Properties

Label 153.3.i.a.50.27
Level $153$
Weight $3$
Character 153.50
Analytic conductor $4.169$
Analytic rank $0$
Dimension $68$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [153,3,Mod(50,153)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(153, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("153.50"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 153.i (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.16894804471\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(34\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 50.27
Character \(\chi\) \(=\) 153.50
Dual form 153.3.i.a.101.27

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.91245 - 1.10416i) q^{2} +(-1.04331 + 2.81274i) q^{3} +(0.438319 - 0.759190i) q^{4} +(-1.77620 + 3.07647i) q^{5} +(1.11042 + 6.53121i) q^{6} +(-3.82505 + 2.20839i) q^{7} +6.89736i q^{8} +(-6.82301 - 5.86911i) q^{9} +7.84480i q^{10} +(0.708179 + 1.22660i) q^{11} +(1.67810 + 2.02495i) q^{12} +(-1.55468 + 2.69278i) q^{13} +(-4.87682 + 8.44690i) q^{14} +(-6.80018 - 8.20569i) q^{15} +(9.36903 + 16.2276i) q^{16} +(16.9994 - 0.139826i) q^{17} +(-19.5291 - 3.69074i) q^{18} +21.5252 q^{19} +(1.55708 + 2.69694i) q^{20} +(-2.22093 - 13.0629i) q^{21} +(2.70872 + 1.56388i) q^{22} +(-0.883809 + 1.53080i) q^{23} +(-19.4005 - 7.19607i) q^{24} +(6.19024 + 10.7218i) q^{25} +6.86643i q^{26} +(23.6268 - 13.0681i) q^{27} +3.87192i q^{28} +(-17.1717 - 29.7423i) q^{29} +(-22.0654 - 8.18455i) q^{30} +(5.35110 + 3.08946i) q^{31} +(11.9425 + 6.89502i) q^{32} +(-4.18896 + 0.712198i) q^{33} +(32.3562 - 19.0374i) q^{34} -15.6902i q^{35} +(-7.44643 + 2.60742i) q^{36} -7.71265i q^{37} +(41.1659 - 23.7671i) q^{38} +(-5.95209 - 7.18231i) q^{39} +(-21.2195 - 12.2511i) q^{40} +(-9.30986 + 16.1252i) q^{41} +(-18.6709 - 22.5299i) q^{42} +(22.6064 + 39.1554i) q^{43} +1.24163 q^{44} +(30.1752 - 10.5661i) q^{45} +3.90345i q^{46} +(27.3169 - 15.7714i) q^{47} +(-55.4189 + 9.42221i) q^{48} +(-14.7460 + 25.5408i) q^{49} +(23.6771 + 13.6700i) q^{50} +(-17.3424 + 47.9608i) q^{51} +(1.36289 + 2.36059i) q^{52} -55.4075i q^{53} +(30.7560 - 51.0797i) q^{54} -5.03146 q^{55} +(-15.2321 - 26.3827i) q^{56} +(-22.4574 + 60.5447i) q^{57} +(-65.6802 - 37.9205i) q^{58} +(-49.6000 - 28.6366i) q^{59} +(-9.21032 + 1.56592i) q^{60} +(-13.7839 + 7.95816i) q^{61} +13.6450 q^{62} +(39.0597 + 7.38175i) q^{63} -44.4995 q^{64} +(-5.52284 - 9.56584i) q^{65} +(-7.22481 + 5.98731i) q^{66} +(-52.9793 + 91.7628i) q^{67} +(7.34501 - 12.9671i) q^{68} +(-3.38366 - 4.08302i) q^{69} +(-17.3244 - 30.0067i) q^{70} +100.875 q^{71} +(40.4814 - 47.0608i) q^{72} +44.3391i q^{73} +(-8.51597 - 14.7501i) q^{74} +(-36.6160 + 6.22537i) q^{75} +(9.43489 - 16.3417i) q^{76} +(-5.41764 - 3.12787i) q^{77} +(-19.3135 - 7.16381i) q^{78} +(68.3530 - 39.4636i) q^{79} -66.5650 q^{80} +(12.1070 + 80.0901i) q^{81} +41.1181i q^{82} +(73.2711 - 42.3031i) q^{83} +(-10.8907 - 4.03961i) q^{84} +(-29.7642 + 52.5465i) q^{85} +(86.4674 + 49.9220i) q^{86} +(101.573 - 17.2692i) q^{87} +(-8.46031 + 4.88456i) q^{88} -150.514i q^{89} +(46.0420 - 53.5252i) q^{90} -13.7334i q^{91} +(0.774780 + 1.34196i) q^{92} +(-14.2727 + 11.8280i) q^{93} +(34.8282 - 60.3242i) q^{94} +(-38.2330 + 66.2215i) q^{95} +(-31.8536 + 26.3976i) q^{96} +(96.3476 - 55.6263i) q^{97} +65.1275i q^{98} +(2.36715 - 12.5255i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q - 6 q^{2} + 62 q^{4} - 8 q^{9} - 2 q^{13} - 106 q^{16} - 2 q^{18} - 32 q^{19} - 28 q^{21} - 132 q^{25} + 180 q^{30} - 98 q^{33} - 27 q^{34} + 158 q^{36} - 102 q^{38} + 110 q^{42} + 58 q^{43} - 312 q^{47}+ \cdots - 18 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/153\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.91245 1.10416i 0.956227 0.552078i 0.0612170 0.998124i \(-0.480502\pi\)
0.895010 + 0.446047i \(0.147168\pi\)
\(3\) −1.04331 + 2.81274i −0.347770 + 0.937580i
\(4\) 0.438319 0.759190i 0.109580 0.189798i
\(5\) −1.77620 + 3.07647i −0.355240 + 0.615293i −0.987159 0.159741i \(-0.948934\pi\)
0.631919 + 0.775034i \(0.282267\pi\)
\(6\) 1.11042 + 6.53121i 0.185070 + 1.08853i
\(7\) −3.82505 + 2.20839i −0.546436 + 0.315485i −0.747683 0.664056i \(-0.768834\pi\)
0.201248 + 0.979540i \(0.435500\pi\)
\(8\) 6.89736i 0.862169i
\(9\) −6.82301 5.86911i −0.758113 0.652124i
\(10\) 7.84480i 0.784480i
\(11\) 0.708179 + 1.22660i 0.0643799 + 0.111509i 0.896419 0.443208i \(-0.146160\pi\)
−0.832039 + 0.554717i \(0.812826\pi\)
\(12\) 1.67810 + 2.02495i 0.139842 + 0.168746i
\(13\) −1.55468 + 2.69278i −0.119591 + 0.207137i −0.919606 0.392843i \(-0.871492\pi\)
0.800015 + 0.599980i \(0.204825\pi\)
\(14\) −4.87682 + 8.44690i −0.348344 + 0.603350i
\(15\) −6.80018 8.20569i −0.453345 0.547046i
\(16\) 9.36903 + 16.2276i 0.585564 + 1.01423i
\(17\) 16.9994 0.139826i 0.999966 0.00822508i
\(18\) −19.5291 3.69074i −1.08495 0.205041i
