Properties

Label 153.4.l.c.100.2
Level $153$
Weight $4$
Character 153.100
Analytic conductor $9.027$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [153,4,Mod(19,153)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("153.19"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(153, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 153.l (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.02729223088\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 100.2
Character \(\chi\) \(=\) 153.100
Dual form 153.4.l.c.127.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.10148 - 3.10148i) q^{2} +11.2384i q^{4} +(-14.1902 + 5.87778i) q^{5} +(-30.3663 - 12.5781i) q^{7} +(10.0437 - 10.0437i) q^{8} +(62.2405 + 25.7809i) q^{10} +(9.27937 - 22.4024i) q^{11} -35.4963i q^{13} +(55.1697 + 133.191i) q^{14} +27.6061 q^{16} +(27.6397 + 64.4131i) q^{17} +(85.2385 + 85.2385i) q^{19} +(-66.0566 - 159.475i) q^{20} +(-98.2604 + 40.7008i) q^{22} +(6.73036 - 16.2485i) q^{23} +(78.4256 - 78.4256i) q^{25} +(-110.091 + 110.091i) q^{26} +(141.358 - 341.268i) q^{28} +(148.649 - 61.5726i) q^{29} +(-3.83777 - 9.26519i) q^{31} +(-165.969 - 165.969i) q^{32} +(114.052 - 285.500i) q^{34} +504.836 q^{35} +(-58.4926 - 141.214i) q^{37} -528.731i q^{38} +(-83.4879 + 201.558i) q^{40} +(-118.200 - 48.9599i) q^{41} +(-388.481 + 388.481i) q^{43} +(251.766 + 104.285i) q^{44} +(-71.2686 + 29.5204i) q^{46} +313.972i q^{47} +(521.365 + 521.365i) q^{49} -486.471 q^{50} +398.921 q^{52} +(-47.5976 - 47.5976i) q^{53} +372.437i q^{55} +(-431.322 + 178.660i) q^{56} +(-651.999 - 270.067i) q^{58} +(190.559 - 190.559i) q^{59} +(-343.420 - 142.249i) q^{61} +(-16.8330 + 40.6386i) q^{62} +808.654i q^{64} +(208.640 + 503.700i) q^{65} +546.810 q^{67} +(-723.898 + 310.625i) q^{68} +(-1565.74 - 1565.74i) q^{70} +(262.350 + 633.368i) q^{71} +(529.771 - 219.438i) q^{73} +(-256.558 + 619.385i) q^{74} +(-957.941 + 957.941i) q^{76} +(-563.561 + 563.561i) q^{77} +(34.7038 - 83.7824i) q^{79} +(-391.736 + 162.262i) q^{80} +(214.746 + 518.442i) q^{82} +(-106.789 - 106.789i) q^{83} +(-770.819 - 751.576i) q^{85} +2409.73 q^{86} +(-131.804 - 318.203i) q^{88} -611.215i q^{89} +(-446.477 + 1077.89i) q^{91} +(182.607 + 75.6382i) q^{92} +(973.777 - 973.777i) q^{94} +(-1710.56 - 708.539i) q^{95} +(437.503 - 181.220i) q^{97} -3234.01i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 32 q^{5} + 128 q^{10} - 112 q^{11} - 256 q^{14} - 1024 q^{16} + 112 q^{17} - 32 q^{19} + 640 q^{20} + 728 q^{22} - 208 q^{23} + 296 q^{25} - 1472 q^{26} - 328 q^{28} + 1272 q^{29} - 192 q^{31} + 960 q^{32}+ \cdots + 1008 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/153\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(e\left(\frac{3}{8}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.10148 3.10148i −1.09654 1.09654i −0.994812 0.101727i \(-0.967563\pi\)
−0.101727 0.994812i \(-0.532437\pi\)
\(3\) 0 0
\(4\) 11.2384i 1.40480i
\(5\) −14.1902 + 5.87778i −1.26921 + 0.525725i −0.912724 0.408576i \(-0.866026\pi\)
−0.356487 + 0.934300i \(0.616026\pi\)
\(6\) 0 0
\(7\) −30.3663 12.5781i −1.63963 0.679155i −0.643366 0.765559i \(-0.722463\pi\)
−0.996260 + 0.0864033i \(0.972463\pi\)
\(8\) 10.0437 10.0437i 0.443874 0.443874i
\(9\) 0 0
\(10\) 62.2405 + 25.7809i 1.96822 + 0.815262i
\(11\) 9.27937 22.4024i 0.254349 0.614052i −0.744197 0.667960i \(-0.767168\pi\)
0.998546 + 0.0539077i \(0.0171677\pi\)
\(12\) 0 0
\(13\) 35.4963i 0.757301i −0.925540 0.378650i \(-0.876388\pi\)
0.925540 0.378650i \(-0.123612\pi\)
\(14\) 55.1697 + 133.191i 1.05319 + 2.54263i
\(15\) 0 0
\(16\) 27.6061 0.431345
\(17\) 27.6397 + 64.4131i 0.394330 + 0.918969i
\(18\) 0 0
\(19\) 85.2385 + 85.2385i 1.02921 + 1.02921i 0.999560 + 0.0296525i \(0.00944006\pi\)
0.0296525 + 0.999560i \(0.490560\pi\)
\(20\) −66.0566 159.475i −0.738536 1.78298i
\(21\) 0 0
\(22\) −98.2604 + 40.7008i −0.952236 + 0.394429i
\(23\) 6.73036 16.2485i 0.0610164 0.147307i −0.890431 0.455119i \(-0.849597\pi\)
0.951447 + 0.307812i \(0.0995968\pi\)
\(24\) 0 0
\(25\) 78.4256 78.4256i 0.627405 0.627405i
\(26\) −110.091 + 110.091i −0.830410 + 0.830410i
\(27\) 0 0
\(28\) 141.358 341.268i 0.954075 2.30334i
\(29\) 148.649 61.5726i 0.951845 0.394267i 0.147921 0.988999i \(-0.452742\pi\)
0.803924 + 0.594732i \(0.202742\pi\)
\(30\) 0 0
\(31\) −3.83777 9.26519i −0.0222349 0.0536799i 0.912372 0.409362i \(-0.134249\pi\)
−0.934607 + 0.355682i \(0.884249\pi\)
\(32\) −165.969 165.969i −0.916861 0.916861i
\(33\) 0 0
\(34\) 114.052 285.500i 0.575287 1.44008i
\(35\) 504.836 2.43808
\(36\) 0 0
\(37\) −58.4926 141.214i −0.259895 0.627443i 0.739036 0.673666i \(-0.235281\pi\)
−0.998931 + 0.0462235i \(0.985281\pi\)
\(38\) 528.731i 2.25714i
\(39\) 0 0
\(40\) −83.4879 + 201.558i −0.330015 + 0.796726i
\(41\) −118.200 48.9599i −0.450236 0.186494i 0.146031 0.989280i \(-0.453350\pi\)
−0.596267 + 0.802786i \(0.703350\pi\)
\(42\) 0 0
\(43\) −388.481 + 388.481i −1.37774 + 1.37774i −0.529309 + 0.848429i \(0.677549\pi\)
−0.848429 + 0.529309i \(0.822451\pi\)
\(44\) 251.766 + 104.285i 0.862618 + 0.357308i
\(45\) 0 0
\(46\) −71.2686 + 29.5204i −0.228434 + 0.0946206i
\(47\) 313.972i 0.974415i 0.873286 + 0.487207i \(0.161984\pi\)
−0.873286 + 0.487207i \(0.838016\pi\)
\(48\) 0 0
\(49\) 521.365 + 521.365i 1.52002 + 1.52002i
\(50\) −486.471 −1.37595
\(51\) 0 0
\(52\) 398.921 1.06385
\(53\) −47.5976 47.5976i −0.123359 0.123359i 0.642732 0.766091i \(-0.277801\pi\)
−0.766091 + 0.642732i \(0.777801\pi\)
\(54\) 0 0
\(55\) 372.437i 0.913080i
\(56\) −431.322 + 178.660i −1.02925 + 0.426328i
\(57\) 0 0
\(58\) −651.999 270.067i −1.47606 0.611406i
\(59\) 190.559 190.559i 0.420487 0.420487i −0.464885 0.885371i \(-0.653904\pi\)
0.885371 + 0.464885i \(0.153904\pi\)
\(60\) 0 0
\(61\) −343.420 142.249i −0.720827 0.298576i −0.00805052 0.999968i \(-0.502563\pi\)
−0.712776 + 0.701391i \(0.752563\pi\)
\(62\) −16.8330 + 40.6386i −0.0344806 + 0.0832436i
\(63\) 0 0
\(64\) 808.654i 1.57940i
