Properties

Label 1536.2.j.e.385.1
Level $1536$
Weight $2$
Character 1536.385
Analytic conductor $12.265$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1536,2,Mod(385,1536)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1536.385"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1536, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1536 = 2^{9} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1536.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-8,0,0,0,0,0,0,0,8,0,0,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2650217505\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 385.1
Root \(-0.382683 + 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 1536.385
Dual form 1536.2.j.e.1153.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{3} +(-2.84776 - 2.84776i) q^{5} +4.61313i q^{7} -1.00000i q^{9} +(1.08239 + 1.08239i) q^{11} +(3.94495 - 3.94495i) q^{13} +4.02734 q^{15} +1.29769 q^{17} +(-3.08239 + 3.08239i) q^{19} +(-3.26197 - 3.26197i) q^{21} -4.00000i q^{23} +11.2195i q^{25} +(0.707107 + 0.707107i) q^{27} +(-1.31703 + 1.31703i) q^{29} -2.77791 q^{31} -1.53073 q^{33} +(13.1371 - 13.1371i) q^{35} +(-2.81204 - 2.81204i) q^{37} +5.57900i q^{39} +3.03188i q^{41} +(2.14386 + 2.14386i) q^{43} +(-2.84776 + 2.84776i) q^{45} -9.65685 q^{47} -14.2809 q^{49} +(-0.917608 + 0.917608i) q^{51} +(-6.07401 - 6.07401i) q^{53} -6.16478i q^{55} -4.35916i q^{57} +(-4.05468 - 4.05468i) q^{59} +(-5.40743 + 5.40743i) q^{61} +4.61313 q^{63} -22.4685 q^{65} +(-6.21946 + 6.21946i) q^{67} +(2.82843 + 2.82843i) q^{69} -6.88311i q^{71} +3.50114i q^{73} +(-7.93336 - 7.93336i) q^{75} +(-4.99321 + 4.99321i) q^{77} -8.18252 q^{79} -1.00000 q^{81} +(-2.91761 + 2.91761i) q^{83} +(-3.69552 - 3.69552i) q^{85} -1.86256i q^{87} +7.98642i q^{89} +(18.1985 + 18.1985i) q^{91} +(1.96428 - 1.96428i) q^{93} +17.5558 q^{95} -1.40461 q^{97} +(1.08239 - 1.08239i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{5} + 8 q^{13} - 16 q^{19} - 8 q^{29} + 16 q^{31} + 32 q^{35} + 8 q^{37} - 16 q^{43} - 8 q^{45} - 32 q^{47} - 8 q^{49} - 16 q^{51} + 8 q^{53} + 32 q^{59} + 8 q^{61} + 16 q^{63} - 16 q^{65} + 32 q^{67}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1536\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(517\) \(1025\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 + 0.707107i −0.408248 + 0.408248i
\(4\) 0 0
\(5\) −2.84776 2.84776i −1.27356 1.27356i −0.944209 0.329348i \(-0.893171\pi\)
−0.329348 0.944209i \(-0.606829\pi\)
\(6\) 0 0
\(7\) 4.61313i 1.74360i 0.489864 + 0.871799i \(0.337046\pi\)
−0.489864 + 0.871799i \(0.662954\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 1.08239 + 1.08239i 0.326354 + 0.326354i 0.851198 0.524845i \(-0.175877\pi\)
−0.524845 + 0.851198i \(0.675877\pi\)
\(12\) 0 0
\(13\) 3.94495 3.94495i 1.09413 1.09413i 0.0990490 0.995083i \(-0.468420\pi\)
0.995083 0.0990490i \(-0.0315800\pi\)
\(14\) 0 0
\(15\) 4.02734 1.03985
\(16\) 0 0
\(17\) 1.29769 0.314737 0.157368 0.987540i \(-0.449699\pi\)
0.157368 + 0.987540i \(0.449699\pi\)
\(18\) 0 0
\(19\) −3.08239 + 3.08239i −0.707149 + 0.707149i −0.965935 0.258786i \(-0.916678\pi\)
0.258786 + 0.965935i \(0.416678\pi\)
\(20\) 0 0
\(21\) −3.26197 3.26197i −0.711821 0.711821i
\(22\) 0 0
\(23\) 4.00000i 0.834058i −0.908893 0.417029i \(-0.863071\pi\)
0.908893 0.417029i \(-0.136929\pi\)
\(24\) 0 0
\(25\) 11.2195i 2.24389i
\(26\) 0 0
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) 0 0
\(29\) −1.31703 + 1.31703i −0.244565 + 0.244565i −0.818736 0.574170i \(-0.805325\pi\)
0.574170 + 0.818736i \(0.305325\pi\)
\(30\) 0 0
\(31\) −2.77791 −0.498927 −0.249464 0.968384i \(-0.580254\pi\)
−0.249464 + 0.968384i \(0.580254\pi\)
\(32\) 0 0
\(33\) −1.53073 −0.266467
\(34\) 0 0
\(35\) 13.1371 13.1371i 2.22057 2.22057i
\(36\) 0 0
\(37\) −2.81204 2.81204i −0.462296 0.462296i 0.437111 0.899407i \(-0.356002\pi\)
−0.899407 + 0.437111i \(0.856002\pi\)
\(38\) 0 0
\(39\) 5.57900i 0.893355i
\(40\) 0 0
\(41\) 3.03188i 0.473499i 0.971571 + 0.236750i \(0.0760821\pi\)
−0.971571 + 0.236750i \(0.923918\pi\)
\(42\) 0 0
\(43\) 2.14386 + 2.14386i 0.326936 + 0.326936i 0.851420 0.524484i \(-0.175742\pi\)
−0.524484 + 0.851420i \(0.675742\pi\)
\(44\) 0 0
\(45\) −2.84776 + 2.84776i −0.424519 + 0.424519i
\(46\) 0 0
\(47\) −9.65685 −1.40860 −0.704298 0.709904i \(-0.748738\pi\)
−0.704298 + 0.709904i \(0.748738\pi\)
\(48\) 0 0
\(49\) −14.2809 −2.04013
\(50\) 0 0
\(51\) −0.917608 + 0.917608i −0.128491 + 0.128491i
\(52\) 0 0
\(53\) −6.07401 6.07401i −0.834330 0.834330i 0.153776 0.988106i \(-0.450857\pi\)
−0.988106 + 0.153776i \(0.950857\pi\)
\(54\) 0 0
\(55\) 6.16478i 0.831259i
\(56\) 0 0
\(57\) 4.35916i 0.577385i
\(58\) 0 0
\(59\) −4.05468 4.05468i −0.527874 0.527874i 0.392064 0.919938i \(-0.371761\pi\)
−0.919938 + 0.392064i \(0.871761\pi\)
\(60\) 0 0
\(61\) −5.40743 + 5.40743i −0.692350 + 0.692350i −0.962748 0.270399i \(-0.912845\pi\)
0.270399 + 0.962748i \(0.412845\pi\)
\(62\) 0 0
\(63\) 4.61313 0.581199
\(64\) 0 0
\(65\) −22.4685 −2.78688
\(66\) 0 0
\(67\) −6.21946 + 6.21946i −0.759828 + 0.759828i −0.976291 0.216463i \(-0.930548\pi\)
0.216463 + 0.976291i \(0.430548\pi\)