\(19\) 21.5252 1.13290 0.566452 0.824095i \(-0.308316\pi\)
0.566452 + 0.824095i \(0.308316\pi\)
\(20\) 1.55708 + 2.69694i 0.0778541 + 0.134847i
\(21\) −2.22093 13.0629i −0.105758 0.622043i
\(22\) 2.70872 + 1.56388i 0.123124 + 0.0710854i
\(23\) −0.883809 + 1.53080i −0.0384265 + 0.0665566i −0.884599 0.466352i \(-0.845568\pi\)
0.846173 + 0.532909i \(0.178901\pi\)
\(24\) −19.4005 7.19607i −0.808353 0.299836i
\(25\) 6.19024 + 10.7218i 0.247610 + 0.428872i
\(26\) 6.86643i 0.264093i
\(27\) 23.6268 13.0681i 0.875067 0.484002i
\(28\) 3.87192i 0.138283i
\(29\) −17.1717 29.7423i −0.592128 1.02560i −0.993945 0.109876i \(-0.964955\pi\)
0.401817 0.915720i \(-0.368379\pi\)
\(30\) −22.0654 8.18455i −0.735512 0.272818i
\(31\) 5.35110 + 3.08946i 0.172616 + 0.0996600i 0.583819 0.811884i \(-0.301558\pi\)
−0.411203 + 0.911544i \(0.634891\pi\)
\(32\) 11.9425 + 6.89502i 0.373204 + 0.215469i
\(33\) −4.18896 + 0.712198i −0.126938 + 0.0215818i
\(34\) 32.3562 19.0374i 0.951653 0.559924i
\(35\) 15.6902i 0.448291i
\(36\) −7.44643 + 2.60742i −0.206845 + 0.0724284i
\(37\) 7.71265i 0.208450i −0.994554 0.104225i \(-0.966764\pi\)
0.994554 0.104225i \(-0.0332362\pi\)
\(38\) 41.1659 23.7671i 1.08331 0.625451i
\(39\) −5.95209 7.18231i −0.152618 0.184162i
\(40\) −21.2195 12.2511i −0.530487 0.306277i
\(41\) −9.30986 + 16.1252i −0.227070 + 0.393296i −0.956938 0.290291i \(-0.906248\pi\)
0.729869 + 0.683587i \(0.239581\pi\)
\(42\) −18.6709 22.5299i −0.444545 0.536427i
\(43\) 22.6064 + 39.1554i 0.525730 + 0.910591i 0.999551 + 0.0299700i \(0.00954118\pi\)
−0.473821 + 0.880621i \(0.657125\pi\)
\(44\) 1.24163 0.0282189
\(45\) 30.1752 10.5661i 0.670559 0.234801i
\(46\) 3.90345i 0.0848576i
\(47\) 27.3169 15.7714i 0.581211 0.335562i −0.180404 0.983593i \(-0.557740\pi\)
0.761614 + 0.648030i \(0.224407\pi\)
\(48\) −55.4189 + 9.42221i −1.15456 + 0.196296i
\(49\) −14.7460 + 25.5408i −0.300939 + 0.521241i
\(50\) 23.6771 + 13.6700i 0.473542 + 0.273399i
\(51\) −17.3424 + 47.9608i −0.340046 + 0.940409i
\(52\) 1.36289 + 2.36059i 0.0262094 + 0.0453961i
\(53\) 55.4075i 1.04542i −0.852509 0.522712i \(-0.824920\pi\)
0.852509 0.522712i \(-0.175080\pi\)
\(54\) 30.7560 51.0797i 0.569555 0.945921i
\(55\) −5.03146 −0.0914811
\(56\) −15.2321 26.3827i −0.272001 0.471120i
\(57\) −22.4574 + 60.5447i −0.393990 + 1.06219i
\(58\) −65.6802 37.9205i −1.13242 0.653802i
\(59\) −49.6000 28.6366i −0.840677 0.485365i 0.0168170 0.999859i \(-0.494647\pi\)
−0.857494 + 0.514493i \(0.827980\pi\)
\(60\) −9.21032 + 1.56592i −0.153505 + 0.0260987i
\(61\) −13.7839 + 7.95816i −0.225966 + 0.130462i −0.608710 0.793393i \(-0.708313\pi\)
0.382744 + 0.923855i \(0.374979\pi\)
\(62\) 13.6450 0.220080
\(63\) 39.0597 + 7.38175i 0.619995 + 0.117171i
\(64\) −44.4995 −0.695305
\(65\) −5.52284 9.56584i −0.0849667 0.147167i
\(66\) −7.22481 + 5.98731i −0.109467 + 0.0907168i
\(67\) −52.9793 + 91.7628i −0.790736 + 1.36959i 0.134776 + 0.990876i \(0.456969\pi\)
−0.925512 + 0.378719i \(0.876365\pi\)
\(68\) 7.34501 12.9671i 0.108015 0.190692i
\(69\) −3.38366 4.08302i −0.0490386 0.0591743i
\(70\) −17.3244 30.0067i −0.247491 0.428668i
\(71\) 100.875 1.42078 0.710388 0.703810i \(-0.248519\pi\)
0.710388 + 0.703810i \(0.248519\pi\)
\(72\) 40.4814 47.0608i 0.562241 0.653622i
\(73\) 44.3391i 0.607385i 0.952770 + 0.303692i \(0.0982195\pi\)
−0.952770 + 0.303692i \(0.901780\pi\)
\(74\) −8.51597 14.7501i −0.115081 0.199326i
\(75\) −36.6160 + 6.22537i −0.488213 + 0.0830050i
\(76\) 9.43489 16.3417i 0.124143 0.215022i
\(77\) −5.41764 3.12787i −0.0703589 0.0406217i
\(78\) −19.3135 7.16381i −0.247609 0.0918437i
\(79\) 68.3530 39.4636i 0.865228 0.499540i −0.000531310 1.00000i \(-0.500169\pi\)
0.865760 + 0.500460i \(0.166836\pi\)
\(80\) −66.5650 −0.832063
\(81\) 12.1070 + 80.0901i 0.149469 + 0.988766i
\(82\) 41.1181i 0.501441i
\(83\) 73.2711 42.3031i 0.882784 0.509675i 0.0112086 0.999937i \(-0.496432\pi\)
0.871575 + 0.490262i \(0.163099\pi\)
\(84\) −10.8907 4.03961i −0.129651 0.0480906i
\(85\) −29.7642 + 52.5465i −0.350167 + 0.618194i
\(86\) 86.4674 + 49.9220i 1.00543 + 0.580488i
\(87\) 101.573 17.2692i 1.16750 0.198496i
\(88\) −8.46031 + 4.88456i −0.0961398 + 0.0555064i
\(89\) 150.514i 1.69117i −0.533840 0.845585i \(-0.679252\pi\)
0.533840 0.845585i \(-0.320748\pi\)
\(90\) 46.0420 53.5252i 0.511578 0.594724i
\(91\) 13.7334i 0.150916i
\(92\) 0.774780 + 1.34196i 0.00842152 + 0.0145865i
\(93\) −14.2727 + 11.8280i −0.153470 + 0.127183i
\(94\) 34.8282 60.3242i 0.370513 0.641747i
\(95\) −38.2330 + 66.2215i −0.402452 + 0.697068i
\(96\) −31.8536 + 26.3976i −0.331809 + 0.274975i
\(97\) 96.3476 55.6263i 0.993274 0.573467i 0.0870227 0.996206i \(-0.472265\pi\)
0.906251 + 0.422739i \(0.138931\pi\)
\(98\) 65.1275i 0.664566i
\(99\) 2.36715 12.5255i 0.0239106 0.126520i
\(100\) 10.8532 0.108532
\(101\) −81.4139 + 47.0043i −0.806078 + 0.465389i −0.845592 0.533830i \(-0.820752\pi\)