\(65\) 208.640 + 503.700i 0.398132 + 0.961175i
\(66\) 0 0
\(67\) 546.810 0.997067 0.498533 0.866870i \(-0.333872\pi\)
0.498533 + 0.866870i \(0.333872\pi\)
\(68\) −723.898 + 310.625i −1.29096 + 0.553953i
\(69\) 0 0
\(70\) −1565.74 1565.74i −2.67345 2.67345i
\(71\) 262.350 + 633.368i 0.438524 + 1.05869i 0.976459 + 0.215704i \(0.0692045\pi\)
−0.537935 + 0.842986i \(0.680795\pi\)
\(72\) 0 0
\(73\) 529.771 219.438i 0.849384 0.351826i 0.0848374 0.996395i \(-0.472963\pi\)
0.764547 + 0.644568i \(0.222963\pi\)
\(74\) −256.558 + 619.385i −0.403030 + 0.973001i
\(75\) 0 0
\(76\) −957.941 + 957.941i −1.44583 + 1.44583i
\(77\) −563.561 + 563.561i −0.834074 + 0.834074i
\(78\) 0 0
\(79\) 34.7038 83.7824i 0.0494239 0.119320i −0.897239 0.441545i \(-0.854431\pi\)
0.946663 + 0.322225i \(0.104431\pi\)
\(80\) −391.736 + 162.262i −0.547468 + 0.226768i
\(81\) 0 0
\(82\) 214.746 + 518.442i 0.289203 + 0.698199i
\(83\) −106.789 106.789i −0.141224 0.141224i 0.632960 0.774184i \(-0.281840\pi\)
−0.774184 + 0.632960i \(0.781840\pi\)
\(84\) 0 0
\(85\) −770.819 751.576i −0.983612 0.959057i
\(86\) 2409.73 3.02149
\(87\) 0 0
\(88\) −131.804 318.203i −0.159663 0.385461i
\(89\) 611.215i 0.727962i −0.931406 0.363981i \(-0.881417\pi\)
0.931406 0.363981i \(-0.118583\pi\)
\(90\) 0 0
\(91\) −446.477 + 1077.89i −0.514325 + 1.24169i
\(92\) 182.607 + 75.6382i 0.206936 + 0.0857156i
\(93\) 0 0
\(94\) 973.777 973.777i 1.06848 1.06848i
\(95\) −1710.56 708.539i −1.84737 0.765206i
\(96\) 0 0
\(97\) 437.503 181.220i 0.457955 0.189691i −0.141766 0.989900i \(-0.545278\pi\)
0.599721 + 0.800209i \(0.295278\pi\)
\(98\) 3234.01i 3.33351i
\(99\) 0 0
\(100\) 881.376 + 881.376i 0.881376 + 0.881376i
\(101\) 612.477 0.603404 0.301702 0.953402i \(-0.402445\pi\)
0.301702 + 0.953402i \(0.402445\pi\)
\(102\) 0 0
\(103\) 1748.00 1.67219 0.836096 0.548583i \(-0.184832\pi\)
0.836096 + 0.548583i \(0.184832\pi\)
\(104\) −356.515 356.515i −0.336146 0.336146i
\(105\) 0 0
\(106\) 295.246i 0.270536i
\(107\) −480.322 + 198.956i −0.433967 + 0.179755i −0.588963 0.808160i \(-0.700464\pi\)
0.154996 + 0.987915i \(0.450464\pi\)
\(108\) 0 0
\(109\) 822.066 + 340.511i 0.722382 + 0.299221i 0.713418 0.700739i \(-0.247146\pi\)
0.00896493 + 0.999960i \(0.497146\pi\)
\(110\) 1155.11 1155.11i 1.00123 1.00123i
\(111\) 0 0
\(112\) −838.294 347.233i −0.707244 0.292950i
\(113\) −729.892 + 1762.11i −0.607632 + 1.46695i 0.257936 + 0.966162i \(0.416958\pi\)
−0.865568 + 0.500791i \(0.833042\pi\)
\(114\) 0 0
\(115\) 270.130i 0.219041i
\(116\) 691.975 + 1670.58i 0.553865 + 1.33715i
\(117\) 0 0
\(118\) −1182.03 −0.922160
\(119\) −29.1180 2303.64i −0.0224306 1.77458i
\(120\) 0 0
\(121\) 525.399 + 525.399i 0.394740 + 0.394740i
\(122\) 623.928 + 1506.29i 0.463014 + 1.11782i
\(123\) 0 0
\(124\) 104.126 43.1302i 0.0754093 0.0312356i
\(125\) 82.8148 199.933i 0.0592574 0.143060i
\(126\) 0 0
\(127\) −488.380 + 488.380i −0.341234 + 0.341234i −0.856831 0.515597i \(-0.827570\pi\)
0.515597 + 0.856831i \(0.327570\pi\)
\(128\) 1180.27 1180.27i 0.815016 0.815016i
\(129\) 0 0
\(130\) 915.126 2209.31i 0.617399 1.49053i
\(131\) 2697.13 1117.19i 1.79885 0.745109i 0.811964 0.583707i \(-0.198398\pi\)
0.986889 0.161402i \(-0.0516017\pi\)
\(132\) 0 0
\(133\) −1516.24 3660.52i −0.988529 2.38652i
\(134\) −1695.92 1695.92i −1.09332 1.09332i
\(135\) 0 0
\(136\) 924.553 + 369.342i 0.582940 + 0.232874i
\(137\) −288.798 −0.180100 −0.0900498 0.995937i \(-0.528703\pi\)
−0.0900498 + 0.995937i \(0.528703\pi\)
\(138\) 0 0
\(139\) 725.418 + 1751.31i 0.442656 + 1.06867i 0.975013 + 0.222146i \(0.0713061\pi\)
−0.532358 + 0.846519i \(0.678694\pi\)
\(140\) 5673.53i 3.42501i
\(141\) 0 0
\(142\) 1150.71 2778.05i 0.680036 1.64175i
\(143\) −795.202 329.384i −0.465022 0.192618i
\(144\) 0 0
\(145\) −1747.46 + 1747.46i −1.00082 + 1.00082i
\(146\) −2323.66 962.491i −1.31717 0.545591i
\(147\) 0 0
\(148\) 1587.01 657.361i 0.881429 0.365100i
\(149\) 1741.86i 0.957708i 0.877895 + 0.478854i \(0.158948\pi\)
−0.877895 + 0.478854i \(0.841052\pi\)
\(150\) 0 0
\(151\) −1445.53 1445.53i −0.779042 0.779042i 0.200626 0.979668i \(-0.435702\pi\)
−0.979668 + 0.200626i \(0.935702\pi\)
\(152\) 1712.22 0.913682
\(153\) 0 0
\(154\) 3495.74 1.82919
\(155\) 108.918 + 108.918i 0.0564417 + 0.0564417i
\(156\) 0 0
\(157\) 2739.20i 1.39243i 0.717832 + 0.696216i \(0.245135\pi\)
−0.717832 + 0.696216i \(0.754865\pi\)
\(158\) −367.483 + 152.216i −0.185034 + 0.0766436i
\(159\) 0 0
\(160\) 3330.68 + 1379.61i 1.64571 + 0.681674i
\(161\) −408.752 + 408.752i −0.200088 + 0.200088i
\(162\) 0 0
\(163\) −647.547 268.223i −0.311165 0.128889i 0.221636 0.975130i \(-0.428860\pi\)
−0.532800 + 0.846241i \(0.678860\pi\)
\(164\) 550.229 1328.37i 0.261986 0.632489i
\(165\) 0 0
\(166\) 662.406i 0.309715i
\(167\) −228.576 551.832i −0.105915 0.255701i 0.862033 0.506852i \(-0.169191\pi\)
−0.967948 + 0.251151i \(0.919191\pi\)
\(168\) 0 0
\(169\) 937.011 0.426496
\(170\) 59.6819 + 4721.68i 0.0269258 + 2.13021i
\(171\) 0 0
\(172\) −4365.89 4365.89i −1.93544 1.93544i
\(173\) −952.894 2300.49i −0.418770 1.01100i −0.982705 0.185181i \(-0.940713\pi\)
0.563935 0.825819i \(-0.309287\pi\)
\(174\) 0 0
\(175\) −3367.94 + 1395.05i −1.45481 + 0.602604i
\(176\) 256.167 618.442i 0.109712 0.264868i
\(177\) 0 0
\(178\) −1895.67 + 1895.67i −0.798239 + 0.798239i
\(179\) −1796.06 + 1796.06i −0.749963 + 0.749963i −0.974472 0.224509i \(-0.927922\pi\)
0.224509 + 0.974472i \(0.427922\pi\)
\(180\) 0 0
\(181\) 391.473 945.100i 0.160762 0.388115i −0.822888 0.568204i \(-0.807639\pi\)
0.983650 + 0.180089i \(0.0576386\pi\)
\(182\) 4727.80 1958.32i 1.92554 0.797584i
\(183\) 0 0
\(184\) −95.5979 230.794i −0.0383020 0.0924692i
\(185\) 1660.05 + 1660.05i 0.659724 + 0.659724i
\(186\) 0 0
\(187\) 1699.49 21.4815i 0.664592 0.00840042i
\(188\) −3528.53 −1.36885
\(189\) 0 0
\(190\) 3107.76 + 7502.81i 1.18664 + 2.86479i
\(191\) 4381.51i 1.65987i 0.557861 + 0.829935i \(0.311622\pi\)
−0.557861 + 0.829935i \(0.688378\pi\)
\(192\) 0 0
