Properties

Label 153.3.j.a.86.16
Level $153$
Weight $3$
Character 153.86
Analytic conductor $4.169$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [153,3,Mod(86,153)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("153.86"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(153, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 153.j (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.16894804471\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 86.16
Character \(\chi\) \(=\) 153.86
Dual form 153.3.j.a.137.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0918678 + 0.0530399i) q^{2} +(-2.79064 + 1.10106i) q^{3} +(-1.99437 + 3.45436i) q^{4} +(-0.368715 - 0.212878i) q^{5} +(0.197970 - 0.249167i) q^{6} +(-3.49077 - 6.04619i) q^{7} -0.847445i q^{8} +(6.57534 - 6.14532i) q^{9} +0.0451640 q^{10} +(-0.977932 + 0.564609i) q^{11} +(1.76213 - 11.8358i) q^{12} +(7.30063 - 12.6451i) q^{13} +(0.641379 + 0.370300i) q^{14} +(1.26334 + 0.188088i) q^{15} +(-7.93255 - 13.7396i) q^{16} -4.12311i q^{17} +(-0.278115 + 0.913312i) q^{18} +8.85050 q^{19} +(1.47071 - 0.849115i) q^{20} +(16.3987 + 13.0292i) q^{21} +(0.0598936 - 0.103739i) q^{22} +(-35.3768 - 20.4248i) q^{23} +(0.933086 + 2.36491i) q^{24} +(-12.4094 - 21.4937i) q^{25} +1.54890i q^{26} +(-11.5830 + 24.3892i) q^{27} +27.8476 q^{28} +(-34.5797 + 19.9646i) q^{29} +(-0.126037 + 0.0497282i) q^{30} +(-8.41833 + 14.5810i) q^{31} +(4.39312 + 2.53637i) q^{32} +(2.10739 - 2.65238i) q^{33} +(0.218689 + 0.378781i) q^{34} +2.97243i q^{35} +(8.11443 + 34.9696i) q^{36} +60.2993 q^{37} +(-0.813076 + 0.469430i) q^{38} +(-6.45047 + 43.3262i) q^{39} +(-0.180402 + 0.312465i) q^{40} +(-0.494829 - 0.285690i) q^{41} +(-2.19758 - 0.327179i) q^{42} +(-12.5109 - 21.6695i) q^{43} -4.50417i q^{44} +(-3.73263 + 0.866127i) q^{45} +4.33332 q^{46} +(-14.7477 + 8.51462i) q^{47} +(37.2650 + 29.6080i) q^{48} +(0.129025 - 0.223479i) q^{49} +(2.28004 + 1.31638i) q^{50} +(4.53978 + 11.5061i) q^{51} +(29.1204 + 50.4380i) q^{52} -24.4489i q^{53} +(-0.229492 - 2.85495i) q^{54} +0.480770 q^{55} +(-5.12381 + 2.95824i) q^{56} +(-24.6986 + 9.74492i) q^{57} +(2.11784 - 3.66821i) q^{58} +(-41.7773 - 24.1201i) q^{59} +(-3.16930 + 3.98891i) q^{60} +(-30.4999 - 52.8275i) q^{61} -1.78603i q^{62} +(-60.1088 - 18.3039i) q^{63} +62.9223 q^{64} +(-5.38370 + 3.10828i) q^{65} +(-0.0529190 + 0.355444i) q^{66} +(17.2958 - 29.9572i) q^{67} +(14.2427 + 8.22301i) q^{68} +(121.213 + 18.0463i) q^{69} +(-0.157657 - 0.273070i) q^{70} +127.386i q^{71} +(-5.20782 - 5.57224i) q^{72} -104.409 q^{73} +(-5.53956 + 3.19827i) q^{74} +(58.2958 + 46.3176i) q^{75} +(-17.6512 + 30.5728i) q^{76} +(6.82747 + 3.94184i) q^{77} +(-1.70543 - 4.32242i) q^{78} +(-29.2711 - 50.6991i) q^{79} +6.75465i q^{80} +(5.47017 - 80.8151i) q^{81} +0.0606118 q^{82} +(-69.6131 + 40.1911i) q^{83} +(-77.7126 + 30.6619i) q^{84} +(-0.877717 + 1.52025i) q^{85} +(2.29869 + 1.32715i) q^{86} +(74.5173 - 93.7883i) q^{87} +(0.478475 + 0.828743i) q^{88} -22.9617i q^{89} +(0.296969 - 0.277547i) q^{90} -101.939 q^{91} +(141.109 - 81.4695i) q^{92} +(7.43801 - 49.9593i) q^{93} +(0.903229 - 1.56444i) q^{94} +(-3.26331 - 1.88407i) q^{95} +(-15.0523 - 2.24101i) q^{96} +(-3.86636 - 6.69674i) q^{97} +0.0273740i q^{98} +(-2.96053 + 9.72219i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 2 q^{3} + 64 q^{4} - 18 q^{5} - 22 q^{6} + 2 q^{7} - 6 q^{9} - 44 q^{12} - 10 q^{13} + 72 q^{14} - 36 q^{15} - 128 q^{16} - 38 q^{18} - 28 q^{19} - 18 q^{20} + 88 q^{21} + 144 q^{23} - 42 q^{24}+ \cdots + 58 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/153\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0918678 + 0.0530399i −0.0459339 + 0.0265199i −0.522791 0.852461i \(-0.675109\pi\)
0.476857 + 0.878981i \(0.341776\pi\)
\(3\) −2.79064 + 1.10106i −0.930213 + 0.367020i
\(4\) −1.99437 + 3.45436i −0.498593 + 0.863589i
\(5\) −0.368715 0.212878i −0.0737430 0.0425755i 0.462675 0.886528i \(-0.346890\pi\)
−0.536418 + 0.843952i \(0.680223\pi\)
\(6\) 0.197970 0.249167i 0.0329950 0.0415278i
\(7\) −3.49077 6.04619i −0.498682 0.863742i 0.501317 0.865264i \(-0.332849\pi\)
−0.999999 + 0.00152160i \(0.999516\pi\)
\(8\) 0.847445i 0.105931i
\(9\) 6.57534 6.14532i 0.730593 0.682813i
\(10\) 0.0451640 0.00451640
\(11\) −0.977932 + 0.564609i −0.0889029 + 0.0513281i −0.543792 0.839220i \(-0.683012\pi\)
0.454889 + 0.890548i \(0.349679\pi\)
\(12\) 1.76213 11.8358i 0.146844 0.986316i
\(13\) 7.30063 12.6451i 0.561587 0.972697i −0.435771 0.900057i \(-0.643524\pi\)
0.997358 0.0726397i \(-0.0231423\pi\)
\(14\) 0.641379 + 0.370300i 0.0458128 + 0.0264500i
\(15\) 1.26334 + 0.188088i 0.0842227 + 0.0125392i
\(16\) −7.93255 13.7396i −0.495784 0.858723i
\(17\) 4.12311i 0.242536i
\(18\) −0.278115 + 0.913312i −0.0154508 + 0.0507396i
\(19\) 8.85050 0.465816 0.232908 0.972499i \(-0.425176\pi\)
0.232908 + 0.972499i \(0.425176\pi\)
\(20\) 1.47071 0.849115i 0.0735355 0.0424557i
\(21\) 16.3987 + 13.0292i 0.780891 + 0.620438i
\(22\) 0.0598936 0.103739i 0.00272244 0.00471540i
\(23\) −35.3768 20.4248i −1.53812 0.888036i −0.998949 0.0458416i \(-0.985403\pi\)
−0.539174 0.842194i \(-0.681264\pi\)
\(24\) 0.933086 + 2.36491i 0.0388786 + 0.0985380i
\(25\) −12.4094 21.4937i −0.496375 0.859746i
\(26\) 1.54890i 0.0595730i
\(27\) −11.5830 + 24.3892i −0.429002 + 0.903304i
\(28\) 27.8476 0.994558
\(29\) −34.5797 + 19.9646i −1.19240 + 0.688435i −0.958851 0.283910i \(-0.908368\pi\)
−0.233553 + 0.972344i \(0.575035\pi\)
\(30\) −0.126037 + 0.0497282i −0.00420122 + 0.00165761i
\(31\) −8.41833 + 14.5810i −0.271559 + 0.470354i −0.969261 0.246034i \(-0.920873\pi\)
0.697702 + 0.716388i \(0.254206\pi\)
\(32\) 4.39312 + 2.53637i 0.137285 + 0.0792616i
\(33\) 2.10739 2.65238i 0.0638602 0.0803752i
\(34\) 0.218689 + 0.378781i 0.00643203 + 0.0111406i
\(35\) 2.97243i 0.0849265i
\(36\) 8.11443 + 34.9696i 0.225401 + 0.971378i
\(37\) 60.2993 1.62971 0.814855 0.579664i \(-0.196816\pi\)
0.814855 + 0.579664i \(0.196816\pi\)
\(38\) −0.813076 + 0.469430i −0.0213967 + 0.0123534i
\(39\) −6.45047 + 43.3262i −0.165397 + 1.11093i
\(40\) −0.180402 + 0.312465i −0.00451005 + 0.00781163i
\(41\) −0.494829 0.285690i −0.0120690 0.00696804i 0.493953 0.869488i \(-0.335551\pi\)
−0.506022 + 0.862520i \(0.668885\pi\)
\(42\) −2.19758 0.327179i −0.0523233 0.00778997i
\(43\) −12.5109 21.6695i −0.290951 0.503941i 0.683084 0.730340i \(-0.260638\pi\)
−0.974035 + 0.226398i \(0.927305\pi\)
\(44\) 4.50417i 0.102367i
\(45\) −3.73263 + 0.866127i −0.0829472 + 0.0192473i
\(46\) 4.33332 0.0942026
\(47\) −14.7477 + 8.51462i −0.313782 + 0.181162i −0.648618 0.761114i \(-0.724653\pi\)
0.334836 + 0.942277i \(0.391319\pi\)
\(48\) 37.2650 + 29.6080i 0.776353 + 0.616833i
\(49\) 0.129025 0.223479i 0.00263317 0.00456079i
\(50\) 2.28004 + 1.31638i 0.0456008 + 0.0263277i
\(51\) 4.53978 + 11.5061i 0.0890153 + 0.225610i
\(52\) 29.1204 + 50.4380i 0.560007 + 0.969961i
\(53\) 24.4489i 0.461300i −0.973037 0.230650i \(-0.925915\pi\)
0.973037 0.230650i \(-0.0740853\pi\)
\(54\) −0.229492 2.85495i −0.00424984 0.0528694i
\(55\) 0.480770 0.00874128
\(56\) −5.12381 + 2.95824i −0.0914967 + 0.0528256i
\(57\) −24.6986 + 9.74492i −0.433308 + 0.170964i
\(58\) 2.11784 3.66821i 0.0365145 0.0632450i
\(59\) −41.7773 24.1201i −0.708089 0.408815i 0.102264 0.994757i \(-0.467391\pi\)
−0.810353 + 0.585942i \(0.800725\pi\)
\(60\) −3.16930 + 3.98891i −0.0528216 + 0.0664819i
\(61\) −30.4999 52.8275i −0.499999 0.866024i 0.500001 0.866025i \(-0.333333\pi\)
−1.00000 9.53650e-7i \(1.00000\pi\)
\(62\) 1.78603i 0.0288069i
\(63\) −60.1088 18.3039i −0.954108 0.290538i
