Defining parameters
Level: | \( N \) | \(=\) | \( 1536 = 2^{9} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1536.j (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 16 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 10 \) | ||
Sturm bound: | \(512\) | ||
Trace bound: | \(19\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(13\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1536, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 576 | 64 | 512 |
Cusp forms | 448 | 64 | 384 |
Eisenstein series | 128 | 0 | 128 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1536, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(1536, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1536, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(128, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(256, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(384, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(512, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(768, [\chi])\)\(^{\oplus 2}\)