\(193\) 1087.86 2626.33i 0.405730 0.979519i −0.580518 0.814247i \(-0.697150\pi\)
0.986248 0.165272i \(-0.0528501\pi\)
\(194\) −1918.96 794.857i −0.710170 0.294162i
\(195\) 0 0
\(196\) −5859.29 + 5859.29i −2.13531 + 2.13531i
\(197\) 1971.22 + 816.507i 0.712913 + 0.295298i 0.709509 0.704696i \(-0.248917\pi\)
0.00340354 + 0.999994i \(0.498917\pi\)
\(198\) 0 0
\(199\) −1966.44 + 814.528i −0.700490 + 0.290152i −0.704363 0.709840i \(-0.748767\pi\)
0.00387288 + 0.999993i \(0.498767\pi\)
\(200\) 1575.37i 0.556978i
\(201\) 0 0
\(202\) −1899.59 1899.59i −0.661656 0.661656i
\(203\) −5288.40 −1.82844
\(204\) 0 0
\(205\) 1965.05 0.669489
\(206\) −5421.40 5421.40i −1.83362 1.83362i
\(207\) 0 0
\(208\) 979.913i 0.326658i
\(209\) 2700.50 1118.59i 0.893770 0.370211i
\(210\) 0 0
\(211\) −700.253 290.054i −0.228471 0.0946358i 0.265511 0.964108i \(-0.414459\pi\)
−0.493982 + 0.869472i \(0.664459\pi\)
\(212\) 534.919 534.919i 0.173294 0.173294i
\(213\) 0 0
\(214\) 2106.77 + 872.651i 0.672970 + 0.278753i
\(215\) 3229.22 7796.03i 1.02433 2.47295i
\(216\) 0 0
\(217\) 329.622i 0.103116i
\(218\) −1493.53 3605.71i −0.464013 1.12023i
\(219\) 0 0
\(220\) −4185.58 −1.28269
\(221\) 2286.43 981.107i 0.695936 0.298626i
\(222\) 0 0
\(223\) −2128.53 2128.53i −0.639180 0.639180i 0.311173 0.950353i \(-0.399278\pi\)
−0.950353 + 0.311173i \(0.899278\pi\)
\(224\) 2952.29 + 7127.47i 0.880618 + 2.12600i
\(225\) 0 0
\(226\) 7728.91 3201.42i 2.27486 0.942280i
\(227\) −1100.16 + 2656.01i −0.321674 + 0.776589i 0.677484 + 0.735538i \(0.263071\pi\)
−0.999157 + 0.0410507i \(0.986929\pi\)
\(228\) 0 0
\(229\) 2808.48 2808.48i 0.810436 0.810436i −0.174263 0.984699i \(-0.555754\pi\)
0.984699 + 0.174263i \(0.0557543\pi\)
\(230\) 837.802 837.802i 0.240187 0.240187i
\(231\) 0 0
\(232\) 874.576 2111.41i 0.247494 0.597504i
\(233\) 4912.30 2034.74i 1.38118 0.572105i 0.436385 0.899760i \(-0.356259\pi\)
0.944797 + 0.327655i \(0.106259\pi\)
\(234\) 0 0
\(235\) −1845.46 4455.33i −0.512274 1.23674i
\(236\) 2141.58 + 2141.58i 0.590698 + 0.590698i
\(237\) 0 0
\(238\) −7054.40 + 7235.01i −1.92130 + 1.97049i
\(239\) −653.157 −0.176775 −0.0883874 0.996086i \(-0.528171\pi\)
−0.0883874 + 0.996086i \(0.528171\pi\)
\(240\) 0 0
\(241\) −197.944 477.879i −0.0529074 0.127730i 0.895216 0.445633i \(-0.147021\pi\)
−0.948123 + 0.317903i \(0.897021\pi\)
\(242\) 3259.03i 0.865695i
\(243\) 0 0
\(244\) 1598.65 3859.48i 0.419439 1.01261i
\(245\) −10462.8 4333.82i −2.72833 1.13011i
\(246\) 0 0
\(247\) 3025.65 3025.65i 0.779423 0.779423i
\(248\) −131.603 54.5116i −0.0336967 0.0139576i
\(249\) 0 0
\(250\) −876.935 + 363.238i −0.221849 + 0.0918929i
\(251\) 4658.77i 1.17155i 0.810474 + 0.585774i \(0.199210\pi\)
−0.810474 + 0.585774i \(0.800790\pi\)
\(252\) 0 0
\(253\) −301.552 301.552i −0.0749345 0.0749345i
\(254\) 3029.40 0.748352
\(255\) 0 0
\(256\) −851.930 −0.207991
\(257\) 3720.91 + 3720.91i 0.903129 + 0.903129i 0.995706 0.0925769i \(-0.0295104\pi\)
−0.0925769 + 0.995706i \(0.529510\pi\)
\(258\) 0 0
\(259\) 5023.86i 1.20528i
\(260\) −5660.77 + 2344.77i −1.35025 + 0.559294i
\(261\) 0 0
\(262\) −11830.1 4900.17i −2.78955 1.15547i
\(263\) 1119.45 1119.45i 0.262466 0.262466i −0.563589 0.826055i \(-0.690580\pi\)
0.826055 + 0.563589i \(0.190580\pi\)
\(264\) 0 0
\(265\) 955.188 + 395.652i 0.221422 + 0.0917159i
\(266\) −6650.45 + 16055.6i −1.53295 + 3.70087i
\(267\) 0 0
\(268\) 6145.25i 1.40068i
\(269\) −120.806 291.651i −0.0273816 0.0661050i 0.909597 0.415491i \(-0.136390\pi\)
−0.936979 + 0.349386i \(0.886390\pi\)
\(270\) 0 0
\(271\) −413.058 −0.0925885 −0.0462943 0.998928i \(-0.514741\pi\)
−0.0462943 + 0.998928i \(0.514741\pi\)
\(272\) 763.022 + 1778.19i 0.170092 + 0.396392i
\(273\) 0 0
\(274\) 895.700 + 895.700i 0.197486 + 0.197486i
\(275\) −1029.18 2484.66i −0.225680 0.544839i
\(276\) 0 0
\(277\) 432.799 179.271i 0.0938785 0.0388858i −0.335250 0.942129i \(-0.608821\pi\)
0.429128 + 0.903243i \(0.358821\pi\)
\(278\) 3181.80 7681.54i 0.686444 1.65722i
\(279\) 0 0
\(280\) 5070.44 5070.44i 1.08220 1.08220i
\(281\) 965.659 965.659i 0.205005 0.205005i −0.597135 0.802140i \(-0.703695\pi\)
0.802140 + 0.597135i \(0.203695\pi\)
\(282\) 0 0
\(283\) −2739.67 + 6614.15i −0.575465 + 1.38929i 0.321381 + 0.946950i \(0.395853\pi\)
−0.896845 + 0.442344i \(0.854147\pi\)
\(284\) −7118.02 + 2948.38i −1.48724 + 0.616036i
\(285\) 0 0
\(286\) 1444.73 + 3487.88i 0.298701 + 0.721129i
\(287\) 2973.46 + 2973.46i 0.611560 + 0.611560i
\(288\) 0 0
\(289\) −3385.10 + 3560.71i −0.689008 + 0.724754i
\(290\) 10839.4 2.19487
\(291\) 0 0
\(292\) 2466.13 + 5953.76i 0.494244 + 1.19321i
\(293\) 769.318i 0.153393i −0.997055 0.0766963i \(-0.975563\pi\)
0.997055 0.0766963i \(-0.0244372\pi\)
\(294\) 0 0
\(295\) −1584.01 + 3824.14i −0.312626 + 0.754747i
\(296\) −2005.80 830.828i −0.393866 0.163145i
\(297\) 0 0
\(298\) 5402.33 5402.33i 1.05016 1.05016i
\(299\) −576.763 238.903i −0.111555 0.0462077i
\(300\) 0 0
\(301\) 16683.1 6910.36i 3.19467 1.32328i
\(302\) 8966.55i 1.70850i
\(303\) 0 0
\(304\) 2353.10 + 2353.10i 0.443945 + 0.443945i
\(305\) 5709.32 1.07185
\(306\) 0 0
\(307\) −420.567 −0.0781857 −0.0390929 0.999236i \(-0.512447\pi\)
−0.0390929 + 0.999236i \(0.512447\pi\)
\(308\) −6333.50 6333.50i −1.17170 1.17170i
\(309\) 0 0
\(310\) 675.611i 0.123781i
\(311\) −3282.14 + 1359.51i −0.598434 + 0.247880i −0.661275 0.750144i \(-0.729984\pi\)
0.0628401 + 0.998024i \(0.479984\pi\)
\(312\) 0 0
\(313\) 6018.22 + 2492.83i 1.08680 + 0.450169i 0.852891 0.522088i \(-0.174847\pi\)
0.233913 + 0.972258i \(0.424847\pi\)
\(314\) 8495.57 8495.57i 1.52686 1.52686i
\(315\) 0 0
\(316\) 941.578 + 390.014i 0.167620 + 0.0694304i
\(317\) 2260.27 5456.77i 0.400471 0.966823i −0.587080 0.809529i \(-0.699723\pi\)
0.987552 0.157295i \(-0.0502772\pi\)
\(318\) 0 0
\(319\) 3901.46i 0.684764i
\(320\) −4753.09 11475.0i −0.830331 2.00460i
\(321\) 0 0
\(322\) 2535.47 0.438809
\(323\) −3134.51 + 7846.44i −0.539965 + 1.35166i
\(324\) 0 0
\(325\) −2783.82 2783.82i −0.475134 0.475134i