\(68\) 0 0
\(69\) 2.82843 + 2.82843i 0.340503 + 0.340503i
\(70\) 0 0
\(71\) 6.88311i 0.816874i −0.912786 0.408437i \(-0.866074\pi\)
0.912786 0.408437i \(-0.133926\pi\)
\(72\) 0 0
\(73\) 3.50114i 0.409778i 0.978785 + 0.204889i \(0.0656833\pi\)
−0.978785 + 0.204889i \(0.934317\pi\)
\(74\) 0 0
\(75\) −7.93336 7.93336i −0.916065 0.916065i
\(76\) 0 0
\(77\) −4.99321 + 4.99321i −0.569029 + 0.569029i
\(78\) 0 0
\(79\) −8.18252 −0.920606 −0.460303 0.887762i \(-0.652259\pi\)
−0.460303 + 0.887762i \(0.652259\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −2.91761 + 2.91761i −0.320249 + 0.320249i −0.848863 0.528614i \(-0.822712\pi\)
0.528614 + 0.848863i \(0.322712\pi\)
\(84\) 0 0
\(85\) −3.69552 3.69552i −0.400835 0.400835i
\(86\) 0 0
\(87\) 1.86256i 0.199687i
\(88\) 0 0
\(89\) 7.98642i 0.846559i 0.905999 + 0.423280i \(0.139121\pi\)
−0.905999 + 0.423280i \(0.860879\pi\)
\(90\) 0 0
\(91\) 18.1985 + 18.1985i 1.90773 + 1.90773i
\(92\) 0 0
\(93\) 1.96428 1.96428i 0.203686 0.203686i
\(94\) 0 0
\(95\) 17.5558 1.80119
\(96\) 0 0
\(97\) −1.40461 −0.142617 −0.0713084 0.997454i \(-0.522717\pi\)
−0.0713084 + 0.997454i \(0.522717\pi\)
\(98\) 0 0
\(99\) 1.08239 1.08239i 0.108785 0.108785i
\(100\) 0 0
\(101\) 0.323814 + 0.323814i 0.0322207 + 0.0322207i 0.723034 0.690813i \(-0.242747\pi\)
−0.690813 + 0.723034i \(0.742747\pi\)
\(102\) 0 0
\(103\) 7.77563i 0.766155i 0.923716 + 0.383078i \(0.125136\pi\)
−0.923716 + 0.383078i \(0.874864\pi\)
\(104\) 0 0
\(105\) 18.5786i 1.81309i
\(106\) 0 0
\(107\) −10.3978 10.3978i −1.00520 1.00520i −0.999986 0.00520923i \(-0.998342\pi\)
−0.00520923 0.999986i \(-0.501658\pi\)
\(108\) 0 0
\(109\) 0.773374 0.773374i 0.0740758 0.0740758i −0.669098 0.743174i \(-0.733319\pi\)
0.743174 + 0.669098i \(0.233319\pi\)
\(110\) 0 0
\(111\) 3.97682 0.377463
\(112\) 0 0
\(113\) 7.65685 0.720296 0.360148 0.932895i \(-0.382726\pi\)
0.360148 + 0.932895i \(0.382726\pi\)
\(114\) 0 0
\(115\) −11.3910 + 11.3910i −1.06222 + 1.06222i
\(116\) 0 0
\(117\) −3.94495 3.94495i −0.364711 0.364711i
\(118\) 0 0
\(119\) 5.98642i 0.548775i
\(120\) 0 0
\(121\) 8.65685i 0.786987i
\(122\) 0 0
\(123\) −2.14386 2.14386i −0.193305 0.193305i
\(124\) 0 0
\(125\) 17.7115 17.7115i 1.58417 1.58417i
\(126\) 0 0
\(127\) −0.900845 −0.0799371 −0.0399685 0.999201i \(-0.512726\pi\)
−0.0399685 + 0.999201i \(0.512726\pi\)
\(128\) 0 0
\(129\) −3.03188 −0.266942
\(130\) 0 0
\(131\) −11.1161 + 11.1161i −0.971222 + 0.971222i −0.999597 0.0283751i \(-0.990967\pi\)
0.0283751 + 0.999597i \(0.490967\pi\)
\(132\) 0 0
\(133\) −14.2195 14.2195i −1.23298 1.23298i
\(134\) 0 0
\(135\) 4.02734i 0.346618i
\(136\) 0 0
\(137\) 1.76377i 0.150689i 0.997158 + 0.0753447i \(0.0240057\pi\)
−0.997158 + 0.0753447i \(0.975994\pi\)
\(138\) 0 0
\(139\) −12.9932 12.9932i −1.10207 1.10207i −0.994161 0.107909i \(-0.965584\pi\)
−0.107909 0.994161i \(-0.534416\pi\)
\(140\) 0 0
\(141\) 6.82843 6.82843i 0.575057 0.575057i
\(142\) 0 0
\(143\) 8.53996 0.714147
\(144\) 0 0
\(145\) 7.50114 0.622936
\(146\) 0 0
\(147\) 10.0981 10.0981i 0.832881 0.832881i
\(148\) 0 0
\(149\) −1.19090 1.19090i −0.0975627 0.0975627i 0.656641 0.754203i \(-0.271977\pi\)
−0.754203 + 0.656641i \(0.771977\pi\)
\(150\) 0 0
\(151\) 10.3118i 0.839165i −0.907717 0.419582i \(-0.862177\pi\)
0.907717 0.419582i \(-0.137823\pi\)
\(152\) 0 0
\(153\) 1.29769i 0.104912i
\(154\) 0 0
\(155\) 7.91082 + 7.91082i 0.635412 + 0.635412i
\(156\) 0 0
\(157\) −9.64047 + 9.64047i −0.769393 + 0.769393i −0.978000 0.208607i \(-0.933107\pi\)
0.208607 + 0.978000i \(0.433107\pi\)
\(158\) 0 0
\(159\) 8.58995 0.681227
\(160\) 0 0
\(161\) 18.4525 1.45426
\(162\) 0 0
\(163\) 2.24489 2.24489i 0.175834 0.175834i −0.613703 0.789537i \(-0.710321\pi\)
0.789537 + 0.613703i \(0.210321\pi\)
\(164\) 0 0
\(165\) 4.35916 + 4.35916i 0.339360 + 0.339360i
\(166\) 0 0
\(167\) 18.4170i 1.42515i 0.701595 + 0.712576i \(0.252472\pi\)
−0.701595 + 0.712576i \(0.747528\pi\)
\(168\) 0 0
\(169\) 18.1252i 1.39425i
\(170\) 0 0
\(171\) 3.08239 + 3.08239i 0.235716 + 0.235716i
\(172\) 0 0
\(173\) −7.80231 + 7.80231i −0.593198 + 0.593198i −0.938494 0.345296i \(-0.887779\pi\)
0.345296 + 0.938494i \(0.387779\pi\)
\(174\) 0 0
\(175\) −51.7568 −3.91245
\(176\) 0 0
\(177\) 5.73418 0.431008
\(178\) 0 0
\(179\) 0.562609 0.562609i 0.0420514 0.0420514i −0.685768 0.727820i \(-0.740534\pi\)
0.727820 + 0.685768i \(0.240534\pi\)
\(180\) 0 0
\(181\) −3.71191 3.71191i −0.275904 0.275904i 0.555568 0.831471i \(-0.312501\pi\)
−0.831471 + 0.555568i \(0.812501\pi\)
\(182\) 0 0
\(183\) 7.64725i 0.565301i
\(184\) 0 0
\(185\) 16.0160i 1.17752i
\(186\) 0 0
\(187\) 1.40461 + 1.40461i 0.102715 + 0.102715i
\(188\) 0 0
\(189\) −3.26197 + 3.26197i −0.237274 + 0.237274i
\(190\) 0 0
\(191\) 25.0060 1.80937 0.904687 0.426077i \(-0.140105\pi\)
0.904687 + 0.426077i \(0.140105\pi\)
\(192\) 0 0
\(193\) 22.9378 1.65110 0.825549 0.564331i \(-0.190866\pi\)
0.825549 + 0.564331i \(0.190866\pi\)
\(194\) 0 0
\(195\) 15.8876 15.8876i 1.13774 1.13774i
\(196\) 0 0
\(197\) −10.6443 10.6443i −0.758376 0.758376i 0.217651 0.976027i \(-0.430161\pi\)
−0.976027 + 0.217651i \(0.930161\pi\)
\(198\) 0 0
