Properties

Label 1547.2.a.h
Level $1547$
Weight $2$
Character orbit 1547.a
Self dual yes
Analytic conductor $12.353$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1547,2,Mod(1,1547)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1547.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1547, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1547 = 7 \cdot 13 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1547.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.3528571927\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - x^{13} - 21 x^{12} + 18 x^{11} + 170 x^{10} - 121 x^{9} - 672 x^{8} + 383 x^{7} + 1362 x^{6} + \cdots - 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{13}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + ( - \beta_{5} + 1) q^{3} + (\beta_{2} + 1) q^{4} + (\beta_{9} - \beta_1 + 1) q^{5} + (\beta_{13} - \beta_{12}) q^{6} - q^{7} + ( - \beta_{3} - \beta_1) q^{8} + ( - \beta_{5} - \beta_{4} + 1) q^{9}+ \cdots + ( - \beta_{13} - 4 \beta_{11} + \cdots - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - q^{2} + 8 q^{3} + 15 q^{4} + 8 q^{5} - 2 q^{6} - 14 q^{7} - 6 q^{8} + 14 q^{9} + 23 q^{10} - q^{11} + 16 q^{12} + 14 q^{13} + q^{14} + 3 q^{15} + 13 q^{16} - 14 q^{17} + 9 q^{18} + 16 q^{20} - 8 q^{21}+ \cdots - 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{14} - x^{13} - 21 x^{12} + 18 x^{11} + 170 x^{10} - 121 x^{9} - 672 x^{8} + 383 x^{7} + 1362 x^{6} + \cdots - 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 5\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 459 \nu^{13} - 743 \nu^{12} - 9019 \nu^{11} + 13138 \nu^{10} + 66822 \nu^{9} - 83851 \nu^{8} + \cdots + 10848 ) / 1936 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 461 \nu^{13} + 277 \nu^{12} + 9401 \nu^{11} - 4130 \nu^{10} - 72434 \nu^{9} + 19605 \nu^{8} + \cdots - 18576 ) / 1936 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 137 \nu^{13} - 23 \nu^{12} - 2935 \nu^{11} + 52 \nu^{10} + 24084 \nu^{9} + 2985 \nu^{8} - 94890 \nu^{7} + \cdots + 13666 ) / 242 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 1227 \nu^{13} - 395 \nu^{12} - 25511 \nu^{11} + 4502 \nu^{10} + 201614 \nu^{9} - 7363 \nu^{8} + \cdots + 86016 ) / 1936 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 549 \nu^{13} - 141 \nu^{12} + 11931 \nu^{11} + 4296 \nu^{10} - 99142 \nu^{9} - 44063 \nu^{8} + \cdots - 63368 ) / 968 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 839 \nu^{13} + 291 \nu^{12} + 17711 \nu^{11} - 3362 \nu^{10} - 142838 \nu^{9} + 5183 \nu^{8} + \cdots - 62984 ) / 968 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 839 \nu^{13} + 291 \nu^{12} + 17711 \nu^{11} - 3362 \nu^{10} - 142838 \nu^{9} + 5183 \nu^{8} + \cdots - 56208 ) / 968 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 2261 \nu^{13} + 989 \nu^{12} + 47313 \nu^{11} - 12642 \nu^{10} - 378098 \nu^{9} + 36205 \nu^{8} + \cdots - 166800 ) / 1936 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 1997 \nu^{13} + 549 \nu^{12} + 42385 \nu^{11} - 5250 \nu^{10} - 343954 \nu^{9} - 7531 \nu^{8} + \cdots - 173752 ) / 968 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 2089 \nu^{13} + 409 \nu^{12} + 44469 \nu^{11} - 2282 \nu^{10} - 362042 \nu^{9} - 30775 \nu^{8} + \cdots - 188504 ) / 968 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{10} - \beta_{9} + 7\beta_{2} + \beta _1 + 14 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{10} - \beta_{9} + \beta_{8} + \beta_{6} - \beta_{5} - \beta_{4} + 8\beta_{3} + \beta_{2} + 30\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - \beta_{13} + \beta_{12} + 11 \beta_{10} - 12 \beta_{9} + \beta_{8} - \beta_{7} - 2 \beta_{5} + \cdots + 77 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 3 \beta_{13} + 3 \beta_{12} + \beta_{11} + 12 \beta_{10} - 12 \beta_{9} + 11 \beta_{8} - \beta_{7} + \cdots + 14 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 18 \beta_{13} + 15 \beta_{12} + 94 \beta_{10} - 102 \beta_{9} + 16 \beta_{8} - 17 \beta_{7} + \cdots + 463 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 55 \beta_{13} + 52 \beta_{12} + 14 \beta_{11} + 111 \beta_{10} - 108 \beta_{9} + 97 \beta_{8} + \cdots + 152 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 218 \beta_{13} + 163 \beta_{12} + 3 \beta_{11} + 740 \beta_{10} - 776 \beta_{9} + 180 \beta_{8} + \cdots + 2937 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 665 \beta_{13} + 604 \beta_{12} + 136 \beta_{11} + 946 \beta_{10} - 881 \beta_{9} + 804 \beta_{8} + \cdots + 1479 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 2224 \beta_{13} + 1564 \beta_{12} + 60 \beta_{11} + 5631 \beta_{10} - 5656 \beta_{9} + 1742 \beta_{8} + \cdots + 19273 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( - 6726 \beta_{13} + 5922 \beta_{12} + 1154 \beta_{11} + 7780 \beta_{10} - 6903 \beta_{9} + 6495 \beta_{8} + \cdots + 13409 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.73449