\(64\) 62.9223 0.983160
\(65\) −5.38370 + 3.10828i −0.0828262 + 0.0478197i
\(66\) −0.0529190 + 0.355444i −0.000801803 + 0.00538551i
\(67\) 17.2958 29.9572i 0.258146 0.447122i −0.707599 0.706614i \(-0.750222\pi\)
0.965745 + 0.259492i \(0.0835550\pi\)
\(68\) 14.2427 + 8.22301i 0.209451 + 0.120927i
\(69\) 121.213 + 18.0463i 1.75671 + 0.261541i
\(70\) −0.157657 0.273070i −0.00225225 0.00390101i
\(71\) 127.386i 1.79417i 0.441862 + 0.897083i \(0.354318\pi\)
−0.441862 + 0.897083i \(0.645682\pi\)
\(72\) −5.20782 5.57224i −0.0723308 0.0773922i
\(73\) −104.409 −1.43026 −0.715131 0.698990i \(-0.753633\pi\)
−0.715131 + 0.698990i \(0.753633\pi\)
\(74\) −5.53956 + 3.19827i −0.0748590 + 0.0432198i
\(75\) 58.2958 + 46.3176i 0.777278 + 0.617568i
\(76\) −17.6512 + 30.5728i −0.232253 + 0.402273i
\(77\) 6.82747 + 3.94184i 0.0886685 + 0.0511928i
\(78\) −1.70543 4.32242i −0.0218645 0.0554156i
\(79\) −29.2711 50.6991i −0.370520 0.641760i 0.619125 0.785292i \(-0.287487\pi\)
−0.989646 + 0.143532i \(0.954154\pi\)
\(80\) 6.75465i 0.0844331i
\(81\) 5.47017 80.8151i 0.0675329 0.997717i
\(82\) 0.0606118 0.000739168
\(83\) −69.6131 + 40.1911i −0.838712 + 0.484231i −0.856826 0.515605i \(-0.827567\pi\)
0.0181143 + 0.999836i \(0.494234\pi\)
\(84\) −77.7126 + 30.6619i −0.925151 + 0.365022i
\(85\) −0.877717 + 1.52025i −0.0103261 + 0.0178853i
\(86\) 2.29869 + 1.32715i 0.0267290 + 0.0154320i
\(87\) 74.5173 93.7883i 0.856521 1.07803i
\(88\) 0.478475 + 0.828743i 0.00543721 + 0.00941753i
\(89\) 22.9617i 0.257997i −0.991645 0.128999i \(-0.958824\pi\)
0.991645 0.128999i \(-0.0411763\pi\)
\(90\) 0.296969 0.277547i 0.00329965 0.00308386i
\(91\) −101.939 −1.12021
\(92\) 141.109 81.4695i 1.53380 0.885538i
\(93\) 7.43801 49.9593i 0.0799786 0.537197i
\(94\) 0.903229 1.56444i 0.00960882 0.0166430i
\(95\) −3.26331 1.88407i −0.0343506 0.0198324i
\(96\) −15.0523 2.24101i −0.156795 0.0233439i
\(97\) −3.86636 6.69674i −0.0398594 0.0690385i 0.845407 0.534122i \(-0.179358\pi\)
−0.885267 + 0.465083i \(0.846024\pi\)
\(98\) 0.0273740i 0.000279326i
\(99\) −2.96053 + 9.72219i −0.0299043 + 0.0982040i
\(100\) 98.9956 0.989956
\(101\) 24.9210 14.3881i 0.246742 0.142457i −0.371529 0.928421i \(-0.621167\pi\)
0.618272 + 0.785965i \(0.287833\pi\)
\(102\) −1.02734 0.816251i −0.0100720 0.00800246i
\(103\) 16.4552 28.5013i 0.159760 0.276712i −0.775022 0.631934i \(-0.782261\pi\)
0.934782 + 0.355222i \(0.115595\pi\)
\(104\) −10.7160 6.18688i −0.103038 0.0594892i
\(105\) −3.27282 8.29498i −0.0311697 0.0789998i
\(106\) 1.29677 + 2.24607i 0.0122337 + 0.0211893i
\(107\) 107.879i 1.00821i −0.863641 0.504107i \(-0.831822\pi\)
0.863641 0.504107i \(-0.168178\pi\)
\(108\) −61.1481 88.6531i −0.566186 0.820862i
\(109\) 36.1080 0.331266 0.165633 0.986187i \(-0.447033\pi\)
0.165633 + 0.986187i \(0.447033\pi\)
\(110\) −0.0441673 + 0.0255000i −0.000401521 + 0.000231818i
\(111\) −168.274 + 66.3931i −1.51598 + 0.598136i
\(112\) −55.3814 + 95.9234i −0.494477 + 0.856459i
\(113\) 153.812 + 88.8036i 1.36117 + 0.785872i 0.989780 0.142604i \(-0.0455476\pi\)
0.371391 + 0.928477i \(0.378881\pi\)
\(114\) 1.75213 2.20525i 0.0153696 0.0193443i
\(115\) 8.69597 + 15.0619i 0.0756172 + 0.130973i
\(116\) 159.267i 1.37300i
\(117\) −29.7038 128.010i −0.253879 1.09410i
\(118\) 5.11731 0.0433671
\(119\) −24.9291 + 14.3928i −0.209488 + 0.120948i
\(120\) 0.159394 1.07061i 0.00132828 0.00892176i
\(121\) −59.8624 + 103.685i −0.494731 + 0.856899i
\(122\) 5.60393 + 3.23543i 0.0459338 + 0.0265199i
\(123\) 1.69545 + 0.252421i 0.0137841 + 0.00205220i
\(124\) −33.5786 58.1598i −0.270795 0.469031i
\(125\) 21.2106i 0.169685i
\(126\) 6.49290 1.50663i 0.0515309 0.0119574i
\(127\) 148.304 1.16775 0.583874 0.811844i \(-0.301536\pi\)
0.583874 + 0.811844i \(0.301536\pi\)
\(128\) −23.3530 + 13.4829i −0.182446 + 0.105335i
\(129\) 58.7727 + 46.6965i 0.455603 + 0.361988i
\(130\) 0.329726 0.571102i 0.00253635 0.00439309i
\(131\) −213.272 123.133i −1.62803 0.939944i −0.984680 0.174372i \(-0.944210\pi\)
−0.643351 0.765572i \(-0.722456\pi\)
\(132\) 4.95935 + 12.5695i 0.0375708 + 0.0952235i
\(133\) −30.8951 53.5118i −0.232294 0.402345i
\(134\) 3.66947i 0.0273841i
\(135\) 9.46276 6.52689i 0.0700945 0.0483473i
\(136\) −3.49410 −0.0256919
\(137\) 196.455 113.423i 1.43398 0.827907i 0.436556 0.899677i \(-0.356198\pi\)
0.997421 + 0.0717696i \(0.0228646\pi\)
\(138\) −12.0927 + 4.77124i −0.0876285 + 0.0345742i
\(139\) 19.1414 33.1538i 0.137708 0.238517i −0.788921 0.614495i \(-0.789360\pi\)
0.926629 + 0.375978i \(0.122693\pi\)
\(140\) −10.2678 5.92813i −0.0733416 0.0423438i
\(141\) 31.7806 39.9994i 0.225394 0.283683i
\(142\) −6.75653 11.7026i −0.0475812 0.0824130i
\(143\) 16.4880i 0.115301i
\(144\) −136.593 41.5943i −0.948564 0.288850i
\(145\) 17.0001 0.117242
\(146\) 9.59184 5.53785i 0.0656975 0.0379305i
\(147\) −0.114000 + 0.765713i −0.000775513 + 0.00520893i
\(148\) −120.259 + 208.295i −0.812563 + 1.40740i
\(149\) 174.259 + 100.608i 1.16952 + 0.675224i 0.953567 0.301180i \(-0.0973805\pi\)
0.215954 + 0.976403i \(0.430714\pi\)
\(150\) −7.81219 1.16309i −0.0520813 0.00775393i
\(151\) 62.8728 + 108.899i 0.416376 + 0.721185i 0.995572 0.0940039i \(-0.0299666\pi\)
−0.579196 + 0.815189i \(0.696633\pi\)
\(152\) 7.50031i 0.0493441i
\(153\) −25.3378 27.1108i −0.165606 0.177195i
\(154\) −0.836300 −0.00543052
\(155\) 6.20793 3.58415i 0.0400511 0.0231235i
\(156\) −136.800 108.691i −0.876921 0.696737i
\(157\) −58.2102 + 100.823i −0.370765 + 0.642184i −0.989683 0.143271i \(-0.954238\pi\)
0.618918 + 0.785455i \(0.287571\pi\)
\(158\) 5.37815 + 3.10507i 0.0340389 + 0.0196524i
\(159\) 26.9197 + 68.2281i 0.169306 + 0.429107i
\(160\) −1.07987 1.87040i −0.00674921 0.0116900i
\(161\) 285.194i 1.77139i
\(162\) 3.78389 + 7.71444i 0.0233574 + 0.0476200i
\(163\) −133.191 −0.817123 −0.408561 0.912731i \(-0.633969\pi\)
−0.408561 + 0.912731i \(0.633969\pi\)
\(164\) 1.97375 1.13954i 0.0120350 0.00694844i
\(165\) −1.34166 + 0.529357i −0.00813126 + 0.00320822i
\(166\) 4.26347 7.38454i 0.0256835 0.0444852i
\(167\) 152.573 + 88.0878i 0.913608 + 0.527472i 0.881590 0.472015i \(-0.156473\pi\)
0.0320179 + 0.999487i \(0.489807\pi\)
\(168\) 11.0415 13.8970i 0.0657234 0.0827202i
\(169\) −22.0984 38.2756i −0.130760 0.226483i
\(170\) 0.186216i 0.00109539i
\(171\) 58.1950 54.3891i 0.340322 0.318065i
\(172\) 99.8055 0.580264
\(173\) −5.03796 + 2.90867i −0.0291212 + 0.0168131i −0.514490 0.857496i \(-0.672019\pi\)
0.485369 + 0.874310i \(0.338685\pi\)
\(174\) −1.87122 + 12.5685i −0.0107541 + 0.0722328i
\(175\) −86.6365 + 150.059i −0.495066 + 0.857479i
\(176\) 15.5150 + 8.95757i 0.0881533 + 0.0508953i
\(177\) 143.143 + 21.3113i 0.808717 + 0.120403i
\(178\) 1.21789 + 2.10944i 0.00684207 + 0.0118508i
\(179\) 222.907i 1.24529i 0.782504 + 0.622646i \(0.213942\pi\)
−0.782504 + 0.622646i \(0.786058\pi\)
\(180\) 4.45234 14.6212i 0.0247352 0.0812289i
\(181\) 188.421 1.04100 0.520501 0.853861i \(-0.325745\pi\)
0.520501 + 0.853861i \(0.325745\pi\)
\(182\) 9.36494 5.40685i 0.0514557 0.0297080i
\(183\) 143.281 + 113.840i 0.782954 + 0.622077i
\(184\) −17.3089 + 29.9799i −0.0940701 + 0.162934i
\(185\) −22.2332 12.8364i −0.120180 0.0693858i
\(186\) 1.96652 + 4.98416i 0.0105727 + 0.0267966i
\(187\) 2.32794 + 4.03211i 0.0124489 + 0.0215621i
\(188\) 67.9253i 0.361305i
\(189\) 187.896 15.1038i 0.994157 0.0799142i
\(190\) 0.399724 0.00210381
\(191\) −121.584 + 70.1965i −0.636565 + 0.367521i −0.783290 0.621656i \(-0.786460\pi\)
0.146725 + 0.989177i \(0.453127\pi\)
\(192\) −175.593 + 69.2811i −0.914549 + 0.360839i