\(199\) 19.7485i 1.39993i −0.714176 0.699966i \(-0.753198\pi\)
0.714176 0.699966i \(-0.246802\pi\)
\(200\) 0 0
\(201\) 8.79565i 0.620397i
\(202\) 0 0
\(203\) −6.07560 6.07560i −0.426424 0.426424i
\(204\) 0 0
\(205\) 8.63405 8.63405i 0.603028 0.603028i
\(206\) 0 0
\(207\) −4.00000 −0.278019
\(208\) 0 0
\(209\) −6.67271 −0.461561
\(210\) 0 0
\(211\) 0.663643 0.663643i 0.0456870 0.0456870i −0.683894 0.729581i \(-0.739715\pi\)
0.729581 + 0.683894i \(0.239715\pi\)
\(212\) 0 0
\(213\) 4.86709 + 4.86709i 0.333488 + 0.333488i
\(214\) 0 0
\(215\) 12.2104i 0.832742i
\(216\) 0 0
\(217\) 12.8149i 0.869929i
\(218\) 0 0
\(219\) −2.47568 2.47568i −0.167291 0.167291i
\(220\) 0 0
\(221\) 5.11933 5.11933i 0.344364 0.344364i
\(222\) 0 0
\(223\) −26.2783 −1.75973 −0.879863 0.475228i \(-0.842366\pi\)
−0.879863 + 0.475228i \(0.842366\pi\)
\(224\) 0 0
\(225\) 11.2195 0.747964
\(226\) 0 0
\(227\) 7.71326 7.71326i 0.511947 0.511947i −0.403176 0.915123i \(-0.632094\pi\)
0.915123 + 0.403176i \(0.132094\pi\)
\(228\) 0 0
\(229\) 13.3360 + 13.3360i 0.881267 + 0.881267i 0.993663 0.112397i \(-0.0358528\pi\)
−0.112397 + 0.993663i \(0.535853\pi\)
\(230\) 0 0
\(231\) 7.06147i 0.464610i
\(232\) 0 0
\(233\) 19.7662i 1.29493i −0.762096 0.647464i \(-0.775830\pi\)
0.762096 0.647464i \(-0.224170\pi\)
\(234\) 0 0
\(235\) 27.5004 + 27.5004i 1.79393 + 1.79393i
\(236\) 0 0
\(237\) 5.78592 5.78592i 0.375836 0.375836i
\(238\) 0 0
\(239\) 14.3515 0.928319 0.464160 0.885752i \(-0.346356\pi\)
0.464160 + 0.885752i \(0.346356\pi\)
\(240\) 0 0
\(241\) −21.7534 −1.40126 −0.700629 0.713525i \(-0.747097\pi\)
−0.700629 + 0.713525i \(0.747097\pi\)
\(242\) 0 0
\(243\) 0.707107 0.707107i 0.0453609 0.0453609i
\(244\) 0 0
\(245\) 40.6687 + 40.6687i 2.59822 + 2.59822i
\(246\) 0 0
\(247\) 24.3197i 1.54743i
\(248\) 0 0
\(249\) 4.12612i 0.261482i
\(250\) 0 0
\(251\) 6.73925 + 6.73925i 0.425377 + 0.425377i 0.887050 0.461673i \(-0.152751\pi\)
−0.461673 + 0.887050i \(0.652751\pi\)
\(252\) 0 0
\(253\) 4.32957 4.32957i 0.272198 0.272198i
\(254\) 0 0
\(255\) 5.22625 0.327281
\(256\) 0 0
\(257\) −1.20435 −0.0751253 −0.0375627 0.999294i \(-0.511959\pi\)
−0.0375627 + 0.999294i \(0.511959\pi\)
\(258\) 0 0
\(259\) 12.9723 12.9723i 0.806059 0.806059i
\(260\) 0 0
\(261\) 1.31703 + 1.31703i 0.0815218 + 0.0815218i
\(262\) 0 0
\(263\) 27.5777i 1.70052i 0.526367 + 0.850258i \(0.323554\pi\)
−0.526367 + 0.850258i \(0.676446\pi\)
\(264\) 0 0
\(265\) 34.5946i 2.12513i
\(266\) 0 0
\(267\) −5.64725 5.64725i −0.345606 0.345606i
\(268\) 0 0
\(269\) −10.3694 + 10.3694i −0.632235 + 0.632235i −0.948628 0.316393i \(-0.897528\pi\)
0.316393 + 0.948628i \(0.397528\pi\)
\(270\) 0 0
\(271\) 20.3574 1.23663 0.618313 0.785932i \(-0.287816\pi\)
0.618313 + 0.785932i \(0.287816\pi\)
\(272\) 0 0
\(273\) −25.7366 −1.55765
\(274\) 0 0
\(275\) −12.1439 + 12.1439i −0.732302 + 0.732302i
\(276\) 0 0
\(277\) 16.8371 + 16.8371i 1.01164 + 1.01164i 0.999931 + 0.0117134i \(0.00372858\pi\)
0.0117134 + 0.999931i \(0.496271\pi\)
\(278\) 0 0
\(279\) 2.77791i 0.166309i
\(280\) 0 0
\(281\) 17.1116i 1.02079i −0.859939 0.510397i \(-0.829498\pi\)
0.859939 0.510397i \(-0.170502\pi\)
\(282\) 0 0
\(283\) −1.60218 1.60218i −0.0952394 0.0952394i 0.657882 0.753121i \(-0.271453\pi\)
−0.753121 + 0.657882i \(0.771453\pi\)
\(284\) 0 0
\(285\) −12.4138 + 12.4138i −0.735332 + 0.735332i
\(286\) 0 0
\(287\) −13.9864 −0.825592
\(288\) 0 0
\(289\) −15.3160 −0.900941
\(290\) 0 0
\(291\) 0.993212 0.993212i 0.0582231 0.0582231i
\(292\) 0 0
\(293\) 2.76030 + 2.76030i 0.161259 + 0.161259i 0.783124 0.621865i \(-0.213625\pi\)
−0.621865 + 0.783124i \(0.713625\pi\)
\(294\) 0 0
\(295\) 23.0935i 1.34456i
\(296\) 0 0
\(297\) 1.53073i 0.0888222i
\(298\) 0 0
\(299\) −15.7798 15.7798i −0.912569 0.912569i
\(300\) 0 0
\(301\) −9.88989 + 9.88989i −0.570044 + 0.570044i
\(302\) 0 0
\(303\) −0.457942 −0.0263081
\(304\) 0 0
\(305\) 30.7981 1.76349
\(306\) 0 0
\(307\) −18.5490 + 18.5490i −1.05865 + 1.05865i −0.0604798 + 0.998169i \(0.519263\pi\)
−0.998169 + 0.0604798i \(0.980737\pi\)
\(308\) 0 0
\(309\) −5.49820 5.49820i −0.312782 0.312782i
\(310\) 0 0
\(311\) 9.12522i 0.517444i −0.965952 0.258722i \(-0.916699\pi\)
0.965952 0.258722i \(-0.0833013\pi\)
\(312\) 0 0
\(313\) 9.28093i 0.524589i −0.964988 0.262295i \(-0.915521\pi\)
0.964988 0.262295i \(-0.0844792\pi\)
\(314\) 0 0
\(315\) −13.1371 13.1371i −0.740190 0.740190i
\(316\) 0 0
\(317\) −22.8857 + 22.8857i −1.28539 + 1.28539i −0.347830 + 0.937558i \(0.613081\pi\)
−0.937558 + 0.347830i \(0.886919\pi\)
\(318\) 0 0
\(319\) −2.85108 −0.159630
\(320\) 0 0
\(321\) 14.7047 0.820739
\(322\) 0 0
\(323\) −4.00000 + 4.00000i −0.222566 + 0.222566i
\(324\) 0 0
\(325\) 44.2602 + 44.2602i 2.45511 + 2.45511i
\(326\) 0 0
\(327\) 1.09372i 0.0604827i
\(328\) 0 0
\(329\) 44.5483i 2.45603i
\(330\) 0 0
\(331\) 15.4457 + 15.4457i 0.848973 + 0.848973i 0.990005 0.141032i \(-0.0450420\pi\)
−0.141032 + 0.990005i \(0.545042\pi\)
\(332\) 0 0
\(333\) −2.81204 + 2.81204i −0.154099 + 0.154099i
\(334\) 0 0
\(335\) 35.4231 1.93537
\(336\) 0 0
\(337\) 28.8722 1.57277 0.786385 0.617736i \(-0.211950\pi\)
0.786385 + 0.617736i \(0.211950\pi\)