\(326\) 1176.47 + 2840.24i 0.199873 + 0.482536i
\(327\) 0 0
\(328\) −1678.90 + 695.425i −0.282628 + 0.117068i
\(329\) 3949.18 9534.16i 0.661779 1.59768i
\(330\) 0 0
\(331\) −6263.20 + 6263.20i −1.04005 + 1.04005i −0.0408867 + 0.999164i \(0.513018\pi\)
−0.999164 + 0.0408867i \(0.986982\pi\)
\(332\) 1200.13 1200.13i 0.198391 0.198391i
\(333\) 0 0
\(334\) −1002.57 + 2420.42i −0.164246 + 0.396525i
\(335\) −7759.35 + 3214.03i −1.26549 + 0.524183i
\(336\) 0 0
\(337\) −3140.02 7580.69i −0.507561 1.22536i −0.945283 0.326250i \(-0.894215\pi\)
0.437722 0.899110i \(-0.355785\pi\)
\(338\) −2906.12 2906.12i −0.467669 0.467669i
\(339\) 0 0
\(340\) 8446.49 8662.75i 1.34728 1.38177i
\(341\) −243.175 −0.0386177
\(342\) 0 0
\(343\) −4959.83 11974.1i −0.780775 1.88496i
\(344\) 7803.59i 1.22309i
\(345\) 0 0
\(346\) −4179.54 + 10090.3i −0.649403 + 1.56780i
\(347\) 4736.58 + 1961.96i 0.732775 + 0.303525i 0.717692 0.696361i \(-0.245199\pi\)
0.0150834 + 0.999886i \(0.495199\pi\)
\(348\) 0 0
\(349\) −372.255 + 372.255i −0.0570956 + 0.0570956i −0.735078 0.677982i \(-0.762855\pi\)
0.677982 + 0.735078i \(0.262855\pi\)
\(350\) 14772.3 + 6118.90i 2.25604 + 0.934482i
\(351\) 0 0
\(352\) −5258.21 + 2178.02i −0.796203 + 0.329798i
\(353\) 2498.19i 0.376672i 0.982105 + 0.188336i \(0.0603093\pi\)
−0.982105 + 0.188336i \(0.939691\pi\)
\(354\) 0 0
\(355\) −7445.60 7445.60i −1.11316 1.11316i
\(356\) 6869.05 1.02264
\(357\) 0 0
\(358\) 11140.9 1.64473
\(359\) −3683.94 3683.94i −0.541590 0.541590i 0.382405 0.923995i \(-0.375096\pi\)
−0.923995 + 0.382405i \(0.875096\pi\)
\(360\) 0 0
\(361\) 7672.19i 1.11856i
\(362\) −4145.36 + 1717.06i −0.601865 + 0.249301i
\(363\) 0 0
\(364\) −12113.7 5017.68i −1.74432 0.722521i
\(365\) −6227.76 + 6227.76i −0.893084 + 0.893084i
\(366\) 0 0
\(367\) 4953.51 + 2051.81i 0.704553 + 0.291835i 0.706048 0.708164i \(-0.250476\pi\)
−0.00149555 + 0.999999i \(0.500476\pi\)
\(368\) 185.799 448.558i 0.0263191 0.0635399i
\(369\) 0 0
\(370\) 10297.2i 1.44683i
\(371\) 846.674 + 2044.05i 0.118483 + 0.286043i
\(372\) 0 0
\(373\) 6085.54 0.844764 0.422382 0.906418i \(-0.361194\pi\)
0.422382 + 0.906418i \(0.361194\pi\)
\(374\) −5337.55 5204.30i −0.737963 0.719540i
\(375\) 0 0
\(376\) 3153.45 + 3153.45i 0.432518 + 0.432518i
\(377\) −2185.60 5276.51i −0.298579 0.720832i
\(378\) 0 0
\(379\) −5629.32 + 2331.74i −0.762952 + 0.316025i −0.730014 0.683432i \(-0.760486\pi\)
−0.0329382 + 0.999457i \(0.510486\pi\)
\(380\) 7962.82 19224.0i 1.07496 2.59518i
\(381\) 0 0
\(382\) 13589.2 13589.2i 1.82011 1.82011i
\(383\) 4813.71 4813.71i 0.642217 0.642217i −0.308883 0.951100i \(-0.599955\pi\)
0.951100 + 0.308883i \(0.0999552\pi\)
\(384\) 0 0
\(385\) 4684.56 11309.5i 0.620123 1.49711i
\(386\) −11519.5 + 4771.53i −1.51898 + 0.629182i
\(387\) 0 0
\(388\) 2036.61 + 4916.82i 0.266478 + 0.643334i
\(389\) −3245.79 3245.79i −0.423055 0.423055i 0.463199 0.886254i \(-0.346701\pi\)
−0.886254 + 0.463199i \(0.846701\pi\)
\(390\) 0 0
\(391\) 1232.64 15.5806i 0.159431 0.00201520i
\(392\) 10472.9 1.34939
\(393\) 0 0
\(394\) −3581.33 8646.09i −0.457931 1.10554i
\(395\) 1392.87i 0.177425i
\(396\) 0 0
\(397\) −1756.69 + 4241.04i −0.222081 + 0.536150i −0.995172 0.0981444i \(-0.968709\pi\)
0.773092 + 0.634294i \(0.218709\pi\)
\(398\) 8625.13 + 3572.65i 1.08628 + 0.449951i
\(399\) 0 0
\(400\) 2165.02 2165.02i 0.270628 0.270628i
\(401\) 1659.84 + 687.528i 0.206704 + 0.0856197i 0.483634 0.875271i \(-0.339317\pi\)
−0.276929 + 0.960890i \(0.589317\pi\)
\(402\) 0 0
\(403\) −328.880 + 136.227i −0.0406518 + 0.0168385i
\(404\) 6883.24i 0.847659i
\(405\) 0 0
\(406\) 16401.9 + 16401.9i 2.00495 + 2.00495i
\(407\) −3706.30 −0.451387
\(408\) 0 0
\(409\) −11163.3 −1.34961 −0.674803 0.737998i \(-0.735772\pi\)
−0.674803 + 0.737998i \(0.735772\pi\)
\(410\) −6094.57 6094.57i −0.734121 0.734121i
\(411\) 0 0
\(412\) 19644.7i 2.34909i
\(413\) −8183.46 + 3389.70i −0.975017 + 0.403865i
\(414\) 0 0
\(415\) 2143.03 + 887.673i 0.253488 + 0.104998i
\(416\) −5891.31 + 5891.31i −0.694339 + 0.694339i
\(417\) 0 0
\(418\) −11844.8 4906.29i −1.38600 0.574102i
\(419\) −1692.23 + 4085.40i −0.197305 + 0.476337i −0.991305 0.131581i \(-0.957995\pi\)
0.794000 + 0.607917i \(0.207995\pi\)
\(420\) 0 0
\(421\) 11888.9i 1.37632i 0.725559 + 0.688160i \(0.241581\pi\)
−0.725559 + 0.688160i \(0.758419\pi\)
\(422\) 1272.22 + 3071.42i 0.146756 + 0.354299i
\(423\) 0 0
\(424\) −956.115 −0.109512
\(425\) 7219.29 + 2883.98i 0.823970 + 0.329161i
\(426\) 0 0
\(427\) 8639.17 + 8639.17i 0.979107 + 0.979107i
\(428\) −2235.94 5398.03i −0.252519 0.609635i
\(429\) 0 0
\(430\) −34194.6 + 14163.9i −3.83491 + 1.58847i
\(431\) −952.700 + 2300.02i −0.106473 + 0.257049i −0.968133 0.250438i \(-0.919425\pi\)
0.861660 + 0.507487i \(0.169425\pi\)
\(432\) 0 0
\(433\) −1298.56 + 1298.56i −0.144122 + 0.144122i −0.775486 0.631364i \(-0.782495\pi\)
0.631364 + 0.775486i \(0.282495\pi\)
\(434\) 1022.31 1022.31i 0.113071 0.113071i
\(435\) 0 0
\(436\) −3826.79 + 9238.68i −0.420344 + 1.01480i
\(437\) 1958.68 811.314i 0.214409 0.0888110i
\(438\) 0 0
\(439\) −1409.49 3402.81i −0.153238 0.369948i 0.828554 0.559909i \(-0.189164\pi\)
−0.981792 + 0.189961i \(0.939164\pi\)
\(440\) 3740.66 + 3740.66i 0.405293 + 0.405293i
\(441\) 0 0
\(442\) −10134.2 4048.43i −1.09058 0.435666i
\(443\) 16524.1 1.77220 0.886099 0.463497i \(-0.153405\pi\)
0.886099 + 0.463497i \(0.153405\pi\)
\(444\) 0 0
\(445\) 3592.59 + 8673.27i 0.382708 + 0.923938i
\(446\) 13203.2i 1.40177i
\(447\) 0 0
\(448\) 10171.4 24555.8i 1.07266 2.58963i
\(449\) −7226.66 2993.38i −0.759570 0.314624i −0.0309307 0.999522i \(-0.509847\pi\)
−0.728640 + 0.684897i \(0.759847\pi\)
\(450\) 0 0
\(451\) −2193.64 + 2193.64i −0.229034 + 0.229034i
\(452\) −19803.3 8202.79i −2.06077 0.853599i
\(453\) 0 0
\(454\) 11649.7 4825.45i 1.20429 0.498832i
\(455\) 17919.8i 1.84636i
\(456\) 0 0
\(457\) −2384.11 2384.11i −0.244035 0.244035i 0.574482 0.818517i \(-0.305204\pi\)
−0.818517 + 0.574482i \(0.805204\pi\)
\(458\) −17420.9 −1.77735
