Properties

Label 2-1547-1.1-c1-0-19
Degree $2$
Conductor $1547$
Sign $1$
Analytic cond. $12.3528$
Root an. cond. $3.51466$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.84·2-s + 0.190·3-s + 1.40·4-s + 0.404·5-s − 0.352·6-s − 7-s + 1.09·8-s − 2.96·9-s − 0.747·10-s + 1.35·11-s + 0.268·12-s + 13-s + 1.84·14-s + 0.0772·15-s − 4.83·16-s − 17-s + 5.46·18-s + 5.97·19-s + 0.568·20-s − 0.190·21-s − 2.50·22-s − 1.48·23-s + 0.209·24-s − 4.83·25-s − 1.84·26-s − 1.13·27-s − 1.40·28-s + ⋯
L(s)  = 1  − 1.30·2-s + 0.110·3-s + 0.702·4-s + 0.181·5-s − 0.143·6-s − 0.377·7-s + 0.388·8-s − 0.987·9-s − 0.236·10-s + 0.409·11-s + 0.0773·12-s + 0.277·13-s + 0.493·14-s + 0.0199·15-s − 1.20·16-s − 0.242·17-s + 1.28·18-s + 1.36·19-s + 0.127·20-s − 0.0416·21-s − 0.534·22-s − 0.310·23-s + 0.0427·24-s − 0.967·25-s − 0.361·26-s − 0.218·27-s − 0.265·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1547 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1547 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1547\)    =    \(7 \cdot 13 \cdot 17\)
Sign: $1$
Analytic conductor: \(12.3528\)
Root analytic conductor: \(3.51466\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1547,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7276393653\)
\(L(\frac12)\) \(\approx\) \(0.7276393653\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + T \)
13 \( 1 - T \)
17 \( 1 + T \)
good2 \( 1 + 1.84T + 2T^{2} \)
3 \( 1 - 0.190T + 3T^{2} \)
5 \( 1 - 0.404T + 5T^{2} \)
11 \( 1 - 1.35T + 11T^{2} \)
19 \( 1 - 5.97T + 19T^{2} \)
23 \( 1 + 1.48T + 23T^{2} \)
29 \( 1 - 3.39T + 29T^{2} \)
31 \( 1 + 6.53T + 31T^{2} \)
37 \( 1 - 2.63T + 37T^{2} \)
41 \( 1 - 6.97T + 41T^{2} \)
43 \( 1 - 11.6T + 43T^{2} \)
47 \( 1 - 4.38T + 47T^{2} \)
53 \( 1 + 6.19T + 53T^{2} \)
59 \( 1 + 7.60T + 59T^{2} \)
61 \( 1 + 2.45T + 61T^{2} \)
67 \( 1 - 2.18T + 67T^{2} \)
71 \( 1 + 3.38T + 71T^{2} \)
73 \( 1 + 4.33T + 73T^{2} \)
79 \( 1 - 16.8T + 79T^{2} \)
83 \( 1 + 12.7T + 83T^{2} \)
89 \( 1 - 3.20T + 89T^{2} \)
97 \( 1 - 11.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.192894225601649820798446332138, −8.998718453976729842778120014296, −7.86850293942570301419110978973, −7.45195766017243166299147504349, −6.29173029492820514733246944190, −5.60323735062276626460093169692, −4.32509788070823349646957159717, −3.18576505222552204071068295890, −2.04641532659661082029077685816, −0.72619481056459892713839576370, 0.72619481056459892713839576370, 2.04641532659661082029077685816, 3.18576505222552204071068295890, 4.32509788070823349646957159717, 5.60323735062276626460093169692, 6.29173029492820514733246944190, 7.45195766017243166299147504349, 7.86850293942570301419110978973, 8.998718453976729842778120014296, 9.192894225601649820798446332138

Graph of the $Z$-function along the critical line