\(338\) 0 0
\(339\) −5.41421 + 5.41421i −0.294060 + 0.294060i
\(340\) 0 0
\(341\) −3.00679 3.00679i −0.162827 0.162827i
\(342\) 0 0
\(343\) 33.5879i 1.81357i
\(344\) 0 0
\(345\) 16.1094i 0.867299i
\(346\) 0 0
\(347\) −15.5349 15.5349i −0.833957 0.833957i 0.154099 0.988055i \(-0.450753\pi\)
−0.988055 + 0.154099i \(0.950753\pi\)
\(348\) 0 0
\(349\) 14.2031 14.2031i 0.760273 0.760273i −0.216098 0.976372i \(-0.569333\pi\)
0.976372 + 0.216098i \(0.0693332\pi\)
\(350\) 0 0
\(351\) 5.57900 0.297785
\(352\) 0 0
\(353\) −36.9570 −1.96702 −0.983511 0.180849i \(-0.942116\pi\)
−0.983511 + 0.180849i \(0.942116\pi\)
\(354\) 0 0
\(355\) −19.6014 + 19.6014i −1.04034 + 1.04034i
\(356\) 0 0
\(357\) −4.23304 4.23304i −0.224036 0.224036i
\(358\) 0 0
\(359\) 22.5264i 1.18890i 0.804134 + 0.594449i \(0.202630\pi\)
−0.804134 + 0.594449i \(0.797370\pi\)
\(360\) 0 0
\(361\) 0.00228335i 0.000120176i
\(362\) 0 0
\(363\) 6.12132 + 6.12132i 0.321286 + 0.321286i
\(364\) 0 0
\(365\) 9.97041 9.97041i 0.521875 0.521875i
\(366\) 0 0
\(367\) −0.535798 −0.0279684 −0.0139842 0.999902i \(-0.504451\pi\)
−0.0139842 + 0.999902i \(0.504451\pi\)
\(368\) 0 0
\(369\) 3.03188 0.157833
\(370\) 0 0
\(371\) 28.0202 28.0202i 1.45474 1.45474i
\(372\) 0 0
\(373\) −6.24943 6.24943i −0.323583 0.323583i 0.526557 0.850140i \(-0.323483\pi\)
−0.850140 + 0.526557i \(0.823483\pi\)
\(374\) 0 0
\(375\) 25.0479i 1.29347i
\(376\) 0 0
\(377\) 10.3912i 0.535174i
\(378\) 0 0
\(379\) 17.4576 + 17.4576i 0.896735 + 0.896735i 0.995146 0.0984108i \(-0.0313759\pi\)
−0.0984108 + 0.995146i \(0.531376\pi\)
\(380\) 0 0
\(381\) 0.636994 0.636994i 0.0326342 0.0326342i
\(382\) 0 0
\(383\) −31.1290 −1.59062 −0.795308 0.606205i \(-0.792691\pi\)
−0.795308 + 0.606205i \(0.792691\pi\)
\(384\) 0 0
\(385\) 28.4389 1.44938
\(386\) 0 0
\(387\) 2.14386 2.14386i 0.108979 0.108979i
\(388\) 0 0
\(389\) −14.3977 14.3977i −0.729992 0.729992i 0.240626 0.970618i \(-0.422647\pi\)
−0.970618 + 0.240626i \(0.922647\pi\)
\(390\) 0 0
\(391\) 5.19077i 0.262509i
\(392\) 0 0
\(393\) 15.7206i 0.793000i
\(394\) 0 0
\(395\) 23.3019 + 23.3019i 1.17244 + 1.17244i
\(396\) 0 0
\(397\) −2.54622 + 2.54622i −0.127791 + 0.127791i −0.768110 0.640318i \(-0.778802\pi\)
0.640318 + 0.768110i \(0.278802\pi\)
\(398\) 0 0
\(399\) 20.1094 1.00673
\(400\) 0 0
\(401\) 18.0160 0.899677 0.449838 0.893110i \(-0.351482\pi\)
0.449838 + 0.893110i \(0.351482\pi\)
\(402\) 0 0
\(403\) −10.9587 + 10.9587i −0.545892 + 0.545892i
\(404\) 0 0
\(405\) 2.84776 + 2.84776i 0.141506 + 0.141506i
\(406\) 0 0
\(407\) 6.08746i 0.301744i
\(408\) 0 0
\(409\) 25.1572i 1.24395i −0.783039 0.621973i \(-0.786331\pi\)
0.783039 0.621973i \(-0.213669\pi\)
\(410\) 0 0
\(411\) −1.24718 1.24718i −0.0615187 0.0615187i
\(412\) 0 0
\(413\) 18.7047 18.7047i 0.920400 0.920400i
\(414\) 0 0
\(415\) 16.6173 0.815711
\(416\) 0 0
\(417\) 18.3752 0.899836
\(418\) 0 0
\(419\) 4.61631 4.61631i 0.225522 0.225522i −0.585297 0.810819i \(-0.699022\pi\)
0.810819 + 0.585297i \(0.199022\pi\)
\(420\) 0 0
\(421\) 14.0543 + 14.0543i 0.684965 + 0.684965i 0.961115 0.276150i \(-0.0890586\pi\)
−0.276150 + 0.961115i \(0.589059\pi\)
\(422\) 0 0
\(423\) 9.65685i 0.469532i
\(424\) 0 0
\(425\) 14.5594i 0.706236i
\(426\) 0 0
\(427\) −24.9451 24.9451i −1.20718 1.20718i
\(428\) 0 0
\(429\) −6.03866 + 6.03866i −0.291549 + 0.291549i
\(430\) 0 0
\(431\) −34.7368 −1.67321 −0.836606 0.547805i \(-0.815463\pi\)
−0.836606 + 0.547805i \(0.815463\pi\)
\(432\) 0 0
\(433\) 27.0935 1.30203 0.651015 0.759065i \(-0.274343\pi\)
0.651015 + 0.759065i \(0.274343\pi\)
\(434\) 0 0
\(435\) −5.30411 + 5.30411i −0.254313 + 0.254313i
\(436\) 0 0
\(437\) 12.3296 + 12.3296i 0.589803 + 0.589803i
\(438\) 0 0
\(439\) 3.52976i 0.168466i 0.996446 + 0.0842331i \(0.0268440\pi\)
−0.996446 + 0.0842331i \(0.973156\pi\)
\(440\) 0 0
\(441\) 14.2809i 0.680044i
\(442\) 0 0
\(443\) 4.04283 + 4.04283i 0.192080 + 0.192080i 0.796594 0.604514i \(-0.206633\pi\)
−0.604514 + 0.796594i \(0.706633\pi\)
\(444\) 0 0
\(445\) 22.7434 22.7434i 1.07814 1.07814i
\(446\) 0 0
\(447\) 1.68419 0.0796596
\(448\) 0 0
\(449\) 28.9346 1.36551 0.682754 0.730648i \(-0.260782\pi\)
0.682754 + 0.730648i \(0.260782\pi\)
\(450\) 0 0
\(451\) −3.28168 + 3.28168i −0.154528 + 0.154528i
\(452\) 0 0
\(453\) 7.29156 + 7.29156i 0.342588 + 0.342588i
\(454\) 0 0
\(455\) 103.650i 4.85919i
\(456\) 0 0
\(457\) 33.6233i 1.57283i 0.617697 + 0.786416i \(0.288066\pi\)
−0.617697 + 0.786416i \(0.711934\pi\)
\(458\) 0 0
\(459\) 0.917608 + 0.917608i 0.0428303 + 0.0428303i
\(460\) 0 0
\(461\) −3.73161 + 3.73161i −0.173799 + 0.173799i −0.788646 0.614847i \(-0.789218\pi\)
0.614847 + 0.788646i \(0.289218\pi\)
\(462\) 0 0
\(463\) −11.1430 −0.517857 −0.258929 0.965896i \(-0.583369\pi\)
−0.258929 + 0.965896i \(0.583369\pi\)
\(464\) 0 0
\(465\) −11.1876 −0.518812
\(466\) 0 0
\(467\) 18.7392 18.7392i 0.867149 0.867149i −0.125007 0.992156i \(-0.539895\pi\)
0.992156 + 0.125007i \(0.0398953\pi\)
\(468\) 0 0
\(469\) −28.6912 28.6912i −1.32484 1.32484i
\(470\) 0 0
\(471\) 13.6337i 0.628207i
\(472\) 0 0
\(473\) 4.64099i 0.213393i
\(474\) 0 0
\(475\) −34.5828 34.5828i −1.58677 1.58677i
\(476\) 0 0