\(193\) −26.8095 + 46.4354i −0.138909 + 0.240598i −0.927084 0.374854i \(-0.877693\pi\)
0.788175 + 0.615451i \(0.211026\pi\)
\(194\) 0.710389 + 0.410143i 0.00366180 + 0.00211414i
\(195\) 11.6016 14.6019i 0.0594952 0.0748814i
\(196\) 0.514650 + 0.891400i 0.00262576 + 0.00454796i
\(197\) 265.787i 1.34917i −0.738196 0.674586i \(-0.764322\pi\)
0.738196 0.674586i \(-0.235678\pi\)
\(198\) −0.243687 1.05018i −0.00123074 0.00530395i
\(199\) −268.572 −1.34961 −0.674805 0.737996i \(-0.735772\pi\)
−0.674805 + 0.737996i \(0.735772\pi\)
\(200\) −18.2147 + 10.5162i −0.0910734 + 0.0525812i
\(201\) −15.2817 + 102.643i −0.0760284 + 0.510664i
\(202\) −1.52629 + 2.64361i −0.00755589 + 0.0130872i
\(203\) 241.420 + 139.384i 1.18926 + 0.686619i
\(204\) −48.8002 7.26544i −0.239217 0.0356149i
\(205\) 0.121634 + 0.210676i 0.000593336 + 0.00102769i
\(206\) 3.49113i 0.0169473i
\(207\) −358.132 + 83.1017i −1.73010 + 0.401457i
\(208\) −231.650 −1.11370
\(209\) −8.65518 + 4.99707i −0.0414124 + 0.0239094i
\(210\) 0.740631 + 0.588451i 0.00352682 + 0.00280215i
\(211\) −38.7902 + 67.1866i −0.183840 + 0.318420i −0.943185 0.332268i \(-0.892186\pi\)
0.759345 + 0.650688i \(0.225519\pi\)
\(212\) 84.4552 + 48.7602i 0.398374 + 0.230001i
\(213\) −140.259 355.488i −0.658494 1.66896i
\(214\) 5.72188 + 9.91059i 0.0267378 + 0.0463112i
\(215\) 10.6531i 0.0495495i
\(216\) 20.6685 + 9.81599i 0.0956875 + 0.0454444i
\(217\) 117.546 0.541686
\(218\) −3.31717 + 1.91517i −0.0152164 + 0.00878517i
\(219\) 291.368 114.961i 1.33045 0.524934i
\(220\) −0.958836 + 1.66075i −0.00435835 + 0.00754888i
\(221\) −52.1369 30.1013i −0.235914 0.136205i
\(222\) 11.9374 15.0246i 0.0537723 0.0676784i
\(223\) 116.201 + 201.266i 0.521081 + 0.902539i 0.999699 + 0.0245162i \(0.00780454\pi\)
−0.478618 + 0.878023i \(0.658862\pi\)
\(224\) 35.4156i 0.158105i
\(225\) −213.681 65.0686i −0.949694 0.289194i
\(226\) −18.8405 −0.0833652
\(227\) −32.6237 + 18.8353i −0.143717 + 0.0829749i −0.570134 0.821552i \(-0.693109\pi\)
0.426417 + 0.904526i \(0.359775\pi\)
\(228\) 15.5957 104.753i 0.0684023 0.459441i
\(229\) 151.296 262.053i 0.660682 1.14433i −0.319755 0.947500i \(-0.603601\pi\)
0.980437 0.196834i \(-0.0630661\pi\)
\(230\) −1.59776 0.922467i −0.00694678 0.00401073i
\(231\) −23.3932 3.48281i −0.101269 0.0150771i
\(232\) 16.9189 + 29.3044i 0.0729263 + 0.126312i
\(233\) 152.352i 0.653870i 0.945047 + 0.326935i \(0.106016\pi\)
−0.945047 + 0.326935i \(0.893984\pi\)
\(234\) 9.51847 + 10.1845i 0.0406772 + 0.0435236i
\(235\) 7.25028 0.0308523
\(236\) 166.639 96.2090i 0.706097 0.407665i
\(237\) 137.508 + 109.254i 0.580202 + 0.460986i
\(238\) 1.52679 2.64447i 0.00641507 0.0111112i
\(239\) −164.111 94.7496i −0.686658 0.396442i 0.115701 0.993284i \(-0.463089\pi\)
−0.802359 + 0.596842i \(0.796422\pi\)
\(240\) −7.43726 18.8498i −0.0309886 0.0785408i
\(241\) −165.351 286.396i −0.686104 1.18837i −0.973089 0.230431i \(-0.925986\pi\)
0.286985 0.957935i \(-0.407347\pi\)
\(242\) 12.7004i 0.0524809i
\(243\) 73.7169 + 231.549i 0.303362 + 0.952875i
\(244\) 243.313 0.997185
\(245\) −0.0951472 + 0.0549333i −0.000388356 + 0.000224217i
\(246\) −0.169146 + 0.0667371i −0.000687584 + 0.000271289i
\(247\) 64.6142 111.915i 0.261596 0.453098i
\(248\) 12.3566 + 7.13407i 0.0498249 + 0.0287664i
\(249\) 150.012 188.807i 0.602459 0.758261i
\(250\) −1.12501 1.94857i −0.00450003 0.00779428i
\(251\) 236.746i 0.943210i −0.881810 0.471605i \(-0.843675\pi\)
0.881810 0.471605i \(-0.156325\pi\)
\(252\) 183.107 171.132i 0.726617 0.679097i
\(253\) 46.1282 0.182325
\(254\) −13.6244 + 7.86603i −0.0536392 + 0.0309686i
\(255\) 0.775507 5.20889i 0.00304120 0.0204270i
\(256\) −124.414 + 215.492i −0.485993 + 0.841765i
\(257\) −363.750 210.011i −1.41537 0.817163i −0.419481 0.907764i \(-0.637788\pi\)
−0.995887 + 0.0906010i \(0.971121\pi\)
\(258\) −7.87610 1.17260i −0.0305275 0.00454498i
\(259\) −210.491 364.581i −0.812707 1.40765i
\(260\) 24.7963i 0.0953704i
\(261\) −104.684 + 343.777i −0.401090 + 1.31715i
\(262\) 26.1238 0.0997090
\(263\) 253.584 146.407i 0.964198 0.556680i 0.0667353 0.997771i \(-0.478742\pi\)
0.897462 + 0.441091i \(0.145408\pi\)
\(264\) −2.24775 1.78589i −0.00851419 0.00676475i
\(265\) −5.20462 + 9.01467i −0.0196401 + 0.0340176i
\(266\) 5.67652 + 3.27734i 0.0213403 + 0.0123208i
\(267\) 25.2822 + 64.0779i 0.0946900 + 0.239992i
\(268\) 68.9886 + 119.492i 0.257420 + 0.445865i
\(269\) 29.9863i 0.111473i 0.998446 + 0.0557367i \(0.0177507\pi\)
−0.998446 + 0.0557367i \(0.982249\pi\)
\(270\) −0.523137 + 1.10151i −0.00193754 + 0.00407968i
\(271\) 213.417 0.787515 0.393758 0.919214i \(-0.371175\pi\)
0.393758 + 0.919214i \(0.371175\pi\)
\(272\) −56.6497 + 32.7067i −0.208271 + 0.120245i
\(273\) 284.476 112.241i 1.04204 0.411140i
\(274\) −12.0319 + 20.8399i −0.0439121 + 0.0760580i
\(275\) 24.2710 + 14.0129i 0.0882583 + 0.0509559i
\(276\) −304.082 + 382.721i −1.10175 + 1.38667i
\(277\) −108.677 188.235i −0.392337 0.679548i 0.600420 0.799685i \(-0.295000\pi\)
−0.992757 + 0.120137i \(0.961667\pi\)
\(278\) 4.06102i 0.0146080i
\(279\) 34.2513 + 147.608i 0.122765 + 0.529061i
\(280\) 2.51897 0.00899632
\(281\) −376.996 + 217.659i −1.34162 + 0.774586i −0.987045 0.160441i \(-0.948708\pi\)
−0.354577 + 0.935027i \(0.615375\pi\)
\(282\) −0.798048 + 5.36029i −0.00282996 + 0.0190081i
\(283\) 265.207 459.352i 0.937127 1.62315i 0.166330 0.986070i \(-0.446808\pi\)
0.770796 0.637081i \(-0.219859\pi\)
\(284\) −440.036 254.055i −1.54942 0.894559i
\(285\) 11.1812 + 1.66467i 0.0392323 + 0.00584096i
\(286\) −0.874522 1.51472i −0.00305777 0.00529621i
\(287\) 3.98911i 0.0138993i
\(288\) 44.4731 10.3196i 0.154420 0.0358321i
\(289\) −17.0000 −0.0588235
\(290\) −1.56176 + 0.901682i −0.00538537 + 0.00310925i
\(291\) 18.1631 + 14.4311i 0.0624163 + 0.0495914i
\(292\) 208.231 360.666i 0.713119 1.23516i
\(293\) −18.7053 10.7995i −0.0638407 0.0368585i 0.467740 0.883866i \(-0.345068\pi\)
−0.531581 + 0.847008i \(0.678402\pi\)
\(294\) −0.0301404 0.0763909i −0.000102518 0.000259833i
\(295\) 10.2693 + 17.7869i 0.0348111 + 0.0602945i
\(296\) 51.1003i 0.172636i
\(297\) −2.44294 30.3909i −0.00822537 0.102326i
\(298\) −21.3450 −0.0716276
\(299\) −516.546 + 298.228i −1.72758 + 0.997419i
\(300\) −276.261 + 109.000i −0.920871 + 0.363333i
\(301\) −87.3453 + 151.286i −0.290184 + 0.502613i
\(302\) −11.5520 6.66953i −0.0382516 0.0220845i
\(303\) −53.7032 + 67.5915i −0.177238 + 0.223074i
\(304\) −70.2070 121.602i −0.230944 0.400007i
\(305\) 25.9710i 0.0851509i
\(306\) 3.76568 + 1.14670i 0.0123061 + 0.00374738i
\(307\) 375.508 1.22315 0.611577 0.791185i \(-0.290536\pi\)
0.611577 + 0.791185i \(0.290536\pi\)
\(308\) −27.2331 + 15.7230i −0.0884190 + 0.0510487i
\(309\) −14.5390 + 97.6550i −0.0470518 + 0.316036i
\(310\) −0.380206 + 0.658535i −0.00122647 + 0.00212431i
\(311\) −41.2502 23.8158i −0.132637 0.0765782i 0.432213 0.901771i \(-0.357733\pi\)
−0.564850 + 0.825193i \(0.691066\pi\)
\(312\) 36.7166 + 5.46642i 0.117681 + 0.0175206i
\(313\) 11.0815 + 19.1937i 0.0354042 + 0.0613219i 0.883185 0.469026i \(-0.155395\pi\)
−0.847780 + 0.530347i \(0.822061\pi\)
\(314\) 12.3498i 0.0393307i
\(315\) 18.2665 + 19.5447i 0.0579889 + 0.0620467i
\(316\) 233.510 0.738956
\(317\) 311.395 179.784i 0.982318 0.567142i 0.0793491 0.996847i \(-0.474716\pi\)
0.902969 + 0.429705i \(0.141382\pi\)
\(318\) −6.09186 4.84015i −0.0191568 0.0152206i
\(319\) 22.5444 39.0480i 0.0706721 0.122408i
\(320\) −23.2004 13.3947i −0.0725011 0.0418586i
\(321\) 118.781 + 301.051i 0.370034 + 0.937853i
\(322\) −15.1266 26.2001i −0.0469771 0.0813668i
\(323\) 36.4915i 0.112977i