0.0395141 + 0.999219i \(0.487419\pi\)
\(102\) 19.7898 + 110.872i 0.194017 + 1.08698i
\(103\) 17.7283 30.7063i 0.172120 0.298120i −0.767041 0.641598i \(-0.778272\pi\)
0.939161 + 0.343478i \(0.111605\pi\)
\(104\) −18.5731 10.7232i −0.178587 0.103107i
\(105\) 44.1324 + 16.3697i 0.420308 + 0.155902i
\(106\) −61.1785 105.964i −0.577156 0.999663i
\(107\) 148.903 1.39161 0.695807 0.718229i \(-0.255047\pi\)
0.695807 + 0.718229i \(0.255047\pi\)
\(108\) 0.434921 23.6652i 0.00402704 0.219122i
\(109\) 203.589i 1.86779i 0.357544 + 0.933896i \(0.383614\pi\)
−0.357544 + 0.933896i \(0.616386\pi\)
\(110\) −9.62244 + 5.55552i −0.0874767 + 0.0505047i
\(111\) 21.6937 + 8.04668i 0.195439 + 0.0724926i
\(112\) −71.6740 41.3810i −0.639946 0.369473i
\(113\) −62.6190 + 108.459i −0.554150 + 0.959816i 0.443819 + 0.896116i \(0.353623\pi\)
−0.997969 + 0.0636997i \(0.979710\pi\)
\(114\) 23.9020 + 140.585i 0.209667 + 1.23321i
\(115\) −3.13964 5.43802i −0.0273012 0.0472871i
\(116\) −30.1067 −0.259541
\(117\) 26.4118 9.24831i 0.225742 0.0790454i
\(118\) −126.477 −1.07184
\(119\) −64.7148 + 38.0763i −0.543822 + 0.319969i
\(120\) 56.5976 46.9032i 0.471646 0.390860i
\(121\) 59.4970 103.052i 0.491710 0.851668i
\(122\) −17.5741 + 30.4392i −0.144050 + 0.249502i
\(123\) −35.6428 43.0097i −0.289779 0.349673i
\(124\) 4.69098 2.70834i 0.0378305 0.0218414i
\(125\) −132.790 −1.06232
\(126\) 82.8504 29.0107i 0.657543 0.230244i
\(127\) 76.3604 0.601263 0.300631 0.953740i \(-0.402803\pi\)
0.300631 + 0.953740i \(0.402803\pi\)
\(128\) −132.873 + 76.7145i −1.03807 + 0.599332i
\(129\) −133.720 + 22.7347i −1.03659 + 0.176238i
\(130\) −21.1243 12.1961i −0.162495 0.0938165i
\(131\) −7.14440 + 12.3745i −0.0545374 + 0.0944615i −0.892005 0.452025i \(-0.850702\pi\)
0.837468 + 0.546487i \(0.184035\pi\)
\(132\) −1.29541 + 3.49239i −0.00981368 + 0.0264575i
\(133\) −82.3349 + 47.5361i −0.619059 + 0.357414i
\(134\) 233.990i 1.74619i
\(135\) −1.76243 + 95.8985i −0.0130550 + 0.710359i
\(136\) 0.964432 + 117.251i 0.00709141 + 0.862140i
\(137\) −81.9500 + 47.3139i −0.598175 + 0.345357i −0.768323 0.640062i \(-0.778909\pi\)
0.170148 + 0.985419i \(0.445575\pi\)
\(138\) −10.9794 4.07250i −0.0795608 0.0295109i
\(139\) −72.1283 41.6433i −0.518909 0.299592i 0.217579 0.976043i \(-0.430184\pi\)
−0.736488 + 0.676451i \(0.763517\pi\)
\(140\) −11.9118 6.87730i −0.0850845 0.0491236i
\(141\) 15.8609 + 93.2898i 0.112489 + 0.661630i
\(142\) 192.919 111.382i 1.35858 0.784379i
\(143\) −4.40396 −0.0307969
\(144\) 31.3168 165.709i 0.217478 1.15076i
\(145\) 122.002 0.841390
\(146\) 48.9573 + 84.7964i 0.335324 + 0.580798i
\(147\) −56.4551 68.1236i −0.384048 0.463426i
\(148\) −5.85537 3.38060i −0.0395633 0.0228419i
\(149\) −175.664 101.420i −1.17895 0.680668i −0.223180 0.974777i \(-0.571644\pi\)
−0.955772 + 0.294109i \(0.904977\pi\)
\(150\) −63.1526 + 52.3355i −0.421017 + 0.348903i
\(151\) 12.4662 + 21.5922i 0.0825579 + 0.142994i 0.904348 0.426796i \(-0.140358\pi\)
−0.821790 + 0.569790i \(0.807024\pi\)
\(152\) 148.467i 0.976755i
\(153\) −116.808 98.8175i −0.763451 0.645866i
\(154\) −13.8146 −0.0897054
\(155\) −19.0092 + 10.9750i −0.122640 + 0.0708064i
\(156\) −8.06165 + 1.37063i −0.0516773 + 0.00878606i
\(157\) 127.288 220.468i 0.810748 1.40426i −0.101592 0.994826i \(-0.532394\pi\)
0.912341 0.409431i \(-0.134273\pi\)
\(158\) 87.1480 150.945i 0.551570 0.955347i
\(159\) 155.847 + 57.8072i 0.980169 + 0.363567i
\(160\) −42.4246 + 24.4938i −0.265154 + 0.153086i
\(161\) 7.80719i 0.0484919i
\(162\) 111.586 + 139.801i 0.688803 + 0.862966i
\(163\) 80.6427i 0.494740i −0.968921 0.247370i \(-0.920434\pi\)
0.968921 0.247370i \(-0.0795664\pi\)
\(164\) 8.16137 + 14.1359i 0.0497645 + 0.0861946i
\(165\) 5.24937 14.1522i 0.0318144 0.0857709i
\(166\) 93.4183 161.805i 0.562761 0.974731i
\(167\) 130.070 225.288i 0.778862 1.34903i −0.153736 0.988112i \(-0.549131\pi\)
0.932598 0.360917i \(-0.117536\pi\)
\(168\) 90.0995 15.3185i 0.536307 0.0911817i
\(169\) 79.6659 + 137.985i 0.471396 + 0.816482i
\(170\) 1.09691 + 133.357i 0.00645241 + 0.784453i
\(171\) −146.867 126.334i −0.858869 0.738794i
\(172\) 39.6352 0.230437
\(173\) −65.8536 114.062i −0.380657 0.659317i 0.610500 0.792017i \(-0.290969\pi\)
−0.991156 + 0.132700i \(0.957635\pi\)
\(174\) 175.185 145.179i 1.00681 0.834360i
\(175\) −47.3559 27.3410i −0.270605 0.156234i
\(176\) −13.2699 + 22.9841i −0.0753971 + 0.130592i
\(177\) 132.295 109.635i 0.747431 0.619407i
\(178\) −166.191 287.851i −0.933658 1.61714i
\(179\) 115.487i 0.645179i 0.946539 + 0.322589i \(0.104553\pi\)
−0.946539 + 0.322589i \(0.895447\pi\)
\(180\) 5.20468 27.5400i 0.0289149 0.153000i
\(181\) 199.995i 1.10495i −0.833530 0.552474i \(-0.813684\pi\)
0.833530 0.552474i \(-0.186316\pi\)
\(182\) −15.1638 26.2644i −0.0833175 0.144310i
\(183\) −8.00333 47.0734i −0.0437340 0.257232i
\(184\) −10.5585 6.09595i −0.0573831 0.0331301i
