Properties

Label 155.7
Level 155
Weight 7
Dimension 5182
Nonzero newspaces 12
Sturm bound 13440
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 155 = 5 \cdot 31 \)
Weight: \( k \) = \( 7 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(13440\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(\Gamma_1(155))\).

Total New Old
Modular forms 5880 5354 526
Cusp forms 5640 5182 458
Eisenstein series 240 172 68

Trace form

\( 5182 q - 10 q^{2} - 90 q^{3} - 30 q^{4} + 95 q^{5} + 1014 q^{6} - 1130 q^{7} - 3750 q^{8} - 30 q^{9} + 8695 q^{10} + 2014 q^{11} - 6990 q^{12} - 3950 q^{13} - 30 q^{14} + 135 q^{15} + 1462 q^{16} + 6530 q^{17}+ \cdots + 13019970 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{7}^{\mathrm{new}}(\Gamma_1(155))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
155.7.c \(\chi_{155}(154, \cdot)\) 155.7.c.a 2 1
155.7.c.b 2
155.7.c.c 2
155.7.c.d 4
155.7.c.e 84
155.7.d \(\chi_{155}(61, \cdot)\) 155.7.d.a 64 1
155.7.g \(\chi_{155}(32, \cdot)\) n/a 180 2
155.7.i \(\chi_{155}(99, \cdot)\) n/a 188 2
155.7.k \(\chi_{155}(6, \cdot)\) n/a 128 2
155.7.l \(\chi_{155}(46, \cdot)\) n/a 256 4
155.7.m \(\chi_{155}(29, \cdot)\) n/a 376 4
155.7.o \(\chi_{155}(67, \cdot)\) n/a 376 4
155.7.s \(\chi_{155}(2, \cdot)\) n/a 752 8
155.7.t \(\chi_{155}(11, \cdot)\) n/a 512 8
155.7.v \(\chi_{155}(24, \cdot)\) n/a 752 8
155.7.w \(\chi_{155}(7, \cdot)\) n/a 1504 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{7}^{\mathrm{old}}(\Gamma_1(155))\) into lower level spaces

\( S_{7}^{\mathrm{old}}(\Gamma_1(155)) \cong \) \(S_{7}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(31))\)\(^{\oplus 2}\)