\(324\) 268.255 + 180.071i 0.827946 + 0.555776i
\(325\) −362.385 −1.11503
\(326\) 12.2360 7.06444i 0.0375336 0.0216701i
\(327\) −100.765 + 39.7571i −0.308148 + 0.121581i
\(328\) −0.242106 + 0.419340i −0.000738128 + 0.00127848i
\(329\) 102.962 + 59.4452i 0.312955 + 0.180684i
\(330\) 0.0951781 0.119792i 0.000288418 0.000363007i
\(331\) 71.9604 + 124.639i 0.217403 + 0.376553i 0.954013 0.299765i \(-0.0969081\pi\)
−0.736610 + 0.676317i \(0.763575\pi\)
\(332\) 320.625i 0.965737i
\(333\) 396.488 370.558i 1.19066 1.11279i
\(334\) −18.6887 −0.0559541
\(335\) −12.7544 + 7.36378i −0.0380729 + 0.0219814i
\(336\) 48.9322 328.666i 0.145632 0.978172i
\(337\) 135.265 234.287i 0.401381 0.695212i −0.592512 0.805562i \(-0.701864\pi\)
0.993893 + 0.110349i \(0.0351970\pi\)
\(338\) 4.06026 + 2.34419i 0.0120126 + 0.00693549i
\(339\) −527.013 78.4624i −1.55461 0.231452i
\(340\) −3.50099 6.06389i −0.0102970 0.0178350i
\(341\) 19.0123i 0.0557544i
\(342\) −2.46146 + 8.08327i −0.00719724 + 0.0236353i
\(343\) −343.897 −1.00262
\(344\) −18.3637 + 10.6023i −0.0533828 + 0.0308206i
\(345\) −40.8513 32.4575i −0.118410 0.0940796i
\(346\) 0.308551 0.534426i 0.000891765 0.00154458i
\(347\) 88.3900 + 51.0320i 0.254726 + 0.147066i 0.621926 0.783076i \(-0.286350\pi\)
−0.367200 + 0.930142i \(0.619684\pi\)
\(348\) 175.363 + 444.458i 0.503916 + 1.27718i
\(349\) 139.781 + 242.108i 0.400519 + 0.693720i 0.993789 0.111284i \(-0.0354964\pi\)
−0.593269 + 0.805004i \(0.702163\pi\)
\(350\) 18.3808i 0.0525165i
\(351\) 223.839 + 324.525i 0.637719 + 0.924572i
\(352\) −5.72823 −0.0162734
\(353\) −211.978 + 122.385i −0.600503 + 0.346701i −0.769240 0.638961i \(-0.779365\pi\)
0.168736 + 0.985661i \(0.446031\pi\)
\(354\) −14.2806 + 5.63446i −0.0403406 + 0.0159166i
\(355\) 27.1176 46.9690i 0.0763875 0.132307i
\(356\) 79.3180 + 45.7943i 0.222803 + 0.128636i
\(357\) 53.7208 67.6136i 0.150478 0.189394i
\(358\) −11.8230 20.4780i −0.0330251 0.0572011i
\(359\) 372.376i 1.03726i −0.854999 0.518630i \(-0.826442\pi\)
0.854999 0.518630i \(-0.173558\pi\)
\(360\) 0.733995 + 3.16319i 0.00203887 + 0.00878665i
\(361\) −282.669 −0.783016
\(362\) −17.3099 + 9.99386i −0.0478173 + 0.0276073i
\(363\) 52.8914 355.259i 0.145706 0.978675i
\(364\) 203.305 352.135i 0.558531 0.967403i
\(365\) 38.4972 + 22.2264i 0.105472 + 0.0608942i
\(366\) −19.2009 2.85866i −0.0524616 0.00781055i
\(367\) 348.128 + 602.975i 0.948578 + 1.64298i 0.748424 + 0.663220i \(0.230811\pi\)
0.200154 + 0.979765i \(0.435856\pi\)
\(368\) 648.083i 1.76110i
\(369\) −5.00932 + 1.16237i −0.0135754 + 0.00315007i
\(370\) 2.72336 0.00736043
\(371\) −147.823 + 85.3455i −0.398444 + 0.230042i
\(372\) 157.743 + 125.331i 0.424041 + 0.336912i
\(373\) 244.349 423.225i 0.655091 1.13465i −0.326779 0.945101i \(-0.605963\pi\)
0.981871 0.189551i \(-0.0607032\pi\)
\(374\) −0.427726 0.246948i −0.00114365 0.000660288i
\(375\) −23.3541 59.1911i −0.0622776 0.157843i
\(376\) 7.21567 + 12.4979i 0.0191906 + 0.0332391i
\(377\) 583.017i 1.54646i
\(378\) −16.4605 + 11.3535i −0.0435462 + 0.0300357i
\(379\) 39.1190 0.103216 0.0516082 0.998667i \(-0.483565\pi\)
0.0516082 + 0.998667i \(0.483565\pi\)
\(380\) 13.0165 7.51509i 0.0342540 0.0197766i
\(381\) −413.863 + 163.291i −1.08625 + 0.428586i
\(382\) 7.44643 12.8976i 0.0194933 0.0337633i
\(383\) −406.860 234.901i −1.06230 0.613318i −0.136231 0.990677i \(-0.543499\pi\)
−0.926067 + 0.377359i \(0.876832\pi\)
\(384\) 50.3244 63.3389i 0.131053 0.164945i
\(385\) −1.67826 2.90683i −0.00435912 0.00755021i
\(386\) 5.68789i 0.0147355i
\(387\) −215.429 65.6009i −0.556664 0.169511i
\(388\) 30.8439 0.0794946
\(389\) 319.341 184.372i 0.820929 0.473964i −0.0298077 0.999556i \(-0.509489\pi\)
0.850737 + 0.525592i \(0.176156\pi\)
\(390\) −0.291329 + 1.95679i −0.000746998 + 0.00501740i
\(391\) −84.2137 + 145.862i −0.215380 + 0.373050i
\(392\) −0.189386 0.109342i −0.000483127 0.000278933i
\(393\) 730.742 + 108.794i 1.85939 + 0.276829i
\(394\) 14.0973 + 24.4173i 0.0357800 + 0.0619727i
\(395\) 24.9247i 0.0631004i
\(396\) −27.6795 29.6164i −0.0698978 0.0747889i
\(397\) −488.915 −1.23152 −0.615761 0.787933i \(-0.711151\pi\)
−0.615761 + 0.787933i \(0.711151\pi\)
\(398\) 24.6731 14.2450i 0.0619928 0.0357916i
\(399\) 145.137 + 115.315i 0.363751 + 0.289010i
\(400\) −196.876 + 340.999i −0.492189 + 0.852497i
\(401\) 228.193 + 131.747i 0.569059 + 0.328546i 0.756773 0.653677i \(-0.226775\pi\)
−0.187714 + 0.982224i \(0.560108\pi\)
\(402\) −4.04030 10.2402i −0.0100505 0.0254730i
\(403\) 122.918 + 212.901i 0.305008 + 0.528289i
\(404\) 114.781i 0.284112i
\(405\) −19.2207 + 28.6332i −0.0474584 + 0.0706994i
\(406\) −29.5716 −0.0728364
\(407\) −58.9686 + 34.0455i −0.144886 + 0.0836499i
\(408\) 9.75078 3.84721i 0.0238990 0.00942944i
\(409\) 26.3114 45.5727i 0.0643311 0.111425i −0.832066 0.554677i \(-0.812842\pi\)
0.896397 + 0.443252i \(0.146175\pi\)
\(410\) −0.0223485 0.0129029i −5.45084e−5 3.14705e-5i
\(411\) −423.349 + 532.832i −1.03005 + 1.29643i
\(412\) 65.6358 + 113.684i 0.159310 + 0.275933i
\(413\) 336.791i 0.815475i
\(414\) 28.4931 26.6296i 0.0688238 0.0643228i
\(415\) 34.2232 0.0824655
\(416\) 64.1452 37.0342i 0.154195 0.0890246i
\(417\) −16.9123 + 113.596i −0.0405572 + 0.272413i
\(418\) 0.530088 0.918140i 0.00126815 0.00219651i
\(419\) 117.264 + 67.7026i 0.279867 + 0.161581i 0.633363 0.773855i \(-0.281674\pi\)
−0.353496 + 0.935436i \(0.615007\pi\)
\(420\) 35.1810 + 5.23780i 0.0837644 + 0.0124710i
\(421\) −53.5411 92.7359i −0.127176 0.220275i 0.795405 0.606078i \(-0.207258\pi\)
−0.922581 + 0.385802i \(0.873925\pi\)
\(422\) 8.22972i 0.0195017i
\(423\) −44.6464 + 146.616i −0.105547 + 0.346610i
\(424\) −20.7191 −0.0488658
\(425\) −88.6206 + 51.1651i −0.208519 + 0.120389i
\(426\) 31.7403 + 25.2185i 0.0745078 + 0.0591984i
\(427\) −212.937 + 368.817i −0.498681 + 0.863741i
\(428\) 372.652 + 215.151i 0.870682 + 0.502688i
\(429\) −18.1543 46.0121i −0.0423176 0.107254i
\(430\) −0.565042 0.978681i −0.00131405 0.00227600i
\(431\) 169.107i 0.392359i −0.980568 0.196179i \(-0.937147\pi\)
0.980568 0.196179i \(-0.0628535\pi\)
\(432\) 426.980 34.3223i 0.988380 0.0794498i
\(433\) −591.309 −1.36561 −0.682805 0.730601i \(-0.739240\pi\)
−0.682805 + 0.730601i \(0.739240\pi\)
\(434\) −10.7987 + 6.23462i −0.0248817 + 0.0143655i
\(435\) −47.4411 + 18.7181i −0.109060 + 0.0430301i
\(436\) −72.0129 + 124.730i −0.165167 + 0.286078i
\(437\) −313.103 180.770i −0.716482 0.413661i
\(438\) −20.6699 + 26.0153i −0.0471915 + 0.0593957i
\(439\) 241.045 + 417.501i 0.549076 + 0.951028i 0.998338 + 0.0576279i \(0.0183537\pi\)
−0.449262 + 0.893400i \(0.648313\pi\)
\(440\) 0.407426i 0.000925969i
\(441\) −0.524961 2.26235i −0.00119039 0.00513005i
\(442\) 6.38627 0.0144486
\(443\) 236.134 136.332i 0.533034 0.307747i −0.209217 0.977869i \(-0.567091\pi\)
0.742251 + 0.670122i \(0.233758\pi\)
\(444\) 106.255 713.690i 0.239313 1.60741i
\(445\) −4.88804 + 8.46633i −0.0109844 + 0.0190255i
\(446\) −21.3503 12.3266i −0.0478706 0.0276381i
\(447\) −597.069 88.8925i −1.33572 0.198865i
\(448\) −219.647 380.440i −0.490284 0.849197i
\(449\) 145.766i 0.324645i 0.986738 + 0.162323i \(0.0518985\pi\)
−0.986738 + 0.162323i \(0.948102\pi\)
\(450\) 23.0816 5.35592i 0.0512925 0.0119020i
\(451\) 0.645212 0.00143062
\(452\) −613.518 + 354.215i −1.35734 + 0.783662i
\(453\) −295.359 234.671i −0.652008 0.518037i
\(454\) 1.99804 3.46071i 0.00440098 0.00762272i
\(455\) 37.5865 + 21.7006i 0.0826078 + 0.0476936i
\(456\) 8.25828 + 20.9307i 0.0181103 + 0.0459006i
\(457\) 298.290 + 516.653i 0.652713 + 1.13053i 0.982462 + 0.186463i \(0.0597026\pi\)
−0.329749 + 0.944069i \(0.606964\pi\)