\(477\) −6.07401 + 6.07401i −0.278110 + 0.278110i
\(478\) 0 0
\(479\) −22.4170 −1.02426 −0.512130 0.858908i \(-0.671143\pi\)
−0.512130 + 0.858908i \(0.671143\pi\)
\(480\) 0 0
\(481\) −22.1867 −1.01163
\(482\) 0 0
\(483\) −13.0479 + 13.0479i −0.593700 + 0.593700i
\(484\) 0 0
\(485\) 4.00000 + 4.00000i 0.181631 + 0.181631i
\(486\) 0 0
\(487\) 7.42235i 0.336339i −0.985758 0.168169i \(-0.946214\pi\)
0.985758 0.168169i \(-0.0537856\pi\)
\(488\) 0 0
\(489\) 3.17476i 0.143568i
\(490\) 0 0
\(491\) −12.2832 12.2832i −0.554334 0.554334i 0.373355 0.927689i \(-0.378207\pi\)
−0.927689 + 0.373355i \(0.878207\pi\)
\(492\) 0 0
\(493\) −1.70910 + 1.70910i −0.0769738 + 0.0769738i
\(494\) 0 0
\(495\) −6.16478 −0.277086
\(496\) 0 0
\(497\) 31.7526 1.42430
\(498\) 0 0
\(499\) 26.3707 26.3707i 1.18051 1.18051i 0.200902 0.979611i \(-0.435613\pi\)
0.979611 0.200902i \(-0.0643873\pi\)
\(500\) 0 0
\(501\) −13.0228 13.0228i −0.581816 0.581816i
\(502\) 0 0
\(503\) 13.8672i 0.618310i 0.951012 + 0.309155i \(0.100046\pi\)
−0.951012 + 0.309155i \(0.899954\pi\)
\(504\) 0 0
\(505\) 1.84429i 0.0820697i
\(506\) 0 0
\(507\) 12.8165 + 12.8165i 0.569199 + 0.569199i
\(508\) 0 0
\(509\) 24.4879 24.4879i 1.08540 1.08540i 0.0894100 0.995995i \(-0.471502\pi\)
0.995995 0.0894100i \(-0.0284981\pi\)
\(510\) 0 0
\(511\) −16.1512 −0.714487
\(512\) 0 0
\(513\) −4.35916 −0.192462
\(514\) 0 0
\(515\) 22.1431 22.1431i 0.975742 0.975742i
\(516\) 0 0
\(517\) −10.4525 10.4525i −0.459701 0.459701i
\(518\) 0 0
\(519\) 11.0341i 0.484344i
\(520\) 0 0
\(521\) 34.8437i 1.52653i −0.646086 0.763265i \(-0.723595\pi\)
0.646086 0.763265i \(-0.276405\pi\)
\(522\) 0 0
\(523\) 18.0665 + 18.0665i 0.789994 + 0.789994i 0.981493 0.191499i \(-0.0613347\pi\)
−0.191499 + 0.981493i \(0.561335\pi\)
\(524\) 0 0
\(525\) 36.5976 36.5976i 1.59725 1.59725i
\(526\) 0 0
\(527\) −3.60488 −0.157031
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) −4.05468 + 4.05468i −0.175958 + 0.175958i
\(532\) 0 0
\(533\) 11.9606 + 11.9606i 0.518071 + 0.518071i
\(534\) 0 0
\(535\) 59.2210i 2.56035i
\(536\) 0 0
\(537\) 0.795649i 0.0343348i
\(538\) 0 0
\(539\) −15.4576 15.4576i −0.665805 0.665805i
\(540\) 0 0
\(541\) −23.2451 + 23.2451i −0.999384 + 0.999384i −1.00000 0.000615813i \(-0.999804\pi\)
0.000615813 1.00000i \(0.499804\pi\)
\(542\) 0 0
\(543\) 5.24943 0.225275
\(544\) 0 0
\(545\) −4.40477 −0.188680
\(546\) 0 0
\(547\) −22.9395 + 22.9395i −0.980823 + 0.980823i −0.999820 0.0189970i \(-0.993953\pi\)
0.0189970 + 0.999820i \(0.493953\pi\)
\(548\) 0 0
\(549\) 5.40743 + 5.40743i 0.230783 + 0.230783i
\(550\) 0 0
\(551\) 8.11918i 0.345889i
\(552\) 0 0
\(553\) 37.7470i 1.60517i
\(554\) 0 0
\(555\) −11.3250 11.3250i −0.480721 0.480721i
\(556\) 0 0
\(557\) −1.59117 + 1.59117i −0.0674199 + 0.0674199i −0.740013 0.672593i \(-0.765181\pi\)
0.672593 + 0.740013i \(0.265181\pi\)
\(558\) 0 0
\(559\) 16.9148 0.715421
\(560\) 0 0
\(561\) −1.98642 −0.0838668
\(562\) 0 0
\(563\) 0.973034 0.973034i 0.0410085 0.0410085i −0.686305 0.727314i \(-0.740769\pi\)
0.727314 + 0.686305i \(0.240769\pi\)
\(564\) 0 0
\(565\) −21.8049 21.8049i −0.917338 0.917338i
\(566\) 0 0
\(567\) 4.61313i 0.193733i
\(568\) 0 0
\(569\) 15.5043i 0.649975i 0.945718 + 0.324988i \(0.105360\pi\)
−0.945718 + 0.324988i \(0.894640\pi\)
\(570\) 0 0
\(571\) −5.27261 5.27261i −0.220652 0.220652i 0.588121 0.808773i \(-0.299868\pi\)
−0.808773 + 0.588121i \(0.799868\pi\)
\(572\) 0 0
\(573\) −17.6819 + 17.6819i −0.738674 + 0.738674i
\(574\) 0 0
\(575\) 44.8779 1.87154
\(576\) 0 0
\(577\) −25.9355 −1.07971 −0.539855 0.841758i \(-0.681521\pi\)
−0.539855 + 0.841758i \(0.681521\pi\)
\(578\) 0 0
\(579\) −16.2195 + 16.2195i −0.674058 + 0.674058i
\(580\) 0 0
\(581\) −13.4593 13.4593i −0.558386 0.558386i
\(582\) 0 0
\(583\) 13.1489i 0.544573i
\(584\) 0 0
\(585\) 22.4685i 0.928959i
\(586\) 0 0
\(587\) 23.7753 + 23.7753i 0.981311 + 0.981311i 0.999829 0.0185175i \(-0.00589465\pi\)
−0.0185175 + 0.999829i \(0.505895\pi\)
\(588\) 0 0
\(589\) 8.56261 8.56261i 0.352816 0.352816i
\(590\) 0 0
\(591\) 15.0533 0.619211
\(592\) 0 0
\(593\) −44.0302 −1.80810 −0.904052 0.427422i \(-0.859422\pi\)
−0.904052 + 0.427422i \(0.859422\pi\)
\(594\) 0 0
\(595\) 17.0479 17.0479i 0.698895 0.698895i
\(596\) 0 0
\(597\) 13.9643 + 13.9643i 0.571520 + 0.571520i
\(598\) 0 0
\(599\) 6.09578i 0.249067i −0.992215 0.124533i \(-0.960257\pi\)
0.992215 0.124533i \(-0.0397434\pi\)
\(600\) 0 0
\(601\) 11.8126i 0.481845i −0.970544 0.240922i \(-0.922550\pi\)
0.970544 0.240922i \(-0.0774499\pi\)
\(602\) 0 0
\(603\) 6.21946 + 6.21946i 0.253276 + 0.253276i
\(604\) 0 0
\(605\) −24.6526 + 24.6526i −1.00227 + 1.00227i
\(606\) 0 0
\(607\) 4.66330 0.189277 0.0946387 0.995512i \(-0.469830\pi\)
0.0946387 + 0.995512i \(0.469830\pi\)
\(608\) 0 0
\(609\) 8.59220 0.348174
\(610\) 0 0
\(611\) −38.0958 + 38.0958i −1.54119 + 1.54119i
\(612\) 0 0
\(613\) −20.2031 20.2031i −0.815994 0.815994i 0.169530 0.985525i \(-0.445775\pi\)
−0.985525 + 0.169530i \(0.945775\pi\)
\(614\) 0 0
\(615\) 12.2104i 0.492371i
\(616\) 0 0
\(617\) 21.2482i 0.855418i 0.903916 + 0.427709i \(0.140679\pi\)
−0.903916 + 0.427709i \(0.859321\pi\)