\(459\) 0 0
\(460\) −3035.82 −0.307708
\(461\) −4367.31 4367.31i −0.441228 0.441228i 0.451197 0.892425i \(-0.350997\pi\)
−0.892425 + 0.451197i \(0.850997\pi\)
\(462\) 0 0
\(463\) 13819.6i 1.38715i −0.720383 0.693577i \(-0.756034\pi\)
0.720383 0.693577i \(-0.243966\pi\)
\(464\) 4103.62 1699.78i 0.410573 0.170065i
\(465\) 0 0
\(466\) −21546.1 8924.69i −2.14186 0.887186i
\(467\) −4160.60 + 4160.60i −0.412269 + 0.412269i −0.882528 0.470259i \(-0.844160\pi\)
0.470259 + 0.882528i \(0.344160\pi\)
\(468\) 0 0
\(469\) −16604.6 6877.85i −1.63482 0.677163i
\(470\) −8094.46 + 19541.8i −0.794404 + 1.91786i
\(471\) 0 0
\(472\) 3827.85i 0.373287i
\(473\) 5098.04 + 12307.8i 0.495577 + 1.19643i
\(474\) 0 0
\(475\) 13369.8 1.29147
\(476\) 25889.2 327.238i 2.49292 0.0315104i
\(477\) 0 0
\(478\) 2025.75 + 2025.75i 0.193841 + 0.193841i
\(479\) 1773.81 + 4282.36i 0.169202 + 0.408489i 0.985621 0.168971i \(-0.0540443\pi\)
−0.816420 + 0.577459i \(0.804044\pi\)
\(480\) 0 0
\(481\) −5012.56 + 2076.27i −0.475163 + 0.196819i
\(482\) −868.213 + 2096.05i −0.0820457 + 0.198076i
\(483\) 0 0
\(484\) −5904.62 + 5904.62i −0.554529 + 0.554529i
\(485\) −5143.09 + 5143.09i −0.481517 + 0.481517i
\(486\) 0 0
\(487\) −6637.65 + 16024.7i −0.617619 + 1.49106i 0.236841 + 0.971548i \(0.423888\pi\)
−0.854461 + 0.519516i \(0.826112\pi\)
\(488\) −4877.93 + 2020.51i −0.452487 + 0.187426i
\(489\) 0 0
\(490\) 19008.8 + 45891.3i 1.75251 + 4.23093i
\(491\) 12195.7 + 12195.7i 1.12094 + 1.12094i 0.991600 + 0.129343i \(0.0412869\pi\)
0.129343 + 0.991600i \(0.458713\pi\)
\(492\) 0 0
\(493\) 8074.70 + 7873.12i 0.737660 + 0.719245i
\(494\) −18768.0 −1.70934
\(495\) 0 0
\(496\) −105.946 255.775i −0.00959093 0.0231545i
\(497\) 22532.9i 2.03368i
\(498\) 0 0
\(499\) −95.7457 + 231.151i −0.00858951 + 0.0207369i −0.928116 0.372291i \(-0.878572\pi\)
0.919527 + 0.393028i \(0.128572\pi\)
\(500\) 2246.91 + 930.703i 0.200970 + 0.0832446i
\(501\) 0 0
\(502\) 14449.1 14449.1i 1.28465 1.28465i
\(503\) −12113.1 5017.40i −1.07375 0.444761i −0.225436 0.974258i \(-0.572381\pi\)
−0.848312 + 0.529497i \(0.822381\pi\)
\(504\) 0 0
\(505\) −8691.19 + 3600.01i −0.765847 + 0.317224i
\(506\) 1870.52i 0.164337i
\(507\) 0 0
\(508\) −5488.59 5488.59i −0.479364 0.479364i
\(509\) 4410.32 0.384055 0.192028 0.981390i \(-0.438494\pi\)
0.192028 + 0.981390i \(0.438494\pi\)
\(510\) 0 0
\(511\) −18847.3 −1.63162
\(512\) −6799.91 6799.91i −0.586946 0.586946i
\(513\) 0 0
\(514\) 23080.7i 1.98063i
\(515\) −24804.5 + 10274.4i −2.12237 + 0.879113i
\(516\) 0 0
\(517\) 7033.72 + 2913.46i 0.598342 + 0.247841i
\(518\) 15581.4 15581.4i 1.32164 1.32164i
\(519\) 0 0
\(520\) 7154.55 + 2963.51i 0.603361 + 0.249920i
\(521\) 4507.02 10880.9i 0.378995 0.914975i −0.613160 0.789959i \(-0.710102\pi\)
0.992155 0.125016i \(-0.0398981\pi\)
\(522\) 0 0
\(523\) 16556.5i 1.38425i −0.721777 0.692126i \(-0.756674\pi\)
0.721777 0.692126i \(-0.243326\pi\)
\(524\) 12555.4 + 30311.4i 1.04673 + 2.52702i
\(525\) 0 0
\(526\) −6943.93 −0.575608
\(527\) 490.725 503.289i 0.0405623 0.0416008i
\(528\) 0 0
\(529\) 8384.65 + 8384.65i 0.689131 + 0.689131i
\(530\) −1735.39 4189.61i −0.142228 0.343368i
\(531\) 0 0
\(532\) 41138.2 17040.0i 3.35257 1.38868i
\(533\) −1737.89 + 4195.65i −0.141232 + 0.340964i
\(534\) 0 0
\(535\) 5646.45 5646.45i 0.456294 0.456294i
\(536\) 5492.01 5492.01i 0.442572 0.442572i
\(537\) 0 0
\(538\) −529.872 + 1279.23i −0.0424618 + 0.102512i
\(539\) 16517.8 6841.89i 1.31998 0.546755i
\(540\) 0 0
\(541\) 6020.15 + 14533.9i 0.478423 + 1.15501i 0.960348 + 0.278802i \(0.0899375\pi\)
−0.481926 + 0.876212i \(0.660063\pi\)
\(542\) 1281.09 + 1281.09i 0.101527 + 0.101527i
\(543\) 0 0
\(544\) 6103.27 15278.0i 0.481021 1.20411i
\(545\) −13666.8 −1.07416
\(546\) 0 0
\(547\) −4768.76 11512.8i −0.372756 0.899913i −0.993281 0.115726i \(-0.963081\pi\)
0.620525 0.784187i \(-0.286919\pi\)
\(548\) 3245.61i 0.253003i
\(549\) 0 0
\(550\) −4514.15 + 10898.1i −0.349971 + 0.844904i
\(551\) 17919.0 + 7422.29i 1.38544 + 0.573866i
\(552\) 0 0
\(553\) −2107.65 + 2107.65i −0.162073 + 0.162073i
\(554\) −1898.32 786.311i −0.145581 0.0603017i
\(555\) 0 0
\(556\) −19681.9 + 8152.51i −1.50126 + 0.621841i
\(557\) 8819.07i 0.670873i 0.942063 + 0.335436i \(0.108884\pi\)
−0.942063 + 0.335436i \(0.891116\pi\)
\(558\) 0 0
\(559\) 13789.6 + 13789.6i 1.04336 + 1.04336i
\(560\) 13936.5 1.05165
\(561\) 0 0
\(562\) −5989.95 −0.449592
\(563\) −8057.59 8057.59i −0.603174 0.603174i 0.337980 0.941153i \(-0.390256\pi\)
−0.941153 + 0.337980i \(0.890256\pi\)
\(564\) 0 0
\(565\) 29294.9i 2.18132i
\(566\) 29010.7 12016.6i 2.15443 0.892396i
\(567\) 0 0
\(568\) 8996.35 + 3726.41i 0.664575 + 0.275276i
\(569\) 7327.39 7327.39i 0.539860 0.539860i −0.383628 0.923488i \(-0.625325\pi\)
0.923488 + 0.383628i \(0.125325\pi\)
\(570\) 0 0
\(571\) −7063.11 2925.63i −0.517656 0.214420i 0.108531 0.994093i \(-0.465385\pi\)
−0.626187 + 0.779673i \(0.715385\pi\)
\(572\) 3701.73 8936.78i 0.270590 0.653261i
\(573\) 0 0
\(574\) 18444.3i 1.34120i
\(575\) −746.468 1802.13i −0.0541389 0.130703i
\(576\) 0 0
\(577\) 8346.67 0.602212 0.301106 0.953591i \(-0.402644\pi\)
0.301106 + 0.953591i \(0.402644\pi\)
\(578\) 21542.3 544.675i 1.55024 0.0391963i
\(579\) 0 0
\(580\) −19638.6 19638.6i −1.40594 1.40594i
\(581\) 1899.57 + 4585.98i 0.135641 + 0.327467i
\(582\) 0 0
\(583\) −1507.98 + 624.624i −0.107125 + 0.0443727i
\(584\) 3116.90 7524.86i 0.220853 0.533187i
\(585\) 0 0
\(586\) −2386.02 + 2386.02i −0.168201 + 0.168201i
\(587\) −2900.82 + 2900.82i −0.203968 + 0.203968i −0.801698 0.597729i \(-0.796070\pi\)
0.597729 + 0.801698i \(0.296070\pi\)
\(588\) 0 0
\(589\) 462.625 1116.88i 0.0323636 0.0781325i
\(590\) 16773.3 6947.73i 1.17042 0.484802i
\(591\) 0 0
\(592\) −1614.75 3898.35i −0.112104 0.270644i
\(593\) 14179.7 + 14179.7i 0.981940 + 0.981940i 0.999840 0.0178999i \(-0.00569801\pi\)
−0.0178999 + 0.999840i \(0.505698\pi\)
\(594\) 0 0
\(595\) 13953.5 + 32518.1i 0.961408 + 2.24052i
\(596\) −19575.6 −1.34538