\(458\) 32.0989i 0.0700850i
\(459\) 100.559 + 47.7581i 0.219083 + 0.104048i
\(460\) −69.3721 −0.150809
\(461\) −403.197 + 232.786i −0.874613 + 0.504958i −0.868879 0.495025i \(-0.835159\pi\)
−0.00573478 + 0.999984i \(0.501825\pi\)
\(462\) 2.33381 0.920815i 0.00505154 0.00199311i
\(463\) 425.247 736.550i 0.918460 1.59082i 0.116705 0.993167i \(-0.462767\pi\)
0.801755 0.597653i \(-0.203900\pi\)
\(464\) 548.610 + 316.740i 1.18235 + 0.682630i
\(465\) −13.3777 + 16.8374i −0.0287693 + 0.0362094i
\(466\) −8.08072 13.9962i −0.0173406 0.0300348i
\(467\) 407.155i 0.871852i −0.899982 0.435926i \(-0.856421\pi\)
0.899982 0.435926i \(-0.143579\pi\)
\(468\) 501.434 + 152.693i 1.07144 + 0.326267i
\(469\) −241.503 −0.514931
\(470\) −0.666068 + 0.384554i −0.00141717 + 0.000818201i
\(471\) 51.4316 345.453i 0.109197 0.733447i
\(472\) −20.4405 + 35.4039i −0.0433061 + 0.0750083i
\(473\) 24.4696 + 14.1275i 0.0517327 + 0.0298679i
\(474\) −18.4273 2.74349i −0.0388762 0.00578795i
\(475\) −109.829 190.230i −0.231219 0.400483i
\(476\) 114.819i 0.241216i
\(477\) −150.246 160.760i −0.314982 0.337023i
\(478\) 20.1020 0.0420545
\(479\) 763.370 440.732i 1.59367 0.920108i 0.601005 0.799245i \(-0.294767\pi\)
0.992669 0.120863i \(-0.0385663\pi\)
\(480\) 5.07295 + 4.03060i 0.0105687 + 0.00839708i
\(481\) 440.223 762.488i 0.915224 1.58521i
\(482\) 30.3809 + 17.5404i 0.0630308 + 0.0363909i
\(483\) −314.015 795.873i −0.650134 1.64777i
\(484\) −238.776 413.572i −0.493339 0.854488i
\(485\) 3.29225i 0.00678814i
\(486\) −19.0535 17.3619i −0.0392048 0.0357241i
\(487\) −190.530 −0.391233 −0.195616 0.980681i \(-0.562671\pi\)
−0.195616 + 0.980681i \(0.562671\pi\)
\(488\) −44.7683 + 25.8470i −0.0917384 + 0.0529652i
\(489\) 371.688 146.651i 0.760098 0.299900i
\(490\) 0.00582731 0.0100932i 1.18925e−5 2.05984e-5i
\(491\) −673.525 388.860i −1.37174 0.791975i −0.380594 0.924742i \(-0.624280\pi\)
−0.991147 + 0.132767i \(0.957614\pi\)
\(492\) −4.25331 + 5.35327i −0.00864494 + 0.0108806i
\(493\) 82.3162 + 142.576i 0.166970 + 0.289200i
\(494\) 13.7085i 0.0277501i
\(495\) 3.16123 2.95449i 0.00638632 0.00596866i
\(496\) 267.115 0.538539
\(497\) 770.199 444.675i 1.54970 0.894718i
\(498\) −3.76699 + 25.3019i −0.00756423 + 0.0508071i
\(499\) 74.7755 129.515i 0.149851 0.259549i −0.781322 0.624129i \(-0.785454\pi\)
0.931172 + 0.364580i \(0.118787\pi\)
\(500\) −73.2689 42.3018i −0.146538 0.0846037i
\(501\) −522.765 77.8300i −1.04344 0.155349i
\(502\) 12.5570 + 21.7493i 0.0250139 + 0.0433253i
\(503\) 913.509i 1.81612i −0.418840 0.908060i \(-0.637563\pi\)
0.418840 0.908060i \(-0.362437\pi\)
\(504\) −15.5115 + 50.9389i −0.0307768 + 0.101069i
\(505\) −12.2516 −0.0242607
\(506\) −4.23769 + 2.44663i −0.00837489 + 0.00483524i
\(507\) 103.812 + 82.4817i 0.204758 + 0.162686i
\(508\) −295.774 + 512.295i −0.582231 + 1.00845i
\(509\) 469.072 + 270.819i 0.921555 + 0.532060i 0.884131 0.467239i \(-0.154751\pi\)
0.0374244 + 0.999299i \(0.488085\pi\)
\(510\) 0.205035 + 0.519662i 0.000402029 + 0.00101894i
\(511\) 364.469 + 631.278i 0.713246 + 1.23538i
\(512\) 134.259i 0.262224i
\(513\) −102.516 + 215.857i −0.199836 + 0.420773i
\(514\) 44.5558 0.0866845
\(515\) −12.1346 + 7.00590i −0.0235623 + 0.0136037i
\(516\) −278.521 + 109.892i −0.539770 + 0.212968i
\(517\) 9.61486 16.6534i 0.0185974 0.0322117i
\(518\) 38.6747 + 22.3288i 0.0746616 + 0.0431059i
\(519\) 10.8565 13.6641i 0.0209181 0.0263278i
\(520\) 2.63410 + 4.56239i 0.00506557 + 0.00877382i
\(521\) 716.530i 1.37530i −0.726044 0.687649i \(-0.758643\pi\)
0.726044 0.687649i \(-0.241357\pi\)
\(522\) −8.61678 37.1345i −0.0165072 0.0711389i
\(523\) −337.220 −0.644780 −0.322390 0.946607i \(-0.604486\pi\)
−0.322390 + 0.946607i \(0.604486\pi\)
\(524\) 850.688 491.145i 1.62345 0.937300i
\(525\) 76.5477 514.152i 0.145805 0.979337i
\(526\) −15.5308 + 26.9001i −0.0295262 + 0.0511409i
\(527\) 60.1189 + 34.7097i 0.114078 + 0.0658627i
\(528\) −53.1595 7.91446i −0.100681 0.0149895i
\(529\) 569.847 + 987.004i 1.07722 + 1.86579i
\(530\) 1.10421i 0.00208342i
\(531\) −422.925 + 98.1366i −0.796470 + 0.184815i
\(532\) 246.465 0.463281
\(533\) −7.22513 + 4.17143i −0.0135556 + 0.00782632i
\(534\) −5.72131 4.54573i −0.0107141 0.00851261i
\(535\) −22.9650 + 39.7765i −0.0429252 + 0.0743486i
\(536\) −25.3871 14.6572i −0.0473639 0.0273456i
\(537\) −245.434 622.054i −0.457047 1.15839i
\(538\) −1.59047 2.75478i −0.00295627 0.00512040i
\(539\) 0.291396i 0.000540623i
\(540\) 3.67393 + 45.7048i 0.00680357 + 0.0846385i
\(541\) −147.530 −0.272699 −0.136349 0.990661i \(-0.543537\pi\)
−0.136349 + 0.990661i \(0.543537\pi\)
\(542\) −19.6061 + 11.3196i −0.0361736 + 0.0208849i
\(543\) −525.816 + 207.463i −0.968354 + 0.382068i
\(544\) 10.4577 18.1133i 0.0192238 0.0332965i
\(545\) −13.3136 7.68659i −0.0244286 0.0141038i
\(546\) −20.1809 + 25.3999i −0.0369614 + 0.0465200i
\(547\) −229.933 398.256i −0.420353 0.728073i 0.575621 0.817717i \(-0.304761\pi\)
−0.995974 + 0.0896437i \(0.971427\pi\)
\(548\) 904.834i 1.65116i
\(549\) −525.189 159.927i −0.956628 0.291305i
\(550\) −2.97297 −0.00540539
\(551\) −306.048 + 176.697i −0.555440 + 0.320684i
\(552\) 15.2933 102.721i 0.0277052 0.186089i
\(553\) −204.358 + 353.958i −0.369544 + 0.640068i
\(554\) 19.9679 + 11.5285i 0.0360432 + 0.0208095i
\(555\) 76.1786 + 11.3416i 0.137259 + 0.0204353i
\(556\) 76.3500 + 132.242i 0.137320 + 0.237846i
\(557\) 769.472i 1.38146i −0.723114 0.690729i \(-0.757290\pi\)
0.723114 0.690729i \(-0.242710\pi\)
\(558\) −10.9757 11.7437i −0.0196697 0.0210461i
\(559\) −365.349 −0.653577
\(560\) 40.8399 23.5789i 0.0729284 0.0421052i
\(561\) −10.9360 8.68898i −0.0194938 0.0154884i
\(562\) 23.0892 39.9916i 0.0410840 0.0711595i
\(563\) −535.297 309.054i −0.950794 0.548941i −0.0574662 0.998347i \(-0.518302\pi\)
−0.893327 + 0.449407i \(0.851635\pi\)
\(564\) 74.7898 + 189.555i 0.132606 + 0.336091i
\(565\) −37.8086 65.4864i −0.0669179 0.115905i
\(566\) 56.2662i 0.0994102i
\(567\) −507.719 + 249.033i −0.895448 + 0.439212i
\(568\) 107.952 0.190057
\(569\) −274.325 + 158.382i −0.482118 + 0.278351i −0.721299 0.692624i \(-0.756454\pi\)
0.239181 + 0.970975i \(0.423121\pi\)
\(570\) −1.11549 + 0.440120i −0.00195699 + 0.000772140i
\(571\) −129.845 + 224.898i −0.227399 + 0.393866i −0.957036 0.289968i \(-0.906355\pi\)
0.729638 + 0.683834i \(0.239689\pi\)
\(572\) −56.9555 32.8832i −0.0995725 0.0574882i
\(573\) 262.006 329.764i 0.457254 0.575504i
\(574\) −0.211582 0.366471i −0.000368610 0.000638450i
\(575\) 1013.84i 1.76319i
\(576\) 413.735 386.677i 0.718290 0.671315i
\(577\) −470.615 −0.815624 −0.407812 0.913066i \(-0.633708\pi\)
−0.407812 + 0.913066i \(0.633708\pi\)
\(578\) 1.56175 0.901678i 0.00270199 0.00156000i
\(579\) 23.6875 159.103i 0.0409111 0.274790i
\(580\) −33.9045 + 58.7243i −0.0584560 + 0.101249i
\(581\) 486.007 + 280.596i 0.836501 + 0.482954i
\(582\) −2.43403 0.362382i −0.00418218 0.000622649i
\(583\) 13.8041 + 23.9094i 0.0236777 + 0.0410109i
\(584\) 88.4810i 0.151509i
\(585\) −16.2983 + 53.5226i −0.0278603 + 0.0914915i
\(586\) 2.29122 0.00390994
\(587\) 965.284 557.307i 1.64444 0.949416i 0.665208 0.746658i \(-0.268343\pi\)
0.979229 0.202757i \(-0.0649903\pi\)
\(588\) −2.41769 1.92092i −0.00411171 0.00326686i
\(589\) −74.5064 + 129.049i −0.126496 + 0.219098i
\(590\) −1.88683 1.08936i −0.00319802 0.00184638i
\(591\) 292.647 + 741.716i 0.495173 + 1.25502i
\(592\) −478.327 828.487i −0.807985 1.39947i
\(593\) 560.788i 0.945680i 0.881148 + 0.472840i \(0.156771\pi\)
−0.881148 + 0.472840i \(0.843229\pi\)
\(594\) 1.83635 + 2.66237i 0.00309151 + 0.00448210i