\(618\) 0 0
\(619\) −8.09016 8.09016i −0.325171 0.325171i 0.525576 0.850747i \(-0.323850\pi\)
−0.850747 + 0.525576i \(0.823850\pi\)
\(620\) 0 0
\(621\) 2.82843 2.82843i 0.113501 0.113501i
\(622\) 0 0
\(623\) −36.8424 −1.47606
\(624\) 0 0
\(625\) −44.7790 −1.79116
\(626\) 0 0
\(627\) 4.71832 4.71832i 0.188432 0.188432i
\(628\) 0 0
\(629\) −3.64916 3.64916i −0.145502 0.145502i
\(630\) 0 0
\(631\) 16.9427i 0.674478i 0.941419 + 0.337239i \(0.109493\pi\)
−0.941419 + 0.337239i \(0.890507\pi\)
\(632\) 0 0
\(633\) 0.938533i 0.0373033i
\(634\) 0 0
\(635\) 2.56539 + 2.56539i 0.101804 + 0.101804i
\(636\) 0 0
\(637\) −56.3375 + 56.3375i −2.23217 + 2.23217i
\(638\) 0 0
\(639\) −6.88311 −0.272291
\(640\) 0 0
\(641\) −27.8596 −1.10039 −0.550193 0.835037i \(-0.685446\pi\)
−0.550193 + 0.835037i \(0.685446\pi\)
\(642\) 0 0
\(643\) −14.5745 + 14.5745i −0.574761 + 0.574761i −0.933455 0.358694i \(-0.883222\pi\)
0.358694 + 0.933455i \(0.383222\pi\)
\(644\) 0 0
\(645\) 8.63405 + 8.63405i 0.339965 + 0.339965i
\(646\) 0 0
\(647\) 11.7142i 0.460534i 0.973127 + 0.230267i \(0.0739600\pi\)
−0.973127 + 0.230267i \(0.926040\pi\)
\(648\) 0 0
\(649\) 8.77751i 0.344547i
\(650\) 0 0
\(651\) 9.06147 + 9.06147i 0.355147 + 0.355147i
\(652\) 0 0
\(653\) −36.0932 + 36.0932i −1.41244 + 1.41244i −0.670781 + 0.741655i \(0.734041\pi\)
−0.741655 + 0.670781i \(0.765959\pi\)
\(654\) 0 0
\(655\) 63.3122 2.47381
\(656\) 0 0
\(657\) 3.50114 0.136593
\(658\) 0 0
\(659\) −4.01920 + 4.01920i −0.156566 + 0.156566i −0.781043 0.624477i \(-0.785312\pi\)
0.624477 + 0.781043i \(0.285312\pi\)
\(660\) 0 0
\(661\) 25.6405 + 25.6405i 0.997299 + 0.997299i 0.999996 0.00269784i \(-0.000858751\pi\)
−0.00269784 + 0.999996i \(0.500859\pi\)
\(662\) 0 0
\(663\) 7.23983i 0.281172i
\(664\) 0 0
\(665\) 80.9872i 3.14055i
\(666\) 0 0
\(667\) 5.26810 + 5.26810i 0.203982 + 0.203982i
\(668\) 0 0
\(669\) 18.5816 18.5816i 0.718405 0.718405i
\(670\) 0 0
\(671\) −11.7059 −0.451902
\(672\) 0 0
\(673\) 17.6569 0.680622 0.340311 0.940313i \(-0.389468\pi\)
0.340311 + 0.940313i \(0.389468\pi\)
\(674\) 0 0
\(675\) −7.93336 + 7.93336i −0.305355 + 0.305355i
\(676\) 0 0
\(677\) −12.7891 12.7891i −0.491527 0.491527i 0.417260 0.908787i \(-0.362990\pi\)
−0.908787 + 0.417260i \(0.862990\pi\)
\(678\) 0 0
\(679\) 6.47966i 0.248666i
\(680\) 0 0
\(681\) 10.9082i 0.418003i
\(682\) 0 0
\(683\) 14.3860 + 14.3860i 0.550464 + 0.550464i 0.926575 0.376111i \(-0.122739\pi\)
−0.376111 + 0.926575i \(0.622739\pi\)
\(684\) 0 0
\(685\) 5.02280 5.02280i 0.191911 0.191911i
\(686\) 0 0
\(687\) −18.8599 −0.719551
\(688\) 0 0
\(689\) −47.9233 −1.82573
\(690\) 0 0
\(691\) 14.2212 14.2212i 0.540999 0.540999i −0.382822 0.923822i \(-0.625048\pi\)
0.923822 + 0.382822i \(0.125048\pi\)
\(692\) 0 0
\(693\) 4.99321 + 4.99321i 0.189676 + 0.189676i
\(694\) 0 0
\(695\) 74.0031i 2.80710i
\(696\) 0 0
\(697\) 3.93444i 0.149028i
\(698\) 0 0
\(699\) 13.9768 + 13.9768i 0.528652 + 0.528652i
\(700\) 0 0
\(701\) 14.0900 14.0900i 0.532173 0.532173i −0.389046 0.921219i \(-0.627195\pi\)
0.921219 + 0.389046i \(0.127195\pi\)
\(702\) 0 0
\(703\) 17.3356 0.653825
\(704\) 0 0
\(705\) −38.8914 −1.46474
\(706\) 0 0
\(707\) −1.49379 + 1.49379i −0.0561799 + 0.0561799i
\(708\) 0 0
\(709\) 2.33445 + 2.33445i 0.0876720 + 0.0876720i 0.749583 0.661911i \(-0.230254\pi\)
−0.661911 + 0.749583i \(0.730254\pi\)
\(710\) 0 0
\(711\) 8.18252i 0.306869i
\(712\) 0 0
\(713\) 11.1116i 0.416134i
\(714\) 0 0
\(715\) −24.3197 24.3197i −0.909507 0.909507i
\(716\) 0 0
\(717\) −10.1480 + 10.1480i −0.378985 + 0.378985i
\(718\) 0 0
\(719\) 40.2104 1.49959 0.749797 0.661668i \(-0.230151\pi\)
0.749797 + 0.661668i \(0.230151\pi\)
\(720\) 0 0
\(721\) −35.8699 −1.33587
\(722\) 0 0
\(723\) 15.3820 15.3820i 0.572061 0.572061i
\(724\) 0 0
\(725\) −14.7763 14.7763i −0.548779 0.548779i
\(726\) 0 0
\(727\) 39.4272i 1.46227i −0.682230 0.731137i \(-0.738990\pi\)
0.682230 0.731137i \(-0.261010\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 2.78207 + 2.78207i 0.102899 + 0.102899i
\(732\) 0 0
\(733\) 14.6633 14.6633i 0.541600 0.541600i −0.382398 0.923998i \(-0.624902\pi\)
0.923998 + 0.382398i \(0.124902\pi\)
\(734\) 0 0
\(735\) −57.5142 −2.12144
\(736\) 0 0
\(737\) −13.4638 −0.495945
\(738\) 0 0
\(739\) 9.86619 9.86619i 0.362934 0.362934i −0.501958 0.864892i \(-0.667387\pi\)
0.864892 + 0.501958i \(0.167387\pi\)
\(740\) 0 0
\(741\) −17.1967 17.1967i −0.631735 0.631735i
\(742\) 0 0
\(743\) 5.02418i 0.184319i −0.995744 0.0921597i \(-0.970623\pi\)
0.995744 0.0921597i \(-0.0293770\pi\)
\(744\) 0 0
\(745\) 6.78282i 0.248503i
\(746\) 0 0
\(747\) 2.91761 + 2.91761i 0.106750 + 0.106750i
\(748\) 0 0
\(749\) 47.9665 47.9665i 1.75266 1.75266i
\(750\) 0 0
\(751\) 5.44425 0.198664 0.0993318 0.995054i \(-0.468329\pi\)
0.0993318 + 0.995054i \(0.468329\pi\)
\(752\) 0 0
\(753\) −9.53073 −0.347319
\(754\) 0 0
\(755\) −29.3656 + 29.3656i −1.06872 + 1.06872i
\(756\) 0 0
\(757\) −10.4438 10.4438i −0.379587 0.379587i 0.491366 0.870953i \(-0.336498\pi\)
−0.870953 + 0.491366i \(0.836498\pi\)
\(758\) 0 0
\(759\) 6.12293i 0.222248i
\(760\) 0 0
\(761\) 1.96584i 0.0712617i −0.999365 0.0356308i \(-0.988656\pi\)