\(185\) 23.7277 + 13.6992i 0.128258 + 0.0740498i
\(186\) −14.2359 + 38.3798i −0.0765373 + 0.206343i
\(187\) 12.2101 + 20.7525i 0.0652949 + 0.110976i
\(188\) 27.6516i 0.147083i
\(189\) −61.5142 + 102.163i −0.325472 + 0.540546i
\(190\) 168.861i 0.888740i
\(191\) 53.6891 30.9974i 0.281095 0.162290i −0.352824 0.935690i \(-0.614779\pi\)
0.633919 + 0.773399i \(0.281445\pi\)
\(192\) 46.4268 125.166i 0.241806 0.651904i
\(193\) −143.537 82.8710i −0.743714 0.429384i 0.0797040 0.996819i \(-0.474602\pi\)
−0.823418 + 0.567435i \(0.807936\pi\)
\(194\) 122.840 212.765i 0.633197 1.09673i
\(195\) 32.6682 5.55419i 0.167529 0.0284830i
\(196\) 12.9269 + 22.3900i 0.0659535 + 0.114235i
\(197\) −33.9096 −0.172130 −0.0860649 0.996290i \(-0.527429\pi\)
−0.0860649 + 0.996290i \(0.527429\pi\)
\(198\) −9.30303 26.5681i −0.0469850 0.134182i
\(199\) 216.086i 1.08586i −0.839778 0.542929i \(-0.817315\pi\)
0.839778 0.542929i \(-0.182685\pi\)
\(200\) −73.9521 + 42.6963i −0.369761 + 0.213481i
\(201\) −202.831 244.754i −1.00911 1.21768i
\(202\) −103.800 + 179.787i −0.513862 + 0.890035i
\(203\) 131.365 + 75.8438i 0.647120 + 0.373615i
\(204\) 28.8099 + 34.1883i 0.141225 + 0.167590i
\(205\) −33.0723 57.2829i −0.161328 0.279429i
\(206\) 78.2993i 0.380094i
\(207\) 15.0147 5.25751i 0.0725348 0.0253986i
\(208\) −58.2633 −0.280112
\(209\) 15.2437 + 26.4028i 0.0729362 + 0.126329i
\(210\) 102.476 17.4227i 0.487980 0.0829654i
\(211\) 68.8378 + 39.7435i 0.326245 + 0.188358i 0.654173 0.756345i \(-0.273017\pi\)
−0.327927 + 0.944703i \(0.606350\pi\)
\(212\) −42.0648 24.2862i −0.198419 0.114557i
\(213\) −105.244 + 283.735i −0.494103 + 1.33209i
\(214\) 284.769 164.412i 1.33070 0.768279i
\(215\) −160.614 −0.747041
\(216\) 90.1351 + 162.962i 0.417292 + 0.754456i
\(217\) −27.2910 −0.125765
\(218\) 224.794 + 389.355i 1.03117 + 1.78603i
\(219\) −124.714 46.2594i −0.569472 0.211230i
\(220\) −2.20538 + 3.81984i −0.0100245 + 0.0173629i
\(221\) −26.0521 + 45.9932i −0.117883 + 0.208114i
\(222\) 50.3730 8.56431i 0.226905 0.0385780i
\(223\) −5.57705 9.65974i −0.0250092 0.0433172i 0.853250 0.521502i \(-0.174628\pi\)
−0.878259 + 0.478185i \(0.841295\pi\)
\(224\) −60.9076 −0.271909
\(225\) 20.6914 109.486i 0.0919619 0.486606i
\(226\) 276.564i 1.22374i
\(227\) 9.08769 + 15.7403i 0.0400339 + 0.0693407i 0.885348 0.464929i \(-0.153920\pi\)
−0.845314 + 0.534270i \(0.820587\pi\)
\(228\) 36.1215 + 43.5873i 0.158427 + 0.191173i
\(229\) −29.0162 + 50.2575i −0.126708 + 0.219465i −0.922399 0.386237i \(-0.873775\pi\)
0.795691 + 0.605703i \(0.207108\pi\)
\(230\) −12.0088 6.93330i −0.0522123 0.0301448i
\(231\) 14.4502 11.9751i 0.0625548 0.0518401i
\(232\) 205.143 118.439i 0.884238 0.510515i
\(233\) −393.043 −1.68688 −0.843439 0.537224i \(-0.819473\pi\)
−0.843439 + 0.537224i \(0.819473\pi\)
\(234\) 40.2999 46.8497i 0.172222 0.200213i
\(235\) 112.053i 0.476820i
\(236\) −43.4812 + 25.1039i −0.184242 + 0.106372i
\(237\) 39.6876 + 233.432i 0.167458 + 0.984946i
\(238\) −81.7220 + 144.274i −0.343370 + 0.606195i
\(239\) −134.761 77.8044i −0.563854 0.325541i 0.190837 0.981622i \(-0.438880\pi\)
−0.754691 + 0.656080i \(0.772213\pi\)
\(240\) 69.4479 187.230i 0.289366 0.780125i
\(241\) −118.785 + 68.5806i −0.492884 + 0.284567i −0.725770 0.687937i \(-0.758516\pi\)
0.232886 + 0.972504i \(0.425183\pi\)
\(242\) 262.776i 1.08585i
\(243\) −237.904 49.5048i −0.979028 0.203723i
\(244\) 13.9528i 0.0571838i
\(245\) −52.3836 90.7311i −0.213811 0.370331i
\(246\) −115.655 42.8989i −0.470141 0.174386i
\(247\) −33.4647 + 57.9626i −0.135485 + 0.234667i
\(248\) −21.3091 + 36.9085i −0.0859238 + 0.148824i
\(249\) 42.5432 + 250.228i 0.170856 + 1.00493i
\(250\) −253.955 + 146.621i −1.01582 + 0.586484i
\(251\) 234.999i 0.936250i −0.883662 0.468125i \(-0.844930\pi\)
0.883662 0.468125i \(-0.155070\pi\)
\(252\) 22.7247 26.4182i 0.0901775 0.104834i
\(253\) −2.50358 −0.00989557
\(254\) 146.036 84.3137i 0.574944 0.331944i
\(255\) −116.746 138.541i −0.457829 0.543299i
\(256\) −80.4103 + 139.275i −0.314103 + 0.544042i
\(257\) 82.7205 + 47.7587i 0.321870 + 0.185832i 0.652226 0.758025i \(-0.273835\pi\)
−0.330356 + 0.943856i \(0.607169\pi\)
\(258\) −230.630 + 191.126i −0.893913 + 0.740799i
\(259\) 17.0326 + 29.5013i 0.0657628 + 0.113905i
\(260\) −9.68305 −0.0372425
\(261\) −57.3980 + 303.715i −0.219916 + 1.16366i
\(262\) 31.5541i 0.120436i
\(263\) 313.310 180.890i 1.19129 0.687793i 0.232693 0.972550i \(-0.425246\pi\)
0.958600 + 0.284757i \(0.0919130\pi\)
\(264\) −4.91229 28.8927i −0.0186071 0.109442i
\(265\) 170.459 + 98.4147i 0.643243 + 0.371376i
\(266\) −104.974 + 181.821i −0.394641 + 0.683537i
\(267\) 423.357 + 157.033i 1.58561 + 0.588138i
\(268\) 46.4436 + 80.4427i 0.173297 + 0.300159i
\(269\) 420.642 1.56373 0.781863 0.623450i \(-0.214270\pi\)
0.781863 + 0.623450i \(0.214270\pi\)
\(270\) 102.516 + 185.347i 0.379690 + 0.686472i