\(595\) 12.2556 0.0205977
\(596\) −695.074 + 401.301i −1.16623 + 0.673324i
\(597\) 749.489 295.714i 1.25542 0.495333i
\(598\) 31.6360 54.7951i 0.0529030 0.0916306i
\(599\) 813.259 + 469.535i 1.35769 + 0.783865i 0.989313 0.145809i \(-0.0465786\pi\)
0.368382 + 0.929675i \(0.379912\pi\)
\(600\) 39.2516 49.4025i 0.0654193 0.0823375i
\(601\) 270.710 + 468.883i 0.450433 + 0.780172i 0.998413 0.0563192i \(-0.0179365\pi\)
−0.547980 + 0.836491i \(0.684603\pi\)
\(602\) 18.5311i 0.0307826i
\(603\) −70.3707 303.267i −0.116701 0.502930i
\(604\) −501.567 −0.830410
\(605\) 44.1443 25.4867i 0.0729658 0.0421268i
\(606\) 1.34855 9.05790i 0.00222533 0.0149470i
\(607\) −264.278 + 457.743i −0.435384 + 0.754106i −0.997327 0.0730693i \(-0.976721\pi\)
0.561943 + 0.827176i \(0.310054\pi\)
\(608\) 38.8814 + 22.4482i 0.0639496 + 0.0369213i
\(609\) −827.185 123.152i −1.35827 0.202221i
\(610\) −1.37750 2.38590i −0.00225820 0.00391131i
\(611\) 248.648i 0.406953i
\(612\) 144.183 33.4567i 0.235594 0.0546677i
\(613\) −582.529 −0.950292 −0.475146 0.879907i \(-0.657605\pi\)
−0.475146 + 0.879907i \(0.657605\pi\)
\(614\) −34.4971 + 19.9169i −0.0561842 + 0.0324380i
\(615\) −0.571403 0.453995i −0.000929110 0.000738203i
\(616\) 3.34049 5.78590i 0.00542288 0.00939270i
\(617\) 569.239 + 328.650i 0.922592 + 0.532659i 0.884461 0.466614i \(-0.154526\pi\)
0.0381309 + 0.999273i \(0.487860\pi\)
\(618\) −3.84394 9.74250i −0.00621998 0.0157646i
\(619\) 61.4674 + 106.465i 0.0993011 + 0.171995i 0.911396 0.411531i \(-0.135006\pi\)
−0.812094 + 0.583526i \(0.801673\pi\)
\(620\) 28.5925i 0.0461170i
\(621\) 907.917 626.231i 1.46202 1.00842i
\(622\) 5.05276 0.00812340
\(623\) −138.831 + 80.1542i −0.222843 + 0.128658i
\(624\) 646.453 255.061i 1.03598 0.408751i
\(625\) −305.719 + 529.521i −0.489150 + 0.847233i
\(626\) −2.03607 1.17552i −0.00325251 0.00187783i
\(627\) 18.6514 23.4749i 0.0297471 0.0374400i
\(628\) −232.186 402.157i −0.369722 0.640378i
\(629\) 248.620i 0.395263i
\(630\) −2.71475 0.826677i −0.00430913 0.00131219i
\(631\) 536.175 0.849723 0.424861 0.905258i \(-0.360323\pi\)
0.424861 + 0.905258i \(0.360323\pi\)
\(632\) −42.9646 + 24.8056i −0.0679820 + 0.0392494i
\(633\) 34.2731 230.204i 0.0541439 0.363671i
\(634\) −19.0714 + 33.0327i −0.0300811 + 0.0521021i
\(635\) −54.6819 31.5706i −0.0861132 0.0497175i
\(636\) −289.372 43.0821i −0.454987 0.0677392i
\(637\) −1.88393 3.26307i −0.00295751 0.00512256i
\(638\) 4.78301i 0.00749688i
\(639\) 782.826 + 837.605i 1.22508 + 1.31081i
\(640\) 11.4808 0.0179388
\(641\) 382.069 220.588i 0.596052 0.344131i −0.171435 0.985195i \(-0.554840\pi\)
0.767487 + 0.641065i \(0.221507\pi\)
\(642\) −26.8798 21.3568i −0.0418689 0.0332660i
\(643\) 9.51552 16.4814i 0.0147986 0.0256320i −0.858531 0.512761i \(-0.828623\pi\)
0.873330 + 0.487129i \(0.161956\pi\)
\(644\) −985.160 568.783i −1.52975 0.883203i
\(645\) −11.7297 29.7291i −0.0181856 0.0460916i
\(646\) 1.93551 + 3.35240i 0.00299614 + 0.00518947i
\(647\) 115.918i 0.179162i 0.995980 + 0.0895809i \(0.0285527\pi\)
−0.995980 + 0.0895809i \(0.971447\pi\)
\(648\) −68.4863 4.63566i −0.105689 0.00715380i
\(649\) 54.4737 0.0839349
\(650\) 33.2915 19.2208i 0.0512177 0.0295705i
\(651\) −328.028 + 129.425i −0.503883 + 0.198809i
\(652\) 265.633 460.089i 0.407412 0.705658i
\(653\) 1080.89 + 624.054i 1.65527 + 0.955672i 0.974853 + 0.222850i \(0.0715361\pi\)
0.680420 + 0.732822i \(0.261797\pi\)
\(654\) 7.14830 8.99693i 0.0109301 0.0137568i
\(655\) 52.4244 + 90.8017i 0.0800372 + 0.138628i
\(656\) 9.06498i 0.0138186i
\(657\) −686.526 + 641.627i −1.04494 + 0.976602i
\(658\) −12.6119 −0.0191670
\(659\) 368.661 212.846i 0.559424 0.322984i −0.193490 0.981102i \(-0.561981\pi\)
0.752914 + 0.658118i \(0.228647\pi\)
\(660\) 0.847179 5.69030i 0.00128361 0.00862166i
\(661\) −201.761 + 349.460i −0.305235 + 0.528683i −0.977314 0.211797i \(-0.932068\pi\)
0.672078 + 0.740480i \(0.265402\pi\)
\(662\) −13.2217 7.63354i −0.0199723 0.0115310i
\(663\) 178.639 + 26.5960i 0.269440 + 0.0401146i
\(664\) 34.0598 + 58.9932i 0.0512948 + 0.0888452i
\(665\) 26.3075i 0.0395601i
\(666\) −16.7701 + 55.0721i −0.0251804 + 0.0826908i
\(667\) 1631.09 2.44542
\(668\) −608.573 + 351.360i −0.911038 + 0.525988i
\(669\) −545.882 433.717i −0.815966 0.648307i
\(670\) 0.781148 1.35299i 0.00116589 0.00201938i
\(671\) 59.6537 + 34.4411i 0.0889027 + 0.0513280i
\(672\) 38.9946 + 98.8321i 0.0580277 + 0.147072i
\(673\) −260.614 451.396i −0.387242 0.670722i 0.604836 0.796350i \(-0.293239\pi\)
−0.992077 + 0.125628i \(0.959905\pi\)
\(674\) 28.6978i 0.0425784i
\(675\) 667.951 53.6925i 0.989557 0.0795445i
\(676\) 176.290 0.260784
\(677\) −739.406 + 426.896i −1.09218 + 0.630571i −0.934156 0.356865i \(-0.883846\pi\)
−0.158024 + 0.987435i \(0.550512\pi\)
\(678\) 52.5771 20.7445i 0.0775474 0.0305967i
\(679\) −26.9932 + 46.7536i −0.0397543 + 0.0688565i
\(680\) 1.28833 + 0.743816i 0.00189460 + 0.00109385i
\(681\) 70.3022 88.4831i 0.103234 0.129931i
\(682\) 1.00841 + 1.74661i 0.00147860 + 0.00256102i
\(683\) 582.940i 0.853499i −0.904370 0.426750i \(-0.859659\pi\)
0.904370 0.426750i \(-0.140341\pi\)
\(684\) 71.8168 + 309.499i 0.104995 + 0.452483i
\(685\) −96.5811 −0.140994
\(686\) 31.5931 18.2403i 0.0460540 0.0265893i
\(687\) −133.678 + 897.880i −0.194582 + 1.30696i
\(688\) −198.486 + 343.788i −0.288498 + 0.499692i
\(689\) −309.158 178.492i −0.448705 0.259060i
\(690\) 5.47446 + 0.815046i 0.00793400 + 0.00118123i
\(691\) −641.420 1110.97i −0.928249 1.60777i −0.786251 0.617907i \(-0.787981\pi\)
−0.141998 0.989867i \(-0.545353\pi\)
\(692\) 23.2039i 0.0335316i
\(693\) 69.1168 16.0380i 0.0997357 0.0231429i
\(694\) −10.8269 −0.0156008
\(695\) −14.1154 + 8.14953i −0.0203099 + 0.0117259i
\(696\) −79.4804 63.1493i −0.114196 0.0907317i
\(697\) −1.17793 + 2.04023i −0.00169000 + 0.00292716i
\(698\) −25.6828 14.8280i −0.0367948 0.0212435i
\(699\) −167.748 425.159i −0.239983 0.608239i
\(700\) −345.571 598.547i −0.493673 0.855067i
\(701\) 723.270i 1.03177i 0.856658 + 0.515884i \(0.172536\pi\)
−0.856658 + 0.515884i \(0.827464\pi\)
\(702\) −37.7764 17.9410i −0.0538125 0.0255569i
\(703\) 533.679 0.759145
\(704\) −61.5337 + 35.5265i −0.0874058 + 0.0504637i
\(705\) −20.2329 + 7.98299i −0.0286992 + 0.0113234i
\(706\) 12.9826 22.4865i 0.0183890 0.0318506i
\(707\) −173.987 100.451i −0.246092 0.142081i
\(708\) −359.097 + 451.964i −0.507200 + 0.638367i
\(709\) 639.995 + 1108.50i 0.902673 + 1.56348i 0.824011 + 0.566574i \(0.191732\pi\)
0.0786623 + 0.996901i \(0.474935\pi\)
\(710\) 5.75325i 0.00810317i
\(711\) −504.029 153.483i −0.708902 0.215870i
\(712\) −19.4588 −0.0273298
\(713\) 595.628 343.886i 0.835382 0.482308i
\(714\) −1.34899 + 9.06085i −0.00188935 + 0.0126903i
\(715\) 3.50993 6.07937i 0.00490899 0.00850262i
\(716\) −770.001 444.560i −1.07542 0.620894i
\(717\) 562.300 + 83.7160i 0.784240 + 0.116759i
\(718\) 19.7508 + 34.2094i 0.0275081 + 0.0476453i
\(719\) 61.5730i 0.0856371i 0.999083 + 0.0428185i \(0.0136337\pi\)
−0.999083 + 0.0428185i \(0.986366\pi\)
\(720\) 41.5094 + 44.4141i 0.0576520 + 0.0616862i
\(721\) −229.766 −0.318677
\(722\) 25.9681 14.9927i 0.0359670 0.0207655i
\(723\) 776.774 + 617.168i 1.07438 + 0.853621i
\(724\) −375.783 + 650.875i −0.519037 + 0.898999i
\(725\) 858.224 + 495.496i 1.18376 + 0.683443i
\(726\) 13.9839 + 35.4422i 0.0192615 + 0.0488185i
\(727\) 371.772 + 643.929i 0.511379 + 0.885734i 0.999913 + 0.0131895i \(0.00419846\pi\)
−0.488534 + 0.872545i \(0.662468\pi\)
\(728\) 86.3879i 0.118665i
\(729\) −460.666 565.002i −0.631915 0.775038i
\(730\) −4.71554 −0.00645964