0.999365 0.0356308i \(-0.0113441\pi\)
\(762\) 0 0
\(763\) 3.56767 + 3.56767i 0.129158 + 0.129158i
\(764\) 0 0
\(765\) −3.69552 + 3.69552i −0.133612 + 0.133612i
\(766\) 0 0
\(767\) −31.9910 −1.15513
\(768\) 0 0
\(769\) −7.09244 −0.255760 −0.127880 0.991790i \(-0.540817\pi\)
−0.127880 + 0.991790i \(0.540817\pi\)
\(770\) 0 0
\(771\) 0.851604 0.851604i 0.0306698 0.0306698i
\(772\) 0 0
\(773\) 19.4946 + 19.4946i 0.701173 + 0.701173i 0.964662 0.263489i \(-0.0848733\pi\)
−0.263489 + 0.964662i \(0.584873\pi\)
\(774\) 0 0
\(775\) 31.1667i 1.11954i
\(776\) 0 0
\(777\) 18.3456i 0.658144i
\(778\) 0 0
\(779\) −9.34543 9.34543i −0.334835 0.334835i
\(780\) 0 0
\(781\) 7.45022 7.45022i 0.266590 0.266590i
\(782\) 0 0
\(783\) −1.86256 −0.0665623
\(784\) 0 0
\(785\) 54.9074 1.95973
\(786\) 0 0
\(787\) 20.9678 20.9678i 0.747421 0.747421i −0.226573 0.973994i \(-0.572752\pi\)
0.973994 + 0.226573i \(0.0727523\pi\)
\(788\) 0 0
\(789\) −19.5004 19.5004i −0.694232 0.694232i
\(790\) 0 0
\(791\) 35.3220i 1.25591i
\(792\) 0 0
\(793\) 42.6640i 1.51504i
\(794\) 0 0
\(795\) −24.4621 24.4621i −0.867581 0.867581i
\(796\) 0 0
\(797\) 3.84548 3.84548i 0.136214 0.136214i −0.635712 0.771926i \(-0.719294\pi\)
0.771926 + 0.635712i \(0.219294\pi\)
\(798\) 0 0
\(799\) −12.5316 −0.443337
\(800\) 0 0
\(801\) 7.98642 0.282186
\(802\) 0 0
\(803\) −3.78961 + 3.78961i −0.133732 + 0.133732i
\(804\) 0 0
\(805\) −52.5483 52.5483i −1.85208 1.85208i
\(806\) 0 0
\(807\) 14.6646i 0.516218i
\(808\) 0 0
\(809\) 17.1548i 0.603131i −0.953445 0.301566i \(-0.902491\pi\)
0.953445 0.301566i \(-0.0975092\pi\)
\(810\) 0 0
\(811\) 6.69364 + 6.69364i 0.235045 + 0.235045i 0.814795 0.579749i \(-0.196850\pi\)
−0.579749 + 0.814795i \(0.696850\pi\)
\(812\) 0 0
\(813\) −14.3949 + 14.3949i −0.504851 + 0.504851i
\(814\) 0 0
\(815\) −12.7858 −0.447868
\(816\) 0 0
\(817\) −13.2164 −0.462384
\(818\) 0 0
\(819\) 18.1985 18.1985i 0.635908 0.635908i
\(820\) 0 0
\(821\) −13.5197 13.5197i −0.471842 0.471842i 0.430668 0.902510i \(-0.358278\pi\)
−0.902510 + 0.430668i \(0.858278\pi\)
\(822\) 0 0
\(823\) 10.5257i 0.366902i −0.983029 0.183451i \(-0.941273\pi\)
0.983029 0.183451i \(-0.0587268\pi\)
\(824\) 0 0
\(825\) 17.1740i 0.597922i
\(826\) 0 0
\(827\) −19.0807 19.0807i −0.663500 0.663500i 0.292703 0.956203i \(-0.405445\pi\)
−0.956203 + 0.292703i \(0.905445\pi\)
\(828\) 0 0
\(829\) 8.81792 8.81792i 0.306259 0.306259i −0.537197 0.843457i \(-0.680517\pi\)
0.843457 + 0.537197i \(0.180517\pi\)
\(830\) 0 0
\(831\) −23.8113 −0.826005
\(832\) 0 0
\(833\) −18.5323 −0.642105
\(834\) 0 0
\(835\) 52.4473 52.4473i 1.81501 1.81501i
\(836\) 0 0
\(837\) −1.96428 1.96428i −0.0678954 0.0678954i
\(838\) 0 0
\(839\) 29.4631i 1.01718i 0.861009 + 0.508590i \(0.169833\pi\)
−0.861009 + 0.508590i \(0.830167\pi\)
\(840\) 0 0
\(841\) 25.5309i 0.880375i
\(842\) 0 0
\(843\) 12.0998 + 12.0998i 0.416738 + 0.416738i
\(844\) 0 0
\(845\) −51.6163 + 51.6163i −1.77565 + 1.77565i
\(846\) 0 0
\(847\) 39.9352 1.37219
\(848\) 0 0
\(849\) 2.26582 0.0777627
\(850\) 0 0
\(851\) −11.2482 + 11.2482i −0.385582 + 0.385582i
\(852\) 0 0
\(853\) −11.4520 11.4520i −0.392108 0.392108i 0.483330 0.875438i \(-0.339427\pi\)
−0.875438 + 0.483330i \(0.839427\pi\)
\(854\) 0 0
\(855\) 17.5558i 0.600396i
\(856\) 0 0
\(857\) 28.3592i 0.968730i −0.874866 0.484365i \(-0.839051\pi\)
0.874866 0.484365i \(-0.160949\pi\)
\(858\) 0 0
\(859\) 1.77881 + 1.77881i 0.0606923 + 0.0606923i 0.736801 0.676109i \(-0.236335\pi\)
−0.676109 + 0.736801i \(0.736335\pi\)
\(860\) 0 0
\(861\) 9.88989 9.88989i 0.337047 0.337047i
\(862\) 0 0
\(863\) 13.8944 0.472971 0.236485 0.971635i \(-0.424004\pi\)
0.236485 + 0.971635i \(0.424004\pi\)
\(864\) 0 0
\(865\) 44.4382 1.51094
\(866\) 0 0
\(867\) 10.8300 10.8300i 0.367807 0.367807i
\(868\) 0 0
\(869\) −8.85670 8.85670i −0.300443 0.300443i
\(870\) 0 0
\(871\) 49.0709i 1.66270i
\(872\) 0 0
\(873\) 1.40461i 0.0475390i
\(874\) 0 0
\(875\) 81.7055 + 81.7055i 2.76215 + 2.76215i
\(876\) 0 0
\(877\) −18.8950 + 18.8950i −0.638038 + 0.638038i −0.950071 0.312033i \(-0.898990\pi\)
0.312033 + 0.950071i \(0.398990\pi\)
\(878\) 0 0
\(879\) −3.90366 −0.131667
\(880\) 0 0
\(881\) −11.5460 −0.388995 −0.194497 0.980903i \(-0.562308\pi\)
−0.194497 + 0.980903i \(0.562308\pi\)
\(882\) 0 0
\(883\) 37.6088 37.6088i 1.26564 1.26564i 0.317316 0.948320i \(-0.397218\pi\)
0.948320 0.317316i \(-0.102782\pi\)
\(884\) 0 0
\(885\) −16.3296 16.3296i −0.548912 0.548912i
\(886\) 0 0
\(887\) 44.8123i 1.50465i −0.658792 0.752325i \(-0.728932\pi\)
0.658792 0.752325i \(-0.271068\pi\)
\(888\) 0 0
\(889\) 4.15571i 0.139378i
\(890\) 0 0
\(891\) −1.08239 1.08239i −0.0362615 0.0362615i
\(892\) 0 0
\(893\) 29.7662 29.7662i 0.996088 0.996088i
\(894\) 0 0
\(895\) −3.20435 −0.107110
\(896\) 0 0
\(897\) 22.3160 0.745109
\(898\) 0 0
\(899\) 3.65858 3.65858i 0.122020 0.122020i
\(900\) 0 0
\(901\) −7.88220 7.88220i −0.262594 0.262594i
\(902\) 0 0
\(903\) 13.9864i 0.465439i
\(904\) 0 0
\(905\) 21.1412i 0.702758i
\(906\) 0 0
\(907\) 20.7392 + 20.7392i 0.688635 + 0.688635i 0.961930 0.273295i \(-0.0881135\pi\)
−0.273295 + 0.961930i \(0.588113\pi\)
\(908\) 0 0