\(597\) 0 0
\(598\) 1047.87 + 2529.77i 0.0716562 + 0.172993i
\(599\) 96.8780i 0.00660822i −0.999995 0.00330411i \(-0.998948\pi\)
0.999995 0.00330411i \(-0.00105173\pi\)
\(600\) 0 0
\(601\) 7082.35 17098.3i 0.480690 1.16049i −0.478591 0.878038i \(-0.658852\pi\)
0.959282 0.282452i \(-0.0911476\pi\)
\(602\) −73174.6 30309.9i −4.95411 2.05206i
\(603\) 0 0
\(604\) 16245.4 16245.4i 1.09440 1.09440i
\(605\) −10543.7 4367.34i −0.708533 0.293484i
\(606\) 0 0
\(607\) −1862.54 + 771.490i −0.124544 + 0.0515878i −0.444085 0.895985i \(-0.646471\pi\)
0.319541 + 0.947572i \(0.396471\pi\)
\(608\) 28294.0i 1.88729i
\(609\) 0 0
\(610\) −17707.3 17707.3i −1.17533 1.17533i
\(611\) 11144.8 0.737925
\(612\) 0 0
\(613\) 26672.3 1.75740 0.878698 0.477378i \(-0.158413\pi\)
0.878698 + 0.477378i \(0.158413\pi\)
\(614\) 1304.38 + 1304.38i 0.0857337 + 0.0857337i
\(615\) 0 0
\(616\) 11320.5i 0.740448i
\(617\) −10628.3 + 4402.38i −0.693482 + 0.287250i −0.701450 0.712718i \(-0.747464\pi\)
0.00796782 + 0.999968i \(0.497464\pi\)
\(618\) 0 0
\(619\) 28126.9 + 11650.6i 1.82636 + 0.756503i 0.971252 + 0.238052i \(0.0765089\pi\)
0.855107 + 0.518451i \(0.173491\pi\)
\(620\) −1224.05 + 1224.05i −0.0792891 + 0.0792891i
\(621\) 0 0
\(622\) 14396.0 + 5963.01i 0.928016 + 0.384397i
\(623\) −7687.94 + 18560.3i −0.494399 + 1.19359i
\(624\) 0 0
\(625\) 17187.7i 1.10001i
\(626\) −10933.9 26396.8i −0.698095 1.68535i
\(627\) 0 0
\(628\) −30784.1 −1.95608
\(629\) 7479.29 7670.79i 0.474116 0.486255i
\(630\) 0 0
\(631\) −2083.53 2083.53i −0.131449 0.131449i 0.638321 0.769770i \(-0.279629\pi\)
−0.769770 + 0.638321i \(0.779629\pi\)
\(632\) −492.932 1190.04i −0.0310250 0.0749010i
\(633\) 0 0
\(634\) −23934.3 + 9913.90i −1.49929 + 0.621027i
\(635\) 4059.62 9800.80i 0.253703 0.612493i
\(636\) 0 0
\(637\) 18506.5 18506.5i 1.15111 1.15111i
\(638\) −12100.3 + 12100.3i −0.750870 + 0.750870i
\(639\) 0 0
\(640\) −9810.91 + 23685.6i −0.605953 + 1.46290i
\(641\) −22435.1 + 9292.91i −1.38242 + 0.572618i −0.945128 0.326701i \(-0.894063\pi\)
−0.437293 + 0.899319i \(0.644063\pi\)
\(642\) 0 0
\(643\) 392.931 + 948.619i 0.0240990 + 0.0581802i 0.935471 0.353404i \(-0.114976\pi\)
−0.911372 + 0.411584i \(0.864976\pi\)
\(644\) −4593.71 4593.71i −0.281083 0.281083i
\(645\) 0 0
\(646\) 34057.2 14613.9i 2.07425 0.890059i
\(647\) 10184.4 0.618839 0.309419 0.950926i \(-0.399865\pi\)
0.309419 + 0.950926i \(0.399865\pi\)
\(648\) 0 0
\(649\) −2500.71 6037.26i −0.151251 0.365151i
\(650\) 17267.9i 1.04201i
\(651\) 0 0
\(652\) 3014.39 7277.38i 0.181062 0.437123i
\(653\) 19392.6 + 8032.67i 1.16216 + 0.481383i 0.878594 0.477570i \(-0.158482\pi\)
0.283567 + 0.958953i \(0.408482\pi\)
\(654\) 0 0
\(655\) −31706.3 + 31706.3i −1.89140 + 1.89140i
\(656\) −3263.02 1351.59i −0.194207 0.0804431i
\(657\) 0 0
\(658\) −41818.3 + 17321.7i −2.47758 + 1.02625i
\(659\) 2158.18i 0.127573i −0.997964 0.0637866i \(-0.979682\pi\)
0.997964 0.0637866i \(-0.0203177\pi\)
\(660\) 0 0
\(661\) 7849.97 + 7849.97i 0.461919 + 0.461919i 0.899284 0.437365i \(-0.144088\pi\)
−0.437365 + 0.899284i \(0.644088\pi\)
\(662\) 38850.4 2.28091
\(663\) 0 0
\(664\) −2145.11 −0.125371
\(665\) 43031.4 + 43031.4i 2.50930 + 2.50930i
\(666\) 0 0
\(667\) 2829.74i 0.164270i
\(668\) 6201.69 2568.82i 0.359207 0.148789i
\(669\) 0 0
\(670\) 34033.7 + 14097.2i 1.96244 + 0.812871i
\(671\) −6373.45 + 6373.45i −0.366683 + 0.366683i
\(672\) 0 0
\(673\) 7115.94 + 2947.52i 0.407577 + 0.168824i 0.577046 0.816712i \(-0.304205\pi\)
−0.169469 + 0.985536i \(0.554205\pi\)
\(674\) −13772.6 + 33250.1i −0.787095 + 1.90022i
\(675\) 0 0
\(676\) 10530.5i 0.599140i
\(677\) 7334.40 + 17706.8i 0.416372 + 1.00521i 0.983390 + 0.181506i \(0.0580972\pi\)
−0.567017 + 0.823706i \(0.691903\pi\)
\(678\) 0 0
\(679\) −15564.7 −0.879706
\(680\) −15290.5 + 193.272i −0.862301 + 0.0108995i
\(681\) 0 0
\(682\) 754.201 + 754.201i 0.0423458 + 0.0423458i
\(683\) −4270.16 10309.1i −0.239229 0.577549i 0.757975 0.652284i \(-0.226189\pi\)
−0.997203 + 0.0747346i \(0.976189\pi\)
\(684\) 0 0
\(685\) 4098.10 1697.49i 0.228584 0.0946828i
\(686\) −21754.6 + 52520.3i −1.21078 + 2.92308i
\(687\) 0 0
\(688\) −10724.4 + 10724.4i −0.594280 + 0.594280i
\(689\) −1689.54 + 1689.54i −0.0934199 + 0.0934199i
\(690\) 0 0
\(691\) −8903.52 + 21495.0i −0.490168 + 1.18337i 0.464467 + 0.885590i \(0.346246\pi\)
−0.954635 + 0.297779i \(0.903754\pi\)
\(692\) 25853.7 10709.0i 1.42025 0.588286i
\(693\) 0 0
\(694\) −8605.45 20775.4i −0.470689 1.13634i
\(695\) −20587.7 20587.7i −1.12365 1.12365i
\(696\) 0 0
\(697\) −113.340 8966.84i −0.00615936 0.487293i
\(698\) 2309.09 0.125215
\(699\) 0 0
\(700\) −15678.1 37850.2i −0.846535 2.04372i
\(701\) 12642.2i 0.681153i 0.940217 + 0.340576i \(0.110622\pi\)
−0.940217 + 0.340576i \(0.889378\pi\)
\(702\) 0 0
\(703\) 7051.01 17022.6i 0.378284 0.913259i
\(704\) 18115.8 + 7503.80i 0.969836 + 0.401719i
\(705\) 0 0
\(706\) 7748.08 7748.08i 0.413035 0.413035i
\(707\) −18598.7 7703.82i −0.989357 0.409805i
\(708\) 0 0
\(709\) 6237.95 2583.84i 0.330425 0.136866i −0.211303 0.977421i \(-0.567771\pi\)
0.541727 + 0.840554i \(0.317771\pi\)
\(710\) 46184.8i 2.44124i
\(711\) 0 0
\(712\) −6138.88 6138.88i −0.323124 0.323124i
\(713\) −176.375 −0.00926410
\(714\) 0 0
\(715\) 13220.1 0.691476
\(716\) −20184.7 20184.7i −1.05355 1.05355i
\(717\) 0 0
\(718\) 22851.3i 1.18775i
\(719\) 5925.14 2454.27i 0.307330 0.127300i −0.223688 0.974661i \(-0.571810\pi\)
0.531018 + 0.847360i \(0.321810\pi\)
\(720\) 0 0
\(721\) −53080.4 21986.6i −2.74177 1.13568i
\(722\) 23795.1 23795.1i 1.22654 1.22654i
\(723\) 0 0
\(724\) 10621.4 + 4399.52i 0.545222 + 0.225838i
\(725\) 6829.05 16486.8i 0.349827 0.844557i
\(726\) 0 0
\(727\) 5828.20i 0.297326i −0.988888 0.148663i \(-0.952503\pi\)
0.988888 0.148663i \(-0.0474970\pi\)
\(728\) 6341.76 + 15310.4i 0.322859 + 0.779450i
\(729\) 0 0
\(730\) 38630.5 1.95860
\(731\) −35760.7 14285.8i −1.80938 0.722816i
\(732\) 0 0
\(733\) 8245.31 + 8245.31i 0.415481 + 0.415481i 0.883643 0.468162i \(-0.155084\pi\)