\(731\) −89.3456 + 51.5837i −0.122224 + 0.0705659i
\(732\) −678.999 + 267.902i −0.927595 + 0.365986i
\(733\) −625.594 + 1083.56i −0.853470 + 1.47825i 0.0245867 + 0.999698i \(0.492173\pi\)
−0.878057 + 0.478556i \(0.841160\pi\)
\(734\) −63.9635 36.9293i −0.0871437 0.0503125i
\(735\) 0.205037 0.258062i 0.000278962 0.000351104i
\(736\) −103.610 179.458i −0.140774 0.243828i
\(737\) 39.0615i 0.0530006i
\(738\) 0.398543 0.372479i 0.000540031 0.000504714i
\(739\) 1030.72 1.39475 0.697375 0.716707i \(-0.254351\pi\)
0.697375 + 0.716707i \(0.254351\pi\)
\(740\) 88.6828 51.2010i 0.119842 0.0691906i
\(741\) −57.0899 + 383.459i −0.0770444 + 0.517488i
\(742\) 9.05344 15.6810i 0.0122014 0.0211334i
\(743\) −935.174 539.923i −1.25865 0.726680i −0.285835 0.958279i \(-0.592271\pi\)
−0.972811 + 0.231599i \(0.925604\pi\)
\(744\) −42.3378 6.30330i −0.0569056 0.00847218i
\(745\) −42.8345 74.1916i −0.0574960 0.0995860i
\(746\) 51.8410i 0.0694920i
\(747\) −210.742 + 692.065i −0.282118 + 0.926459i
\(748\) −18.5711 −0.0248277
\(749\) −652.256 + 376.580i −0.870836 + 0.502777i
\(750\) 5.28498 + 4.19906i 0.00704664 + 0.00559874i
\(751\) 284.139 492.144i 0.378348 0.655318i −0.612474 0.790491i \(-0.709826\pi\)
0.990822 + 0.135173i \(0.0431589\pi\)
\(752\) 233.974 + 135.085i 0.311136 + 0.179635i
\(753\) 260.671 + 660.672i 0.346177 + 0.877387i
\(754\) −30.9231 53.5605i −0.0410121 0.0710351i
\(755\) 53.5368i 0.0709097i
\(756\) −322.560 + 679.181i −0.426667 + 0.898387i
\(757\) 228.788 0.302230 0.151115 0.988516i \(-0.451714\pi\)
0.151115 + 0.988516i \(0.451714\pi\)
\(758\) −3.59378 + 2.07487i −0.00474113 + 0.00273729i
\(759\) −128.727 + 50.7898i −0.169601 + 0.0669168i
\(760\) −1.59665 + 2.76548i −0.00210085 + 0.00363878i
\(761\) −1005.67 580.622i −1.32151 0.762973i −0.337538 0.941312i \(-0.609594\pi\)
−0.983969 + 0.178339i \(0.942928\pi\)
\(762\) 29.3597 36.9525i 0.0385298 0.0484941i
\(763\) −126.045 218.316i −0.165196 0.286129i
\(764\) 559.992i 0.732974i
\(765\) 3.57113 + 15.3900i 0.00466815 + 0.0201177i
\(766\) 49.8365 0.0650607
\(767\) −610.001 + 352.184i −0.795307 + 0.459171i
\(768\) 109.926 738.347i 0.143133 0.961390i
\(769\) 566.736 981.615i 0.736978 1.27648i −0.216873 0.976200i \(-0.569586\pi\)
0.953850 0.300283i \(-0.0970811\pi\)
\(770\) 0.308356 + 0.178029i 0.000400462 + 0.000231207i
\(771\) 1246.33 + 185.555i 1.61651 + 0.240668i
\(772\) −106.936 185.219i −0.138518 0.239921i
\(773\) 795.299i 1.02885i 0.857536 + 0.514424i \(0.171994\pi\)
−0.857536 + 0.514424i \(0.828006\pi\)
\(774\) 23.2705 5.39973i 0.0300652 0.00697640i
\(775\) 417.865 0.539180
\(776\) −5.67511 + 3.27653i −0.00731329 + 0.00422233i
\(777\) 988.830 + 785.652i 1.27263 + 1.01113i
\(778\) −19.5581 + 33.8757i −0.0251390 + 0.0435420i
\(779\) −4.37948 2.52850i −0.00562193 0.00324582i
\(780\) 27.3022 + 69.1975i 0.0350028 + 0.0887148i
\(781\) −71.9232 124.575i −0.0920911 0.159506i
\(782\) 17.8667i 0.0228475i
\(783\) −86.3823 1074.62i −0.110322 1.37244i
\(784\) −4.09400 −0.00522194
\(785\) 42.9259 24.7833i 0.0546827 0.0315711i
\(786\) −72.9020 + 28.7638i −0.0927507 + 0.0365952i
\(787\) 675.973 1170.82i 0.858924 1.48770i −0.0140323 0.999902i \(-0.504467\pi\)
0.872956 0.487798i \(-0.162200\pi\)
\(788\) 918.123 + 530.079i 1.16513 + 0.672688i
\(789\) −546.459 + 687.779i −0.692597 + 0.871710i
\(790\) −1.32200 2.28977i −0.00167342 0.00289845i
\(791\) 1239.97i 1.56760i
\(792\) 8.23902 + 2.50889i 0.0104028 + 0.00316778i
\(793\) −890.675 −1.12317
\(794\) 44.9155 25.9320i 0.0565686 0.0326599i
\(795\) 4.59854 30.8873i 0.00578433 0.0388520i
\(796\) 535.634 927.745i 0.672907 1.16551i
\(797\) −1118.56 645.799i −1.40346 0.810288i −0.408714 0.912663i \(-0.634023\pi\)
−0.994746 + 0.102375i \(0.967356\pi\)
\(798\) −19.4497 2.89570i −0.0243730 0.00362869i
\(799\) 35.1067 + 60.8065i 0.0439383 + 0.0761033i
\(800\) 125.899i 0.157374i
\(801\) −141.107 150.981i −0.176164 0.188491i
\(802\) −27.9514 −0.0348521
\(803\) 102.105 58.9504i 0.127154 0.0734126i
\(804\) −324.090 257.498i −0.403097 0.320271i
\(805\) 60.7113 105.155i 0.0754178 0.130627i
\(806\) −22.5844 13.0391i −0.0280204 0.0161776i
\(807\) −33.0167 83.6810i −0.0409129 0.103694i
\(808\) −12.1931 21.1191i −0.0150905 0.0261375i
\(809\) 660.551i 0.816503i −0.912869 0.408252i \(-0.866139\pi\)
0.912869 0.408252i \(-0.133861\pi\)
\(810\) 0.247055 3.64993i 0.000305006 0.00450609i
\(811\) 1318.41 1.62565 0.812827 0.582505i \(-0.197927\pi\)
0.812827 + 0.582505i \(0.197927\pi\)
\(812\) −962.962 + 555.966i −1.18591 + 0.684688i
\(813\) −595.569 + 234.984i −0.732557 + 0.289033i
\(814\) 3.61154 6.25537i 0.00443678 0.00768474i
\(815\) 49.1095 + 28.3534i 0.0602571 + 0.0347894i
\(816\) 122.077 153.647i 0.149604 0.188293i
\(817\) −110.728 191.786i −0.135529 0.234744i
\(818\) 5.58222i 0.00682423i
\(819\) −670.286 + 626.449i −0.818420 + 0.764896i
\(820\) −0.970333 −0.00118333
\(821\) 1277.87 737.780i 1.55648 0.898635i 0.558893 0.829240i \(-0.311226\pi\)
0.997589 0.0693956i \(-0.0221071\pi\)
\(822\) 10.6308 71.4045i 0.0129328 0.0868668i
\(823\) 83.6675 144.916i 0.101662 0.176083i −0.810708 0.585451i \(-0.800917\pi\)
0.912369 + 0.409368i \(0.134251\pi\)
\(824\) −24.1533 13.9449i −0.0293122 0.0169234i
\(825\) −83.1607 12.3811i −0.100801 0.0150074i
\(826\) −17.8634 30.9403i −0.0216264 0.0374579i
\(827\) 780.858i 0.944205i −0.881544 0.472103i \(-0.843495\pi\)
0.881544 0.472103i \(-0.156505\pi\)
\(828\) 427.185 1402.85i 0.515924 1.69426i
\(829\) −769.558 −0.928297 −0.464148 0.885757i \(-0.653640\pi\)
−0.464148 + 0.885757i \(0.653640\pi\)
\(830\) −3.14401 + 1.81519i −0.00378796 + 0.00218698i
\(831\) 510.537 + 405.635i 0.614365 + 0.488129i
\(832\) 459.372 795.656i 0.552130 0.956317i
\(833\) −0.921426 0.531986i −0.00110615 0.000638638i
\(834\) −4.47142 11.3328i −0.00536142 0.0135885i
\(835\) −37.5038 64.9586i −0.0449148 0.0777947i
\(836\) 39.8641i 0.0476844i
\(837\) −258.108 374.208i −0.308373 0.447083i
\(838\) −14.3638 −0.0171405
\(839\) −741.579 + 428.151i −0.883884 + 0.510311i −0.871937 0.489618i \(-0.837136\pi\)
−0.0119468 + 0.999929i \(0.503803\pi\)
\(840\) −7.02953 + 2.77353i −0.00836849 + 0.00330182i
\(841\) 376.671 652.413i 0.447884 0.775758i
\(842\) 9.83741 + 5.67963i 0.0116834 + 0.00674540i
\(843\) 812.405 1022.50i 0.963707 1.21293i
\(844\) −154.724 267.991i −0.183323 0.317524i
\(845\) 18.8170i 0.0222687i
\(846\) −3.67493 15.8373i −0.00434389 0.0187203i
\(847\) 835.864 0.986853
\(848\) −335.917 + 193.942i −0.396129 + 0.228705i
\(849\) −234.324 + 1573.89i −0.275999 + 1.85382i
\(850\) 5.42759 9.40085i 0.00638539 0.0110598i
\(851\) −2133.20 1231.60i −2.50670 1.44724i
\(852\) 1507.71 + 224.470i 1.76961 + 0.263463i
\(853\) −83.7978 145.142i −0.0982389 0.170155i 0.812717 0.582659i \(-0.197988\pi\)
−0.910956 + 0.412504i \(0.864654\pi\)
\(854\) 45.1766i 0.0529000i
\(855\) −33.0356 + 7.66566i −0.0386381 + 0.00896568i
\(856\) −91.4213 −0.106801
\(857\) −371.896 + 214.714i −0.433951 + 0.250542i −0.701028 0.713133i \(-0.747275\pi\)
0.267078 + 0.963675i \(0.413942\pi\)
\(858\) 4.10827 + 3.26413i 0.00478819 + 0.00380435i
\(859\) 71.9865 124.684i 0.0838027 0.145151i −0.821078 0.570816i \(-0.806627\pi\)
0.904880 + 0.425666i \(0.139960\pi\)
\(860\) −36.7998 21.2464i −0.0427904 0.0247051i
\(861\) −4.39224 11.1322i −0.00510133 0.0129293i
\(862\) 8.96939 + 15.5354i 0.0104053 + 0.0180226i
\(863\) 1085.72i 1.25808i 0.777374 + 0.629038i \(0.216551\pi\)
−0.777374 + 0.629038i \(0.783449\pi\)
\(864\) −112.746 + 77.7659i −0.130493 + 0.0900068i
\(865\) 2.47676 0.00286331
\(866\) 54.3223 31.3630i 0.0627278 0.0362159i
\(867\) 47.4409 18.7180i 0.0547184 0.0215894i