\(909\) 0.323814 0.323814i 0.0107402 0.0107402i
\(910\) 0 0
\(911\) −4.91483 −0.162835 −0.0814177 0.996680i \(-0.525945\pi\)
−0.0814177 + 0.996680i \(0.525945\pi\)
\(912\) 0 0
\(913\) −6.31599 −0.209029
\(914\) 0 0
\(915\) −21.7775 + 21.7775i −0.719943 + 0.719943i
\(916\) 0 0
\(917\) −51.2802 51.2802i −1.69342 1.69342i
\(918\) 0 0
\(919\) 18.9465i 0.624986i −0.949920 0.312493i \(-0.898836\pi\)
0.949920 0.312493i \(-0.101164\pi\)
\(920\) 0 0
\(921\) 26.2323i 0.864383i
\(922\) 0 0
\(923\) −27.1535 27.1535i −0.893768 0.893768i
\(924\) 0 0
\(925\) 31.5496 31.5496i 1.03734 1.03734i
\(926\) 0 0
\(927\) 7.77563 0.255385
\(928\) 0 0
\(929\) −8.40296 −0.275692 −0.137846 0.990454i \(-0.544018\pi\)
−0.137846 + 0.990454i \(0.544018\pi\)
\(930\) 0 0
\(931\) 44.0194 44.0194i 1.44268 1.44268i
\(932\) 0 0
\(933\) 6.45250 + 6.45250i 0.211245 + 0.211245i
\(934\) 0 0
\(935\) 8.00000i 0.261628i
\(936\) 0 0
\(937\) 43.8100i 1.43121i 0.698505 + 0.715605i \(0.253849\pi\)
−0.698505 + 0.715605i \(0.746151\pi\)
\(938\) 0 0
\(939\) 6.56261 + 6.56261i 0.214163 + 0.214163i
\(940\) 0 0
\(941\) 11.6929 11.6929i 0.381179 0.381179i −0.490348 0.871527i \(-0.663130\pi\)
0.871527 + 0.490348i \(0.163130\pi\)
\(942\) 0 0
\(943\) 12.1275 0.394926
\(944\) 0 0
\(945\) 18.5786 0.604363
\(946\) 0 0
\(947\) −33.0671 + 33.0671i −1.07454 + 1.07454i −0.0775474 + 0.996989i \(0.524709\pi\)
−0.996989 + 0.0775474i \(0.975291\pi\)
\(948\) 0 0
\(949\) 13.8118 + 13.8118i 0.448351 + 0.448351i
\(950\) 0 0
\(951\) 32.3652i 1.04951i
\(952\) 0 0
\(953\) 43.4436i 1.40728i −0.710558 0.703639i \(-0.751557\pi\)
0.710558 0.703639i \(-0.248443\pi\)
\(954\) 0 0
\(955\) −71.2112 71.2112i −2.30434 2.30434i
\(956\) 0 0
\(957\) 2.01602 2.01602i 0.0651685 0.0651685i
\(958\) 0 0
\(959\) −8.13651 −0.262742
\(960\) 0 0
\(961\) −23.2832 −0.751071
\(962\) 0 0
\(963\) −10.3978 + 10.3978i −0.335065 + 0.335065i
\(964\) 0 0
\(965\) −65.3213 65.3213i −2.10277 2.10277i
\(966\) 0 0
\(967\) 41.3718i 1.33043i −0.746653 0.665214i \(-0.768340\pi\)
0.746653 0.665214i \(-0.231660\pi\)
\(968\) 0 0
\(969\) 5.65685i 0.181724i
\(970\) 0 0
\(971\) −38.9998 38.9998i −1.25156 1.25156i −0.955019 0.296544i \(-0.904166\pi\)
−0.296544 0.955019i \(-0.595834\pi\)
\(972\) 0 0
\(973\) 59.9393 59.9393i 1.92157 1.92157i
\(974\) 0 0
\(975\) −62.5934 −2.00459
\(976\) 0 0
\(977\) 46.9120 1.50085 0.750424 0.660957i \(-0.229849\pi\)
0.750424 + 0.660957i \(0.229849\pi\)
\(978\) 0 0
\(979\) −8.64444 + 8.64444i −0.276278 + 0.276278i
\(980\) 0 0
\(981\) −0.773374 0.773374i −0.0246919 0.0246919i
\(982\) 0 0
\(983\) 4.71195i 0.150288i 0.997173 + 0.0751439i \(0.0239416\pi\)
−0.997173 + 0.0751439i \(0.976058\pi\)
\(984\) 0 0
\(985\) 60.6249i 1.93167i
\(986\) 0 0
\(987\) 31.5004 + 31.5004i 1.00267 + 1.00267i
\(988\) 0 0
\(989\) 8.57544 8.57544i 0.272683 0.272683i
\(990\) 0 0
\(991\) −13.3733 −0.424817 −0.212408 0.977181i \(-0.568131\pi\)
−0.212408 + 0.977181i \(0.568131\pi\)
\(992\) 0 0
\(993\) −21.8435 −0.693184
\(994\) 0 0
\(995\) −56.2389 + 56.2389i −1.78289 + 1.78289i
\(996\) 0 0
\(997\) 17.5677 + 17.5677i 0.556375 + 0.556375i 0.928273 0.371899i \(-0.121293\pi\)
−0.371899 + 0.928273i \(0.621293\pi\)
\(998\) 0 0
\(999\) 3.97682i 0.125821i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1536.2.j.e.385.1 8
3.2 odd 2 4608.2.k.bh.3457.4 8
4.3 odd 2 1536.2.j.f.385.3 yes 8
8.3 odd 2 1536.2.j.i.385.2 yes 8
8.5 even 2 1536.2.j.j.385.4 yes 8
12.11 even 2 4608.2.k.bj.3457.4 8
16.3 odd 4 1536.2.j.f.1153.3 yes 8
16.5 even 4 1536.2.j.j.1153.4 yes 8
16.11 odd 4 1536.2.j.i.1153.2 yes 8
16.13 even 4 inner 1536.2.j.e.1153.1 yes 8
24.5 odd 2 4608.2.k.be.3457.1 8
24.11 even 2 4608.2.k.bc.3457.1 8
32.3 odd 8 3072.2.a.p.1.4 4
32.5 even 8 3072.2.d.e.1537.1 8
32.11 odd 8 3072.2.d.j.1537.4 8
32.13 even 8 3072.2.a.s.1.1 4
32.19 odd 8 3072.2.a.j.1.1 4
32.21 even 8 3072.2.d.e.1537.8 8
32.27 odd 8 3072.2.d.j.1537.5 8
32.29 even 8 3072.2.a.m.1.4 4
48.5 odd 4 4608.2.k.be.1153.1 8
48.11 even 4 4608.2.k.bc.1153.1 8
48.29 odd 4 4608.2.k.bh.1153.4 8
48.35 even 4 4608.2.k.bj.1153.4 8
96.29 odd 8 9216.2.a.bl.1.1 4
96.35 even 8 9216.2.a.z.1.1 4
96.77 odd 8 9216.2.a.bm.1.4 4
96.83 even 8 9216.2.a.ba.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1536.2.j.e.385.1 8 1.1 even 1 trivial
1536.2.j.e.1153.1 yes 8 16.13 even 4 inner
1536.2.j.f.385.3 yes 8 4.3 odd 2
1536.2.j.f.1153.3 yes 8 16.3 odd 4
1536.2.j.i.385.2 yes 8 8.3 odd 2
1536.2.j.i.1153.2 yes 8 16.11 odd 4
1536.2.j.j.385.4 yes 8 8.5 even 2
1536.2.j.j.1153.4 yes 8 16.5 even 4
3072.2.a.j.1.1 4 32.19 odd 8
3072.2.a.m.1.4 4 32.29 even 8
3072.2.a.p.1.4 4 32.3 odd 8
3072.2.a.s.1.1 4 32.13 even 8
3072.2.d.e.1537.1 8 32.5 even 8
3072.2.d.e.1537.8 8 32.21 even 8
3072.2.d.j.1537.4 8 32.11 odd 8
3072.2.d.j.1537.5 8 32.27 odd 8
4608.2.k.bc.1153.1 8 48.11 even 4
4608.2.k.bc.3457.1 8 24.11 even 2
4608.2.k.be.1153.1 8 48.5 odd 4
4608.2.k.be.3457.1 8 24.5 odd 2
4608.2.k.bh.1153.4 8 48.29 odd 4
4608.2.k.bh.3457.4 8 3.2 odd 2
4608.2.k.bj.1153.4 8 48.35 even 4
4608.2.k.bj.3457.4 8 12.11 even 2
9216.2.a.z.1.1 4 96.35 even 8
9216.2.a.ba.1.4 4 96.83 even 8
9216.2.a.bl.1.1 4 96.29 odd 8
9216.2.a.bm.1.4 4 96.77 odd 8