(61, \cdot)\) | 155.7.d.a | 64 | 1 |
155.7.g | \(\chi_{155}(32, \cdot)\) | n/a | 180 | 2 |
155.7.i | \(\chi_{155}(99, \cdot)\) | n/a | 188 | 2 |
155.7.k | \(\chi_{155}(6, \cdot)\) | n/a | 128 | 2 |
155.7.l | \(\chi_{155}(46, \cdot)\) | n/a | 256 | 4 |
155.7.m | \(\chi_{155}(29, \cdot)\) | n/a | 376 | 4 |
155.7.o | \(\chi_{155}(67, \cdot)\) | n/a | 376 | 4 |
155.7.s | \(\chi_{155}(2, \cdot)\) | n/a | 752 | 8 |
155.7.t | \(\chi_{155}(11, \cdot)\) | n/a | 512 | 8 |
155.7.v | \(\chi_{155}(24, \cdot)\) | n/a | 752 | 8 |
155.7.w | \(\chi_{155}(7, \cdot)\) | n/a | 1504 | 16 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{7}^{\mathrm{old}}(\Gamma_1(155))\) into lower level spaces
\( S_{7}^{\mathrm{old}}(\Gamma_1(155)) \cong \) \(S_{7}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(31))\)\(^{\oplus 2}\)