2.49389
1.94832
1.84525
1.03606
0.763968
0.741427
−0.251178
−0.928177
−1.21849
−1.45104
−1.75738
−2.42571
−2.53142
−2.73449 2.01064 5.47744 −2.91387 −5.49809 −1.00000 −9.50904 1.04269 7.96796
1.2 −2.49389 −1.95087 4.21946 −0.130680 4.86524 −1.00000 −5.53509 0.805889 0.325900
1.3 −1.94832 2.63220 1.79596 4.26177 −5.12838 −1.00000 0.397533 3.92850 −8.30329
1.4 −1.84525 0.190787 1.40495 0.404876 −0.352050 −1.00000 1.09801 −2.96360 −0.747099
1.5 −1.03606 3.24035 −0.926589 −2.65021 −3.35718 −1.00000 3.03211 7.49986 2.74577
1.6 −0.763968 −0.659044 −1.41635 0.942629 0.503488 −1.00000 2.60998 −2.56566 −0.720138
1.7 −0.741427 0.0297094 −1.45029 −3.52109 −0.0220274 −1.00000 2.55814 −2.99912 2.61063
1.8 0.251178 −0.591218 −1.93691 4.10786 −0.148501 −1.00000 −0.988866 −2.65046 1.03181
1.9 0.928177 −0.220764 −1.13849 −2.93688 −0.204908 −1.00000 −2.91307 −2.95126 −2.72594
1.10 1.21849 −2.84736 −0.515287 0.858057 −3.46948 −1.00000 −3.06485 5.10748 1.04553
1.11 1.45104 2.30173 0.105519 1.10695 3.33990 −1.00000 −2.74897 2.29795 1.60623
1.12 1.75738 3.17512 1.08839 3.71259 5.57990 −1.00000 −1.60204 7.08138 6.52444
1.13 2.42571 −1.40624 3.88409 3.84382 −3.41113 −1.00000 4.57025 −1.02249 9.32400
1.14 2.53142 2.09496 4.40809 0.914190 5.30322 −1.00000 6.09589 1.38885 2.31420
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.14
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( +1 \)
\(13\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1547.2.a.h 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1547.2.a.h 14 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1547))\):

\( T_{2}^{14} + T_{2}^{13} - 21 T_{2}^{12} - 18 T_{2}^{11} + 170 T_{2}^{10} + 121 T_{2}^{9} - 672 T_{2}^{8} + \cdots - 64 \) Copy content Toggle raw display
\( T_{3}^{14} - 8 T_{3}^{13} + 4 T_{3}^{12} + 112 T_{3}^{11} - 222 T_{3}^{10} - 455 T_{3}^{9} + 1309 T_{3}^{8} + \cdots + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{14} + T^{13} + \cdots - 64 \) Copy content Toggle raw display
$3$ \( T^{14} - 8 T^{13} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{14} - 8 T^{13} + \cdots - 864 \) Copy content Toggle raw display
$7$ \( (T + 1)^{14} \) Copy content Toggle raw display
$11$ \( T^{14} + T^{13} + \cdots - 2036624 \) Copy content Toggle raw display
$13$ \( (T - 1)^{14} \) Copy content Toggle raw display
$17$ \( (T + 1)^{14} \) Copy content Toggle raw display
$19$ \( T^{14} - 131 T^{12} + \cdots - 366992 \) Copy content Toggle raw display
$23$ \( T^{14} - 3 T^{13} + \cdots - 32722944 \) Copy content Toggle raw display
$29$ \( T^{14} - 4 T^{13} + \cdots + 2048 \) Copy content Toggle raw display
$31$ \( T^{14} - 2 T^{13} + \cdots + 1949216 \) Copy content Toggle raw display
$37$ \( T^{14} - 33 T^{13} + \cdots + 4885248 \) Copy content Toggle raw display
$41$ \( T^{14} + \cdots + 13399947744 \) Copy content Toggle raw display
$43$ \( T^{14} + \cdots - 105573537 \) Copy content Toggle raw display
$47$ \( T^{14} + \cdots - 1058174992 \) Copy content Toggle raw display
$53$ \( T^{14} + \cdots - 23532088987 \) Copy content Toggle raw display
$59$ \( T^{14} + \cdots - 107821312 \) Copy content Toggle raw display
$61$ \( T^{14} + \cdots - 5483333508 \) Copy content Toggle raw display
$67$ \( T^{14} + \cdots + 165549109952 \) Copy content Toggle raw display
$71$ \( T^{14} + \cdots + 19446007808 \) Copy content Toggle raw display
$73$ \( T^{14} + \cdots + 14959110784 \) Copy content Toggle raw display
$79$ \( T^{14} + \cdots - 1492381152256 \) Copy content Toggle raw display
$83$ \( T^{14} + \cdots + 3360225630096 \) Copy content Toggle raw display
$89$ \( T^{14} + \cdots + 134640710704 \) Copy content Toggle raw display
$97$ \( T^{14} + \cdots - 98640492192 \) Copy content Toggle raw display
show more
show less