\(271\) −100.068 −0.369253 −0.184627 0.982809i \(-0.559108\pi\)
−0.184627 + 0.982809i \(0.559108\pi\)
\(272\) 161.537 + 274.550i 0.593887 + 1.00938i
\(273\) 38.6284 + 14.3281i 0.141496 + 0.0524841i
\(274\) −104.484 + 180.971i −0.381328 + 0.660479i
\(275\) −8.76759 + 15.1859i −0.0318821 + 0.0552215i
\(276\) −4.58292 + 0.779178i −0.0166048 + 0.00282311i
\(277\) −473.610 + 273.439i −1.70978 + 0.987143i −0.774972 + 0.631996i \(0.782236\pi\)
−0.934810 + 0.355147i \(0.884431\pi\)
\(278\) −183.923 −0.661592
\(279\) −18.3783 52.4857i −0.0658719 0.188121i
\(280\) 108.221 0.386503
\(281\) 133.786 77.2417i 0.476109 0.274881i −0.242685 0.970105i \(-0.578028\pi\)
0.718793 + 0.695224i \(0.244695\pi\)
\(282\) 133.340 + 160.899i 0.472836 + 0.570566i
\(283\) 276.014 + 159.357i 0.975314 + 0.563098i 0.900852 0.434126i \(-0.142943\pi\)
0.0744622 + 0.997224i \(0.476276\pi\)
\(284\) 44.2154 76.5834i 0.155688 0.269660i
\(285\) −146.375 176.629i −0.513596 0.619751i
\(286\) −8.42237 + 4.86266i −0.0294489 + 0.0170023i
\(287\) 82.2393i 0.286548i
\(288\) −41.0163 117.137i −0.142418 0.406725i
\(289\) 288.961 4.75393i 0.999865 0.0164496i
\(290\) 233.322 134.709i 0.804559 0.464513i
\(291\) 55.9420 + 329.036i 0.192241 + 1.13071i
\(292\) 33.6618 + 19.4347i 0.115280 + 0.0665570i
\(293\) 87.7848 + 50.6826i 0.299607 + 0.172978i 0.642266 0.766482i \(-0.277994\pi\)
−0.342659 + 0.939460i \(0.611328\pi\)
\(294\) −183.187 67.9481i −0.623084 0.231116i
\(295\) 176.199 101.728i 0.597284 0.344842i
\(296\) 53.1969 0.179719
\(297\) 32.7613 + 19.7261i 0.110307 + 0.0664180i
\(298\) −447.932 −1.50313
\(299\) −2.74808 4.75981i −0.00919090 0.0159191i
\(300\) −11.3232 + 30.5272i −0.0377441 + 0.101757i
\(301\) −172.941 99.8476i −0.574555 0.331720i
\(302\) 47.6822 + 27.5293i 0.157888 + 0.0911567i
\(303\) −47.2711 278.036i −0.156010 0.917611i
\(304\) 201.670 + 349.303i 0.663388 + 1.14902i
\(305\) 56.5411i 0.185381i
\(306\) −332.500 60.0097i −1.08660 0.196110i
\(307\) −114.755 −0.373794 −0.186897 0.982380i \(-0.559843\pi\)
−0.186897 + 0.982380i \(0.559843\pi\)
\(308\) −4.74930 + 2.74201i −0.0154198 + 0.00890263i
\(309\) 67.8729 + 81.9013i 0.219653 + 0.265053i
\(310\) −24.2362 + 41.9783i −0.0781813 + 0.135414i
\(311\) −49.0382 + 84.9367i −0.157679 + 0.273108i −0.934031 0.357191i \(-0.883735\pi\)
0.776352 + 0.630299i \(0.217068\pi\)
\(312\) 49.5390 41.0537i 0.158779 0.131582i
\(313\) −276.012 + 159.356i −0.881829 + 0.509124i −0.871261 0.490820i \(-0.836697\pi\)
−0.0105678 + 0.999944i \(0.503364\pi\)
\(314\) 562.181i 1.79038i
\(315\) −92.0874 + 107.054i −0.292341 + 0.339855i
\(316\) 69.1906i 0.218958i
\(317\) 84.7398 + 146.774i 0.267318 + 0.463008i 0.968168 0.250300i \(-0.0805293\pi\)
−0.700850 + 0.713308i \(0.747196\pi\)
\(318\) 361.878 61.5258i 1.13798 0.193477i
\(319\) 24.3213 42.1257i 0.0762423 0.132055i
\(320\) 79.0400 136.901i 0.247000 0.427817i
\(321\) −155.351 + 418.824i −0.483961 + 1.30475i
\(322\) −8.62035 14.9309i −0.0267713 0.0463692i
\(323\) 365.916 3.00979i 1.13287 0.00931822i
\(324\) 66.1103 + 25.9134i 0.204044 + 0.0799798i
\(325\) −38.4953 −0.118447
\(326\) −89.0421 154.225i −0.273135 0.473084i
\(327\) −572.644 212.407i −1.75120 0.649561i
\(328\) −111.221 64.2134i −0.339088 0.195773i
\(329\) −69.6590 + 120.653i −0.211729 + 0.366726i
\(330\) −5.58705 32.8615i −0.0169305 0.0995804i
\(331\) −148.453 257.128i −0.448498 0.776821i 0.549790 0.835303i \(-0.314708\pi\)
−0.998289 + 0.0584812i \(0.981374\pi\)
\(332\) 74.1689i 0.223400i
\(333\) −45.2664 + 52.6235i −0.135935 + 0.158029i
\(334\) 574.470i 1.71997i
\(335\) −188.204 325.978i −0.561802 0.973069i
\(336\) 191.172 158.427i 0.568965 0.471509i
\(337\) 454.800 + 262.579i 1.34955 + 0.779166i 0.988186 0.153257i \(-0.0489763\pi\)
0.361368 + 0.932423i \(0.382310\pi\)
\(338\) 304.715 + 175.927i 0.901523 + 0.520495i
\(339\) −239.737 289.287i −0.707188 0.853355i
\(340\) 26.8466 + 45.6288i 0.0789606 + 0.134202i
\(341\) 8.75156i 0.0256644i
\(342\) −420.368 79.4438i −1.22914 0.232292i
\(343\) 346.682i 1.01074i
\(344\) −270.069 + 155.924i −0.785084 + 0.453269i
\(345\) 18.5713 3.15746i 0.0538300 0.00915206i
\(346\) −251.884 145.425i −0.727988 0.420304i
\(347\) 209.954 363.652i 0.605056 1.04799i −0.386987 0.922085i \(-0.626484\pi\)
0.992043 0.125902i \(-0.0401825\pi\)
\(348\) 31.4106 84.6824i 0.0902604 0.243340i
\(349\) 274.372 + 475.226i 0.786166 + 1.36168i 0.928300 + 0.371831i \(0.121270\pi\)
−0.142135 + 0.989847i \(0.545397\pi\)
\(350\) −120.755 −0.345013
\(351\) −1.54263 + 83.9385i −0.00439495 + 0.239141i
\(352\) 19.5316i 0.0554875i
\(353\) 400.248 231.083i 1.13385 0.654627i 0.188947 0.981987i \(-0.439492\pi\)
0.944900 + 0.327360i \(0.106159\pi\)
\(354\) 131.954 355.746i 0.372753 1.00493i
\(355\) −179.174 + 310.339i −0.504716 + 0.874194i
\(356\) −114.269 65.9732i −0.320980 0.185318i
\(357\) −39.5810 221.751i −0.110871 0.621152i