−0.468162 + 0.883643i \(0.655084\pi\)
\(734\) −8999.56 21726.9i −0.452561 1.09258i
\(735\) 0 0
\(736\) −3813.79 + 1579.72i −0.191003 + 0.0791161i
\(737\) 5074.06 12249.9i 0.253603 0.612251i
\(738\) 0 0
\(739\) −9261.33 + 9261.33i −0.461006 + 0.461006i −0.898985 0.437979i \(-0.855694\pi\)
0.437979 + 0.898985i \(0.355694\pi\)
\(740\) −18656.2 + 18656.2i −0.926778 + 0.926778i
\(741\) 0 0
\(742\) 3713.65 8965.53i 0.183736 0.443578i
\(743\) −14071.2 + 5828.48i −0.694781 + 0.287788i −0.701991 0.712186i \(-0.747705\pi\)
0.00720941 + 0.999974i \(0.497705\pi\)
\(744\) 0 0
\(745\) −10238.2 24717.3i −0.503490 1.21553i
\(746\) −18874.2 18874.2i −0.926317 0.926317i
\(747\) 0 0
\(748\) 241.416 + 19099.5i 0.0118009 + 0.933617i
\(749\) 17088.1 0.833625
\(750\) 0 0
\(751\) −861.528 2079.91i −0.0418610 0.101061i 0.901566 0.432641i \(-0.142418\pi\)
−0.943427 + 0.331580i \(0.892418\pi\)
\(752\) 8667.52i 0.420308i
\(753\) 0 0
\(754\) −9586.38 + 23143.6i −0.463018 + 1.11782i
\(755\) 29008.8 + 12015.9i 1.39833 + 0.579208i
\(756\) 0 0
\(757\) −18222.9 + 18222.9i −0.874929 + 0.874929i −0.993005 0.118075i \(-0.962328\pi\)
0.118075 + 0.993005i \(0.462328\pi\)
\(758\) 24691.1 + 10227.4i 1.18314 + 0.490073i
\(759\) 0 0
\(760\) −24296.8 + 10064.1i −1.15966 + 0.480345i
\(761\) 31638.6i 1.50709i −0.657395 0.753547i \(-0.728341\pi\)
0.657395 0.753547i \(-0.271659\pi\)
\(762\) 0 0
\(763\) −20680.1 20680.1i −0.981220 0.981220i
\(764\) −49241.0 −2.33178
\(765\) 0 0
\(766\) −29859.3 −1.40843
\(767\) −6764.16 6764.16i −0.318435 0.318435i
\(768\) 0 0
\(769\) 31684.4i 1.48578i −0.669412 0.742891i \(-0.733454\pi\)
0.669412 0.742891i \(-0.266546\pi\)
\(770\) −49605.4 + 20547.2i −2.32163 + 0.961650i
\(771\) 0 0
\(772\) 29515.6 + 12225.8i 1.37602 + 0.569968i
\(773\) 16853.6 16853.6i 0.784192 0.784192i −0.196343 0.980535i \(-0.562907\pi\)
0.980535 + 0.196343i \(0.0629067\pi\)
\(774\) 0 0
\(775\) −1027.61 425.649i −0.0476293 0.0197287i
\(776\) 2574.04 6214.28i 0.119076 0.287474i
\(777\) 0 0
\(778\) 20133.5i 0.927792i
\(779\) −5901.89 14248.4i −0.271447 0.655330i
\(780\) 0 0
\(781\) 16623.4 0.761629
\(782\) −3871.34 3774.70i −0.177032 0.172612i
\(783\) 0 0
\(784\) 14392.8 + 14392.8i 0.655650 + 0.655650i
\(785\) −16100.4 38869.8i −0.732036 1.76729i
\(786\) 0 0
\(787\) −8050.64 + 3334.69i −0.364644 + 0.151040i −0.557479 0.830191i \(-0.688231\pi\)
0.192836 + 0.981231i \(0.438231\pi\)
\(788\) −9176.21 + 22153.3i −0.414834 + 1.00150i
\(789\) 0 0
\(790\) 4319.97 4319.97i 0.194554 0.194554i
\(791\) 44328.2 44328.2i 1.99258 1.99258i
\(792\) 0 0
\(793\) −5049.33 + 12190.2i −0.226112 + 0.545883i
\(794\) 18601.8 7705.14i 0.831429 0.344389i
\(795\) 0 0
\(796\) −9153.96 22099.6i −0.407605 0.984045i
\(797\) 5085.49 + 5085.49i 0.226019 + 0.226019i 0.811027 0.585008i \(-0.198909\pi\)
−0.585008 + 0.811027i \(0.698909\pi\)
\(798\) 0 0
\(799\) −20223.9 + 8678.08i −0.895457 + 0.384241i
\(800\) −26032.5 −1.15049
\(801\) 0 0
\(802\) −3015.60 7280.31i −0.132774 0.320545i
\(803\) 13904.4i 0.611053i
\(804\) 0 0
\(805\) 3397.73 8202.84i 0.148763 0.359145i
\(806\) 1442.52 + 597.511i 0.0630404 + 0.0261122i
\(807\) 0 0
\(808\) 6151.56 6151.56i 0.267835 0.267835i
\(809\) 17501.4 + 7249.30i 0.760587 + 0.315046i 0.729053 0.684457i \(-0.239961\pi\)
0.0315342 + 0.999503i \(0.489961\pi\)
\(810\) 0 0
\(811\) 15374.2 6368.21i 0.665675 0.275731i −0.0241496 0.999708i \(-0.507688\pi\)
0.689824 + 0.723977i \(0.257688\pi\)
\(812\) 59433.0i 2.56858i
\(813\) 0 0
\(814\) 11495.0 + 11495.0i 0.494963 + 0.494963i
\(815\) 10765.4 0.462694
\(816\) 0 0
\(817\) −66227.0 −2.83597
\(818\) 34622.7 + 34622.7i 1.47990 + 1.47990i
\(819\) 0 0
\(820\) 22084.0i 0.940495i
\(821\) 3307.09 1369.84i 0.140583 0.0582312i −0.311283 0.950317i \(-0.600759\pi\)
0.451865 + 0.892086i \(0.350759\pi\)
\(822\) 0 0
\(823\) 18390.8 + 7617.71i 0.778934 + 0.322645i 0.736485 0.676454i \(-0.236484\pi\)
0.0424485 + 0.999099i \(0.486484\pi\)
\(824\) 17556.5 17556.5i 0.742243 0.742243i
\(825\) 0 0
\(826\) 35894.0 + 14867.8i 1.51200 + 0.626290i
\(827\) −10540.9 + 25447.9i −0.443219 + 1.07002i 0.531594 + 0.846999i \(0.321593\pi\)
−0.974813 + 0.223025i \(0.928407\pi\)
\(828\) 0 0
\(829\) 3808.15i 0.159545i 0.996813 + 0.0797723i \(0.0254193\pi\)
−0.996813 + 0.0797723i \(0.974581\pi\)
\(830\) −3893.47 9399.68i −0.162825 0.393093i
\(831\) 0 0
\(832\) 28704.2 1.19608
\(833\) −19172.4 + 47993.1i −0.797460 + 1.99623i
\(834\) 0 0
\(835\) 6487.09 + 6487.09i 0.268856 + 0.268856i
\(836\) 12571.1 + 30349.3i 0.520071 + 1.25556i
\(837\) 0 0
\(838\) 17919.2 7422.38i 0.738674 0.305969i
\(839\) −11502.8 + 27770.3i −0.473327 + 1.14271i 0.489356 + 0.872084i \(0.337232\pi\)
−0.962684 + 0.270629i \(0.912768\pi\)
\(840\) 0 0
\(841\) 1059.82 1059.82i 0.0434550 0.0434550i
\(842\) 36873.3 36873.3i 1.50919 1.50919i
\(843\) 0 0
\(844\) 3259.74 7869.70i 0.132944 0.320955i
\(845\) −13296.4 + 5507.55i −0.541313 + 0.224219i
\(846\) 0 0
\(847\) −9345.88 22563.0i −0.379136 0.915316i
\(848\) −1313.98 1313.98i −0.0532103 0.0532103i
\(849\) 0 0
\(850\) −13445.9 31335.1i −0.542577 1.26445i
\(851\) −2688.19 −0.108284
\(852\) 0 0
\(853\) 16507.4 + 39852.4i 0.662606 + 1.59967i 0.793705 + 0.608302i \(0.208149\pi\)
−0.131100 + 0.991369i \(0.541851\pi\)
\(854\) 53588.4i 2.14726i
\(855\) 0 0
\(856\) −2825.96 + 6822.48i −0.112838 + 0.272415i
\(857\) −21055.7 8721.57i −0.839265 0.347635i −0.0787016 0.996898i \(-0.525077\pi\)
−0.760564 + 0.649263i \(0.775077\pi\)
\(858\) 0 0
\(859\) 34423.0 34423.0i 1.36729 1.36729i 0.502997 0.864288i \(-0.332231\pi\)
0.864288 0.502997i \(-0.167769\pi\)
\(860\) 87614.6 + 36291.2i 3.47399 + 1.43897i
\(861\) 0 0
\(862\) 10088.2 4178.69i 0.398616 0.165112i
\(863\) 29580.9i 1.16680i 0.812187 + 0.583398i \(0.198277\pi\)
−0.812187 + 0.583398i \(0.801723\pi\)
\(864\) 0 0
\(865\) 27043.5 + 27043.5i 1.06302 + 1.06302i
\(866\) 8054.93 0.316071
\(867\) 0 0
\(868\) −3704.41 −0.144857
\(869\) −1554.90 1554.90i −0.0606977 0.0606977i