\(868\) −234.430 + 406.045i −0.270081 + 0.467794i
\(869\) 57.2503 + 33.0535i 0.0658807 + 0.0380362i
\(870\) 3.36550 4.23586i 0.00386839 0.00486880i
\(871\) −252.540 437.413i −0.289943 0.502196i
\(872\) 30.5996i 0.0350912i
\(873\) −66.5762 20.2733i −0.0762614 0.0232226i
\(874\) 38.3521 0.0438811
\(875\) 128.243 74.0413i 0.146564 0.0846186i
\(876\) −183.982 + 1235.76i −0.210026 + 1.41069i
\(877\) 54.9266 95.1356i 0.0626301 0.108478i −0.833010 0.553258i \(-0.813385\pi\)
0.895640 + 0.444779i \(0.146718\pi\)
\(878\) −44.2885 25.5699i −0.0504424 0.0291229i
\(879\) 64.0908 + 9.54192i 0.0729133 + 0.0108554i
\(880\) −3.81373 6.60558i −0.00433379 0.00750634i
\(881\) 331.425i 0.376192i −0.982151 0.188096i \(-0.939768\pi\)
0.982151 0.188096i \(-0.0602316\pi\)
\(882\) 0.168222 + 0.179993i 0.000190728 + 0.000204074i
\(883\) −870.249 −0.985559 −0.492779 0.870154i \(-0.664019\pi\)
−0.492779 + 0.870154i \(0.664019\pi\)
\(884\) 207.961 120.066i 0.235250 0.135822i
\(885\) −48.2422 38.3297i −0.0545110 0.0433104i
\(886\) −14.4621 + 25.0491i −0.0163229 + 0.0282721i
\(887\) 910.537 + 525.699i 1.02654 + 0.592671i 0.915990 0.401200i \(-0.131407\pi\)
0.110545 + 0.993871i \(0.464740\pi\)
\(888\) 56.2644 + 142.603i 0.0633609 + 0.160588i
\(889\) −517.695 896.675i −0.582335 1.00863i
\(890\) 1.03704i 0.00116522i
\(891\) 40.2795 + 82.1201i 0.0452070 + 0.0921662i
\(892\) −926.994 −1.03923
\(893\) −130.525 + 75.3586i −0.146165 + 0.0843882i
\(894\) 59.5663 23.5021i 0.0666289 0.0262887i
\(895\) 47.4520 82.1892i 0.0530190 0.0918315i
\(896\) 163.040 + 94.1313i 0.181964 + 0.105057i
\(897\) 1113.13 1401.00i 1.24095 1.56187i
\(898\) −7.73139 13.3912i −0.00860957 0.0149122i
\(899\) 672.274i 0.747802i
\(900\) 650.930 608.360i 0.723255 0.675955i
\(901\) −100.805 −0.111882
\(902\) −0.0592742 + 0.0342220i −6.57142e−5 + 3.79401e-5i
\(903\) 77.1739 518.358i 0.0854639 0.574040i
\(904\) 75.2561 130.347i 0.0832479 0.144190i
\(905\) −69.4738 40.1107i −0.0767666 0.0443212i
\(906\) 39.5809 + 5.89287i 0.0436876 + 0.00650427i
\(907\) −5.14923 8.91872i −0.00567721 0.00983321i 0.863173 0.504909i \(-0.168474\pi\)
−0.868850 + 0.495075i \(0.835140\pi\)
\(908\) 150.258i 0.165483i
\(909\) 75.4442 247.754i 0.0829969 0.272557i
\(910\) −4.60399 −0.00505933
\(911\) 229.132 132.290i 0.251518 0.145214i −0.368941 0.929453i \(-0.620280\pi\)
0.620459 + 0.784239i \(0.286946\pi\)
\(912\) 329.813 + 262.046i 0.361638 + 0.287331i
\(913\) 45.3846 78.6084i 0.0497093 0.0860990i
\(914\) −54.8065 31.6425i −0.0599633 0.0346198i
\(915\) −28.5956 72.4758i −0.0312521 0.0792085i
\(916\) 603.482 + 1045.26i 0.658823 + 1.14112i
\(917\) 1719.31i 1.87493i
\(918\) −11.7712 + 0.946218i −0.0128227 + 0.00103074i
\(919\) 68.7028 0.0747583 0.0373791 0.999301i \(-0.488099\pi\)
0.0373791 + 0.999301i \(0.488099\pi\)
\(920\) 12.7641 7.36936i 0.0138740 0.00801017i
\(921\) −1047.91 + 413.456i −1.13779 + 0.448921i
\(922\) 24.6939 42.7710i 0.0267829 0.0463894i
\(923\) 1610.80 + 929.996i 1.74518 + 1.00758i
\(924\) 58.6857 73.8625i 0.0635126 0.0799377i
\(925\) −748.276 1296.05i −0.808947 1.40114i
\(926\) 90.2202i 0.0974301i
\(927\) −66.9508 288.528i −0.0722231 0.311250i
\(928\) −202.551 −0.218266
\(929\) −1540.88 + 889.625i −1.65864 + 0.957616i −0.685295 + 0.728265i \(0.740327\pi\)
−0.973344 + 0.229350i \(0.926340\pi\)
\(930\) 0.335931 2.25636i 0.000361216 0.00242620i
\(931\) 1.14194 1.97790i 0.00122657 0.00212449i
\(932\) −526.277 303.846i −0.564675 0.326015i
\(933\) 141.337 + 21.0425i 0.151487 + 0.0225536i
\(934\) 21.5955 + 37.4044i 0.0231215 + 0.0400476i
\(935\) 1.98227i 0.00212007i
\(936\) −108.482 + 25.1723i −0.115899 + 0.0268935i
\(937\) −431.455 −0.460465 −0.230232 0.973136i \(-0.573949\pi\)
−0.230232 + 0.973136i \(0.573949\pi\)
\(938\) 22.1863 12.8093i 0.0236528 0.0136559i
\(939\) −52.0580 41.3614i −0.0554398 0.0440484i
\(940\) −14.4598 + 25.0451i −0.0153827 + 0.0266437i
\(941\) 1282.13 + 740.238i 1.36252 + 0.786650i 0.989959 0.141358i \(-0.0451468\pi\)
0.372560 + 0.928008i \(0.378480\pi\)
\(942\) 13.5979 + 34.4640i 0.0144351 + 0.0365859i
\(943\) 11.6703 + 20.2136i 0.0123757 + 0.0214354i
\(944\) 765.336i 0.810737i
\(945\) −72.4952 34.4298i −0.0767144 0.0364336i
\(946\) −2.99729 −0.00316838
\(947\) 278.744 160.933i 0.294345 0.169940i −0.345555 0.938399i \(-0.612309\pi\)
0.639900 + 0.768459i \(0.278976\pi\)
\(948\) −651.643 + 257.108i −0.687387 + 0.271211i
\(949\) −762.253 + 1320.26i −0.803217 + 1.39121i
\(950\) 20.1795 + 11.6506i 0.0212416 + 0.0122638i
\(951\) −671.038 + 844.576i −0.705613 + 0.888093i
\(952\) 12.1971 + 21.1260i 0.0128121 + 0.0221912i
\(953\) 196.608i 0.206305i 0.994666 + 0.103152i \(0.0328929\pi\)
−0.994666 + 0.103152i \(0.967107\pi\)
\(954\) 22.3295 + 6.79960i 0.0234062 + 0.00712747i
\(955\) 59.7730 0.0625896
\(956\) 654.598 377.932i 0.684726 0.395327i
\(957\) −19.9191 + 133.792i −0.0208141 + 0.139803i
\(958\) −46.7527 + 80.9781i −0.0488024 + 0.0845283i
\(959\) −1371.56 791.870i −1.43020 0.825724i
\(960\) 79.4923 + 11.8349i 0.0828044 + 0.0123280i
\(961\) 338.763 + 586.756i 0.352511 + 0.610568i
\(962\) 93.3975i 0.0970868i
\(963\) −662.949 709.340i −0.688421 0.736594i
\(964\) 1319.09 1.36835
\(965\) 19.7701 11.4143i 0.0204872 0.0118283i
\(966\) 71.0608 + 56.4597i 0.0735620 + 0.0584469i
\(967\) −407.918 + 706.534i −0.421839 + 0.730646i −0.996119 0.0880126i \(-0.971948\pi\)
0.574281 + 0.818658i \(0.305282\pi\)
\(968\) 87.8671 + 50.7301i 0.0907718 + 0.0524071i
\(969\) 40.1793 + 101.835i 0.0414647 + 0.105093i
\(970\) −0.174621 0.302452i −0.000180021 0.000311806i
\(971\) 1415.72i 1.45800i −0.684512 0.729001i \(-0.739985\pi\)
0.684512 0.729001i \(-0.260015\pi\)
\(972\) −946.871 207.150i −0.974147 0.213118i
\(973\) −267.272 −0.274689
\(974\) 17.5036 10.1057i 0.0179708 0.0103755i
\(975\) 1011.29 399.007i 1.03722 0.409238i
\(976\) −483.884 + 838.113i −0.495783 + 0.858722i
\(977\) −1002.00 578.507i −1.02559 0.592126i −0.109873 0.993946i \(-0.535044\pi\)
−0.915719 + 0.401820i \(0.868378\pi\)
\(978\) −26.3678 + 33.1868i −0.0269609 + 0.0339333i
\(979\) 12.9644 + 22.4550i 0.0132425 + 0.0229367i
\(980\) 0.438230i 0.000447173i
\(981\) 237.423 221.895i 0.242021 0.226193i
\(982\) 82.5003 0.0840126
\(983\) 202.732 117.048i 0.206238 0.119072i −0.393324 0.919400i \(-0.628675\pi\)
0.599562 + 0.800328i \(0.295341\pi\)
\(984\) 0.213913 1.43680i 0.000217391 0.00146016i
\(985\) −56.5801 + 97.9996i −0.0574417 + 0.0994920i
\(986\) −15.1244 8.73208i −0.0153392 0.00885607i
\(987\) −352.783 52.5228i −0.357429 0.0532146i
\(988\) 257.730 + 446.401i 0.260860 + 0.451823i
\(989\) 1022.13i 1.03350i
\(990\) −0.133709 + 0.439093i −0.000135060 + 0.000443529i
\(991\) 1623.25 1.63799 0.818994 0.573802i \(-0.194532\pi\)
0.818994 + 0.573802i \(0.194532\pi\)
\(992\) −73.9655 + 42.7040i −0.0745620 + 0.0430484i
\(993\) −338.050 268.590i −0.340433 0.270483i
\(994\) −47.1710 + 81.7025i −0.0474557 + 0.0821957i
\(995\) 99.0266 + 57.1730i 0.0995242 + 0.0574603i
\(996\) 353.026 + 894.748i 0.354444 + 0.898341i
\(997\) 417.690 + 723.460i 0.418947 + 0.725637i 0.995834 0.0911869i \(-0.0290661\pi\)
−0.576887 + 0.816824i \(0.695733\pi\)
\(998\) 15.8643i 0.0158961i
\(999\) −698.450 + 1470.65i −0.699149 + 1.47212i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.3.j.a.86.16 64
3.2 odd 2 459.3.j.a.341.17 64
9.2 odd 6 inner 153.3.j.a.137.16 yes 64
9.7 even 3 459.3.j.a.35.17 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.3.j.a.86.16 64 1.1 even 1 trivial
153.3.j.a.137.16 yes 64 9.2 odd 6 inner
459.3.j.a.35.17 64 9.7 even 3
459.3.j.a.341.17 64 3.2 odd 2