\(358\) 127.516 + 220.864i 0.356189 + 0.616937i
\(359\) 377.149i 1.05055i 0.850931 + 0.525277i \(0.176038\pi\)
−0.850931 + 0.525277i \(0.823962\pi\)
\(360\) 72.8779 + 208.129i 0.202439 + 0.578135i
\(361\) 102.333 0.283472
\(362\) −220.826 382.482i −0.610017 1.05658i
\(363\) 227.784 + 274.864i 0.627504 + 0.757202i
\(364\) −10.4262 6.01959i −0.0286435 0.0165373i
\(365\) −136.408 78.7550i −0.373720 0.215767i
\(366\) −67.2824 81.1888i −0.183832 0.221827i
\(367\) 481.665 278.090i 1.31244 0.757737i 0.329940 0.944002i \(-0.392972\pi\)
0.982500 + 0.186265i \(0.0596383\pi\)
\(368\) −33.1217 −0.0900047
\(369\) 158.162 55.3815i 0.428622 0.150085i
\(370\) 60.5042 0.163525
\(371\) 122.362 + 211.936i 0.329816 + 0.571257i
\(372\) 2.72371 + 16.0201i 0.00732180 + 0.0430649i
\(373\) 182.405 315.935i 0.489022 0.847010i −0.510899 0.859641i \(-0.670687\pi\)
0.999920 + 0.0126306i \(0.00402055\pi\)
\(374\) 46.2653 + 26.2063i 0.123704 + 0.0700703i
\(375\) 138.541 373.505i 0.369443 0.996012i
\(376\) 108.781 + 188.414i 0.289311 + 0.501102i
\(377\) 106.786 0.283252
\(378\) −4.83901 + 263.304i −0.0128016 + 0.696571i
\(379\) 555.368i 1.46535i 0.680579 + 0.732675i \(0.261728\pi\)
−0.680579 + 0.732675i \(0.738272\pi\)
\(380\) 33.5165 + 58.0522i 0.0882012 + 0.152769i
\(381\) −79.6675 + 214.782i −0.209101 + 0.563732i
\(382\) 68.4520 118.562i 0.179194 0.310373i
\(383\) 446.221 + 257.626i 1.16507 + 0.672652i 0.952513 0.304498i \(-0.0984886\pi\)
0.212554 + 0.977149i \(0.431822\pi\)
\(384\) −77.1499 453.775i −0.200911 1.18171i
\(385\) 19.2456 11.1114i 0.0499885 0.0288609i
\(386\) −366.010 −0.948213
\(387\) 75.5639 399.838i 0.195256 1.03317i
\(388\) 97.5282i 0.251361i
\(389\) −560.338 + 323.511i −1.44046 + 0.831649i −0.997880 0.0650808i \(-0.979269\pi\)
−0.442578 + 0.896730i \(0.645936\pi\)
\(390\) 56.3438 46.6929i 0.144471 0.119725i
\(391\) −14.8102 + 26.1463i −0.0378778 + 0.0668704i
\(392\) −176.164 101.708i −0.449398 0.259460i
\(393\) −27.3523 33.0057i −0.0695988 0.0839840i
\(394\) −64.8505 + 37.4414i −0.164595 + 0.0950291i
\(395\) 280.381i 0.709825i
\(396\) −8.47167 7.28728i −0.0213931 0.0184022i
\(397\) 687.340i 1.73134i −0.500619 0.865668i \(-0.666894\pi\)
0.500619 0.865668i \(-0.333106\pi\)
\(398\) −238.592 413.254i −0.599479 1.03833i
\(399\) −47.8059 281.181i −0.119814 0.704715i
\(400\) −115.993 + 200.906i −0.289983 + 0.502265i
\(401\) −120.496 + 208.705i −0.300489 + 0.520462i −0.976247 0.216662i \(-0.930483\pi\)
0.675758 + 0.737124i \(0.263817\pi\)
\(402\) −658.152 244.123i −1.63719 0.607272i
\(403\) −16.6385 + 9.60624i −0.0412866 + 0.0238368i
\(404\) 82.4115i 0.203989i
\(405\) −267.899 105.009i −0.661479 0.259282i
\(406\) 334.973 0.825058
\(407\) 9.46035 5.46194i 0.0232441 0.0134200i
\(408\) −330.803 119.616i −0.810792 0.293177i
\(409\) 288.068 498.948i 0.704322 1.21992i −0.262614 0.964901i \(-0.584585\pi\)
0.966936 0.255020i \(-0.0820820\pi\)
\(410\) −126.499 73.0340i −0.308533 0.178132i
\(411\) −47.5824 279.867i −0.115772 0.680942i
\(412\) −15.5413 26.9183i −0.0377216 0.0653357i
\(413\) 252.963 0.612501
\(414\) 22.9098 26.6333i 0.0553377 0.0643316i
\(415\) 300.555i 0.724228i
\(416\) −37.1336 + 21.4391i −0.0892634 + 0.0515362i
\(417\) 192.384 159.431i 0.461352 0.382329i
\(418\) 58.3056 + 33.6628i 0.139487 + 0.0805329i
\(419\) −398.013 + 689.378i −0.949911 + 1.64529i −0.204304 + 0.978908i \(0.565493\pi\)
−0.745607 + 0.666386i \(0.767840\pi\)
\(420\) 31.7718 26.3297i 0.0756471 0.0626898i
\(421\) −52.6204 91.1413i −0.124989 0.216488i 0.796740 0.604323i \(-0.206556\pi\)
−0.921729 + 0.387835i \(0.873223\pi\)
\(422\) 175.532 0.415953
\(423\) −278.948 52.7174i −0.659451 0.124627i
\(424\) 382.165 0.901333
\(425\) 106.730 + 181.399i 0.251129 + 0.426821i
\(426\) 112.014 + 658.836i 0.262944 + 1.54656i
\(427\) 35.1495 60.8807i 0.0823173 0.142578i
\(428\) 65.2668 113.045i 0.152493 0.264125i
\(429\) 4.59469 12.3872i 0.0107102 0.0288746i
\(430\) −307.166 + 177.343i −0.714340 + 0.412425i
\(431\) −251.529 −0.583594 −0.291797 0.956480i \(-0.594253\pi\)
−0.291797 + 0.956480i \(0.594253\pi\)
\(432\) 433.424 + 260.972i 1.00330 + 0.604102i
\(433\) 247.092 0.570651 0.285325 0.958431i \(-0.407898\pi\)
0.285325 + 0.958431i \(0.407898\pi\)
\(434\) −52.1927 + 30.1335i −0.120260 + 0.0694320i
\(435\) −127.285 + 343.159i −0.292610 + 0.788870i
\(436\) 154.563 + 89.2370i 0.354502 + 0.204672i
\(437\) −19.0241 + 32.9508i −0.0435335 + 0.0754023i
\(438\) −289.588 + 49.2351i −0.661160 + 0.112409i
\(439\) −536.953 + 310.010i −1.22313 + 0.706173i −0.965583 0.260094i \(-0.916247\pi\)
−0.257544 + 0.966267i \(0.582913\pi\)
\(440\) 34.7038i 0.0788722i
\(441\) 250.514 87.7194i 0.568059 0.198910i
\(442\) 0.960108 + 116.725i 0.00217219 + 0.264085i
\(443\) 321.142 185.411i 0.724925 0.418536i −0.0916378 0.995792i \(-0.529210\pi\)
0.816563 + 0.577257i \(0.195877\pi\)
\(444\) 15.6177 12.9426i 0.0351750 0.0291501i