\(870\) 0 0
\(871\) 19409.7i 0.755079i
\(872\) 11676.6 4836.61i 0.453463 0.187831i
\(873\) 0 0
\(874\) −8591.10 3558.55i −0.332492 0.137723i
\(875\) −5029.56 + 5029.56i −0.194320 + 0.194320i
\(876\) 0 0
\(877\) −37189.1 15404.2i −1.43191 0.593117i −0.474089 0.880477i \(-0.657222\pi\)
−0.957823 + 0.287360i \(0.907222\pi\)
\(878\) −6182.24 + 14925.3i −0.237632 + 0.573693i
\(879\) 0 0
\(880\) 10281.5i 0.393852i
\(881\) −15006.5 36229.0i −0.573874 1.38546i −0.898232 0.439521i \(-0.855148\pi\)
0.324358 0.945934i \(-0.394852\pi\)
\(882\) 0 0
\(883\) −2775.62 −0.105784 −0.0528918 0.998600i \(-0.516844\pi\)
−0.0528918 + 0.998600i \(0.516844\pi\)
\(884\) 11026.0 + 25695.7i 0.419509 + 0.977648i
\(885\) 0 0
\(886\) −51249.2 51249.2i −1.94328 1.94328i
\(887\) 8537.38 + 20611.1i 0.323176 + 0.780216i 0.999066 + 0.0432133i \(0.0137595\pi\)
−0.675890 + 0.737003i \(0.736240\pi\)
\(888\) 0 0
\(889\) 20973.2 8687.38i 0.791246 0.327745i
\(890\) 15757.6 38042.3i 0.593480 1.43279i
\(891\) 0 0
\(892\) 23921.2 23921.2i 0.897917 0.897917i
\(893\) −26762.5 + 26762.5i −1.00288 + 1.00288i
\(894\) 0 0
\(895\) 14929.6 36043.2i 0.557588 1.34614i
\(896\) −50686.0 + 20994.8i −1.88984 + 0.782799i
\(897\) 0 0
\(898\) 13129.4 + 31697.3i 0.487901 + 1.17790i
\(899\) −1140.96 1140.96i −0.0423284 0.0423284i
\(900\) 0 0
\(901\) 1750.33 4381.49i 0.0647190 0.162007i
\(902\) 13607.0 0.502289
\(903\) 0 0
\(904\) 10367.4 + 25029.0i 0.381431 + 0.920855i
\(905\) 15712.2i 0.577116i
\(906\) 0 0
\(907\) −12777.8 + 30848.3i −0.467783 + 1.12933i 0.497346 + 0.867552i \(0.334308\pi\)
−0.965129 + 0.261775i \(0.915692\pi\)
\(908\) −29849.2 12364.0i −1.09095 0.451886i
\(909\) 0 0
\(910\) −55578.0 + 55578.0i −2.02461 + 2.02461i
\(911\) −23350.5 9672.11i −0.849218 0.351758i −0.0847368 0.996403i \(-0.527005\pi\)
−0.764482 + 0.644646i \(0.777005\pi\)
\(912\) 0 0
\(913\) −3383.25 + 1401.39i −0.122639 + 0.0507987i
\(914\) 14788.6i 0.535188i
\(915\) 0 0
\(916\) 31562.8 + 31562.8i 1.13850 + 1.13850i
\(917\) −95954.2 −3.45549
\(918\) 0 0
\(919\) 33518.4 1.20312 0.601562 0.798826i \(-0.294545\pi\)
0.601562 + 0.798826i \(0.294545\pi\)
\(920\) 2713.11 + 2713.11i 0.0972267 + 0.0972267i
\(921\) 0 0
\(922\) 27090.3i 0.967648i
\(923\) 22482.2 9312.45i 0.801746 0.332094i
\(924\) 0 0
\(925\) −15662.1 6487.45i −0.556720 0.230601i
\(926\) −42861.3 + 42861.3i −1.52107 + 1.52107i
\(927\) 0 0
\(928\) −34890.4 14452.1i −1.23420 0.511221i
\(929\) 1130.85 2730.12i 0.0399377 0.0964181i −0.902652 0.430371i \(-0.858383\pi\)
0.942590 + 0.333953i \(0.108383\pi\)
\(930\) 0 0
\(931\) 88880.7i 3.12884i
\(932\) 22867.2 + 55206.2i 0.803690 + 1.94028i
\(933\) 0 0
\(934\) 25808.0 0.904137
\(935\) −23989.8 + 10294.0i −0.839092 + 0.360054i
\(936\) 0 0
\(937\) −10680.8 10680.8i −0.372388 0.372388i 0.495958 0.868346i \(-0.334817\pi\)
−0.868346 + 0.495958i \(0.834817\pi\)
\(938\) 30167.3 + 72830.4i 1.05010 + 2.53518i
\(939\) 0 0
\(940\) 50070.6 20739.9i 1.73736 0.719640i
\(941\) 17931.1 43289.5i 0.621187 1.49968i −0.229124 0.973397i \(-0.573586\pi\)
0.850311 0.526280i \(-0.176414\pi\)
\(942\) 0 0
\(943\) −1591.05 + 1591.05i −0.0549435 + 0.0549435i
\(944\) 5260.59 5260.59i 0.181375 0.181375i
\(945\) 0 0
\(946\) 22360.8 53983.7i 0.768512 1.85535i
\(947\) 30143.3 12485.7i 1.03434 0.428440i 0.200066 0.979782i \(-0.435884\pi\)
0.834279 + 0.551343i \(0.185884\pi\)
\(948\) 0 0
\(949\) −7789.26 18804.9i −0.266438 0.643239i
\(950\) −41466.0 41466.0i −1.41614 1.41614i
\(951\) 0 0
\(952\) −23429.6 22844.7i −0.797646 0.777733i
\(953\) 20967.3 0.712693 0.356347 0.934354i \(-0.384022\pi\)
0.356347 + 0.934354i \(0.384022\pi\)
\(954\) 0 0
\(955\) −25753.6 62174.6i −0.872634 2.10673i
\(956\) 7340.41i 0.248333i
\(957\) 0 0
\(958\) 7780.22 18783.1i 0.262388 0.633460i
\(959\) 8769.71 + 3632.53i 0.295296 + 0.122316i
\(960\) 0 0
\(961\) 20994.3 20994.3i 0.704720 0.704720i
\(962\) 21985.9 + 9106.85i 0.736854 + 0.305215i
\(963\) 0 0
\(964\) 5370.58 2224.57i 0.179434 0.0743241i
\(965\) 43662.4i 1.45652i
\(966\) 0 0
\(967\) 8726.06 + 8726.06i 0.290187 + 0.290187i 0.837154 0.546967i \(-0.184218\pi\)
−0.546967 + 0.837154i \(0.684218\pi\)
\(968\) 10553.9 0.350430
\(969\) 0 0
\(970\) 31902.4 1.05600
\(971\) 5672.65 + 5672.65i 0.187481 + 0.187481i 0.794606 0.607125i \(-0.207677\pi\)
−0.607125 + 0.794606i \(0.707677\pi\)
\(972\) 0 0
\(973\) 62305.3i 2.05284i
\(974\) 70286.8 29113.8i 2.31225 0.957767i
\(975\) 0 0
\(976\) −9480.48 3926.94i −0.310925 0.128789i
\(977\) −17438.5 + 17438.5i −0.571042 + 0.571042i −0.932420 0.361377i \(-0.882307\pi\)
0.361377 + 0.932420i \(0.382307\pi\)
\(978\) 0 0
\(979\) −13692.7 5671.69i −0.447007 0.185156i
\(980\) 48705.0 117584.i 1.58758 3.83275i
\(981\) 0 0
\(982\) 75649.3i 2.45832i
\(983\) −9747.59 23532.8i −0.316276 0.763559i −0.999445 0.0332985i \(-0.989399\pi\)
0.683169 0.730260i \(-0.260601\pi\)
\(984\) 0 0
\(985\) −32771.3 −1.06008
\(986\) −625.196 49461.9i −0.0201930 1.59755i
\(987\) 0 0
\(988\) 34003.4 + 34003.4i 1.09493 + 1.09493i
\(989\) 3697.62 + 8926.85i 0.118885 + 0.287015i
\(990\) 0 0
\(991\) 24184.4 10017.5i 0.775218 0.321106i 0.0402342 0.999190i \(-0.487190\pi\)
0.734984 + 0.678084i \(0.237190\pi\)
\(992\) −900.787 + 2174.69i −0.0288307 + 0.0696033i
\(993\) 0 0
\(994\) −69885.4 + 69885.4i −2.23001 + 2.23001i
\(995\) 23116.7 23116.7i 0.736530 0.736530i
\(996\) 0 0
\(997\) −5625.82 + 13581.9i −0.178708 + 0.431438i −0.987696 0.156386i \(-0.950016\pi\)
0.808988 + 0.587825i \(0.200016\pi\)
\(998\) 1013.86 419.955i 0.0321576 0.0133201i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.4.l.c.100.2 40
3.2 odd 2 51.4.h.a.49.9 yes 40
17.8 even 8 inner 153.4.l.c.127.2 40
51.5 even 16 867.4.a.v.1.3 20
51.8 odd 8 51.4.h.a.25.9 40
51.29 even 16 867.4.a.w.1.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.4.h.a.25.9 40 51.8 odd 8
51.4.h.a.49.9 yes 40 3.2 odd 2
153.4.l.c.100.2 40 1.1 even 1 trivial
153.4.l.c.127.2 40 17.8 even 8 inner
867.4.a.v.1.3 20 51.5 even 16
867.4.a.w.1.3 20 51.29 even 16