\(445\) 463.052 + 267.343i 1.04057 + 0.600771i
\(446\) −21.3317 12.3159i −0.0478289 0.0276140i
\(447\) 468.539 388.285i 1.04818 0.868646i
\(448\) 170.213 98.2725i 0.379940 0.219358i
\(449\) 454.217 1.01162 0.505810 0.862645i \(-0.331194\pi\)
0.505810 + 0.862645i \(0.331194\pi\)
\(450\) −81.3185 232.234i −0.180708 0.516075i
\(451\) −26.3722 −0.0584749
\(452\) 54.8941 + 95.0794i 0.121447 + 0.210353i
\(453\) −73.7393 + 12.5370i −0.162780 + 0.0276755i
\(454\) 34.7596 + 20.0685i 0.0765629 + 0.0442036i
\(455\) 42.2503 + 24.3932i 0.0928577 + 0.0536114i
\(456\) −417.599 154.897i −0.915786 0.339686i
\(457\) −412.915 715.190i −0.903534 1.56497i −0.822873 0.568226i \(-0.807630\pi\)
−0.0806614 0.996742i \(-0.525703\pi\)
\(458\) 128.154i 0.279811i
\(459\) 399.815 225.453i 0.871056 0.491184i
\(460\) −5.50465 −0.0119666
\(461\) −373.424 + 215.597i −0.810031 + 0.467672i −0.846967 0.531646i \(-0.821574\pi\)
0.0369358 + 0.999318i \(0.488240\pi\)
\(462\) 14.4129 38.8570i 0.0311968 0.0841060i
\(463\) −257.345 + 445.734i −0.555821 + 0.962709i 0.442019 + 0.897006i \(0.354263\pi\)
−0.997839 + 0.0657036i \(0.979071\pi\)
\(464\) 321.765 557.313i 0.693458 1.20110i
\(465\) −11.0373 64.9184i −0.0237361 0.139609i
\(466\) −751.676 + 433.980i −1.61304 + 0.931288i
\(467\) 453.857i 0.971858i 0.873998 + 0.485929i \(0.161519\pi\)
−0.873998 + 0.485929i \(0.838481\pi\)
\(468\) 4.55558 24.1053i 0.00973415 0.0515071i
\(469\) 467.996i 0.997860i
\(470\) 123.724 + 214.296i 0.263242 + 0.455948i
\(471\) 487.320 + 588.043i 1.03465 + 1.24850i
\(472\) 197.517 342.109i 0.418467 0.724806i
\(473\) −32.0187 + 55.4581i −0.0676929 + 0.117248i
\(474\) 333.646 + 402.607i 0.703895 + 0.849381i
\(475\) 133.246 + 230.789i 0.280518 + 0.485871i
\(476\) 0.541396 + 65.8204i 0.00113739 + 0.138278i
\(477\) −325.193 + 378.046i −0.681746 + 0.792550i
\(478\) −343.632 −0.718896
\(479\) −233.447 404.343i −0.487364 0.844139i 0.512530 0.858669i \(-0.328708\pi\)
−0.999894 + 0.0145299i \(0.995375\pi\)
\(480\) −24.6329 144.884i −0.0513185 0.301841i
\(481\) 20.7685 + 11.9907i 0.0431778 + 0.0249287i
\(482\) −151.447 + 262.315i −0.314206 + 0.544221i
\(483\) 21.9596 + 8.14531i 0.0454650 + 0.0168640i
\(484\) −52.1573 90.3390i −0.107763 0.186651i
\(485\) 395.213i 0.814873i
\(486\) −509.641 + 168.007i −1.04864 + 0.345694i
\(487\) 610.782i 1.25417i −0.778950 0.627086i \(-0.784248\pi\)
0.778950 0.627086i \(-0.215752\pi\)
\(488\) −54.8902 95.0727i −0.112480 0.194821i
\(489\) 226.827 + 84.1352i 0.463859 + 0.172056i
\(490\) −200.363 115.679i −0.408903 0.236080i
\(491\) −157.490 90.9272i −0.320755 0.185188i 0.330974 0.943640i \(-0.392623\pi\)
−0.651729 + 0.758452i \(0.725956\pi\)
\(492\) −48.2755 + 8.20770i −0.0981209 + 0.0166823i
\(493\) −296.068 503.201i −0.600544 1.02069i
\(494\) 147.801i 0.299193i
\(495\) 34.3297 + 29.5302i 0.0693530 + 0.0596570i
\(496\) 115.781i 0.233429i
\(497\) −385.852 + 222.772i −0.776363 + 0.448233i
\(498\) 357.652 + 431.574i 0.718177 + 0.866615i
\(499\) 633.250 + 365.607i 1.26904 + 0.732679i 0.974806 0.223055i \(-0.0716029\pi\)
0.294232 + 0.955734i \(0.404936\pi\)
\(500\) −58.2045 + 100.813i −0.116409 + 0.201626i
\(501\) 497.973 + 600.898i 0.993958 + 1.19940i
\(502\) −259.475 449.424i −0.516883 0.895267i
\(503\) 489.996 0.974147 0.487073 0.873361i \(-0.338064\pi\)
0.487073 + 0.873361i \(0.338064\pi\)
\(504\) −50.9146 + 269.408i −0.101021 + 0.534541i
\(505\) 333.956i 0.661299i
\(506\) −4.78798 + 2.76434i −0.00946241 + 0.00546312i
\(507\) −471.233 + 80.1181i −0.929454 + 0.158024i
\(508\) 33.4702 57.9721i 0.0658862 0.114118i
\(509\) −501.158 289.344i −0.984593 0.568455i −0.0809394 0.996719i \(-0.525792\pi\)
−0.903654 + 0.428264i \(0.859125\pi\)
\(510\) −376.243 136.047i −0.737732 0.266759i
\(511\) −97.9181 169.599i −0.191621 0.331897i
\(512\) 258.574i 0.505027i
\(513\) 508.571 281.292i 0.991367 0.548328i
\(514\) 210.932 0.410374
\(515\) 62.9780 + 109.081i 0.122287 + 0.211808i
\(516\) −41.3518 + 111.484i −0.0801391 + 0.216053i
\(517\) 38.6905 + 22.3380i 0.0748365 + 0.0432069i
\(518\) 65.1480 + 37.6132i 0.125768 + 0.0726124i
\(519\) 389.532 66.2274i 0.750543 0.127606i
\(520\) 65.9790 38.0930i 0.126883 0.0732557i
\(521\) −353.079 −0.677695 −0.338848 0.940841i \(-0.610037\pi\)
−0.338848 + 0.940841i \(0.610037\pi\)
\(522\) 225.577 + 644.217i 0.432140 + 1.23413i
\(523\) −584.015 −1.11666 −0.558332 0.829618i \(-0.688559\pi\)
−0.558332 + 0.829618i \(0.688559\pi\)
\(524\) 6.26305 + 10.8479i 0.0119524 + 0.0207021i
\(525\) 126.310 104.675i 0.240590 0.199381i
\(526\) 399.460 691.886i 0.759430 1.31537i
\(527\) 91.3977 + 51.7708i 0.173430 + 0.0982369i
\(528\) −50.8038 61.3043i −0.0962193 0.116107i
\(529\) 262.938 + 455.422i 0.497047 + 0.860910i
\(530\) 434.661 0.820115
\(531\) 170.350 + 486.495i 0.320810 + 0.916187i
\(532\) 83.3438i 0.156661i
\(533\) −28.9477 50.1389i −0.0543109 0.0940692i
\(534\) 983.040 167.134i 1.84090 0.312986i
\(535\) −264.481 + 458.094i −0.494356 + 0.856250i
\(536\) −632.921 365.417i −1.18082 0.681748i
\(537\) −324.835 120.489i −0.604907 0.224374i
\(538\) 804.459 464.454i 1.49528 0.863298i
\(539\) −41.7712 −0.0774976
\(540\) 72.0327 + 43.3721i 0.133394 + 0.0803188i
\(541\) 203.117i 0.375448i 0.982222 + 0.187724i \(0.0601110\pi\)
−0.982222 + 0.187724i \(0.939889\pi\)
\(542\) −191.375 + 110.490i −0.353090 + 0.203856i
\(543\) 562.535 + 208.657i 1.03598 + 0.384267i
\(544\) 203.980 + 115.541i 0.374963 + 0.212392i
\(545\) −626.336 361.615i −1.14924 0.663514i
\(546\) 89.6955 15.2498i 0.164278 0.0279301i
\(547\) −632.756 + 365.322i −1.15677 + 0.667864i −0.950529 0.310636i \(-0.899458\pi\)
−0.206246 + 0.978500i \(0.566125\pi\)
\(548\) 82.9542i 0.151376i
\(549\) 140.755 + 26.6009i 0.256385 + 0.0484533i
\(550\) 38.7231i 0.0704057i
\(551\) −369.624 640.208i −0.670824 1.16190i
\(552\) 28.1621 23.3383i 0.0510183 0.0422796i
\(553\) −174.302 + 301.901i −0.315194 + 0.545933i
\(554\) −603.838 + 1045.88i −1.08996 + 1.88787i
\(555\) −63.2876 + 52.4474i −0.114032 + 0.0944998i
\(556\) −63.2304 + 36.5061i −0.113724 + 0.0656584i
\(557\) 274.409i 0.492654i −0.969187 0.246327i \(-0.920776\pi\)
0.969187 0.246327i \(-0.0792238\pi\)
\(558\) −93.0999 80.0839i −0.166846 0.143520i
\(559\) −140.583 −0.251490
\(560\) 254.614 147.002i 0.454669 0.262503i
\(561\) −71.1103 + 12.6927i −0.126756 + 0.0226251i
\(562\) 170.574 295.442i 0.303512 0.525698i
\(563\) 838.226 + 483.950i 1.48886 + 0.859592i 0.999919 0.0127273i \(-0.00405134\pi\)
0.488937 + 0.872319i \(0.337385\pi\)
\(564\) 77.7769 + 28.8492i 0.137902 + 0.0511511i
\(565\) −222.447 385.290i −0.393712 0.681930i
\(566\) 703.819 1.24350
\(567\) −223.180 279.611i −0.393616 0.493142i
\(568\) 695.771i 1.22495i
\(569\) −350.531 + 202.379i −0.616048 + 0.355675i −0.775329 0.631558i \(-0.782416\pi\)
0.159281 + 0.987233i \(0.449082\pi\)
\(570\) −474.961 176.174i −0.833265 0.309077i
\(571\) −539.740 311.619i −0.945253 0.545742i −0.0536499 0.998560i \(-0.517086\pi\)
−0.891603 + 0.452818i \(0.850419\pi\)
\(572\) −1.93034 + 3.34345i −0.00337472 + 0.00584518i
\(573\) 31.1734 + 183.353i 0.0544038 + 0.319989i
\(574\) −90.8050 157.279i −0.158197 0.274005i
\(575\) −21.8840 −0.0380591
\(576\) 303.621 + 261.173i 0.527120 + 0.453425i
\(577\) −116.940 −0.202669 −0.101335 0.994852i \(-0.532311\pi\)
−0.101335 + 0.994852i \(0.532311\pi\)
\(578\) 547.375 328.149i 0.947016 0.567733i
\(579\) 382.848 317.272i 0.661223 0.547965i
\(580\) 53.4755 92.6224i 0.0921992 0.159694i
\(581\) −186.844 + 323.623i −0.321590 + 0.557010i
\(582\) 470.294 + 567.498i 0.808065 + 0.975082i
\(583\) 67.9629 39.2384i 0.116574 0.0673043i
\(584\) −305.822 −0.523669
\(585\) −18.4606 + 97.6820i −0.0315565 + 0.166978i
\(586\) 223.846 0.381989
\(587\) 164.072 94.7270i 0.279509 0.161375i −0.353692 0.935362i \(-0.615074\pi\)
0.633201 + 0.773987i \(0.281741\pi\)
\(588\) −76.4641 + 13.0003i −0.130041 + 0.0221093i
\(589\) 115.183 + 66.5012i 0.195558 + 0.112905i
\(590\) 224.648 389.102i 0.380759 0.659494i
\(591\) 35.3782 95.3788i 0.0598615 0.161386i
\(592\) 125.158 72.2601i 0.211416 0.122061i
\(593\) 436.488i 0.736068i −0.929812 0.368034i \(-0.880031\pi\)
0.929812 0.368034i \(-0.119969\pi\)
\(594\) 84.4352 + 1.55175i 0.142147 + 0.00261238i
\(595\) −2.19390 266.724i −0.00368723 0.448276i
\(596\) −153.994 + 88.9082i −0.258378 + 0.149175i
\(597\) 607.794 + 225.444i 1.01808 + 0.377629i
\(598\) −10.5111 6.06861i −0.0175772 0.0101482i
\(599\) 205.367 + 118.569i 0.342850 + 0.197944i 0.661531 0.749917i \(-0.269907\pi\)
−0.318682 + 0.947862i \(0.603240\pi\)
\(600\) −42.9386 252.554i −0.0715644 0.420923i
\(601\) −167.618 + 96.7745i −0.278899 + 0.161022i −0.632925 0.774213i \(-0.718146\pi\)
0.354026 + 0.935236i \(0.384812\pi\)
\(602\) −440.989 −0.732540
\(603\) 900.045 315.158i 1.49261 0.522649i
\(604\) 21.8567 0.0361867
\(605\) 211.357 + 366.081i 0.349350 + 0.605092i
\(606\) −397.399 479.536i −0.655774 0.791314i
\(607\) −127.850 73.8140i −0.210625 0.121605i 0.390977 0.920401i \(-0.372137\pi\)
−0.601602 + 0.798796i \(0.705471\pi\)
\(608\) 257.065 + 148.416i 0.422804 + 0.244106i
\(609\) −350.383 + 290.368i −0.575342 + 0.476795i
\(610\) −62.4301 108.132i −0.102344 0.177266i
\(611\) 98.0780i 0.160520i
\(612\) −126.220 + 45.3659i −0.206242 + 0.0741273i
\(613\) −980.994 −1.60032 −0.800158 0.599789i \(-0.795251\pi\)
−0.800158 + 0.599789i \(0.795251\pi\)
\(614\) −219.463 + 126.707i −0.357432 + 0.206363i
\(615\) 195.627 33.2600i 0.318092 0.0540814i
\(616\) 21.5741 37.3674i 0.0350228 0.0606613i
\(617\) 378.719 655.961i 0.613808 1.06315i −0.376785 0.926301i \(-0.622970\pi\)
0.990592 0.136845i \(-0.0436963\pi\)
\(618\) 220.235 + 81.6903i 0.356368 + 0.132185i
\(619\) −842.718 + 486.544i −1.36142 + 0.786016i −0.989813 0.142375i \(-0.954526\pi\)
−0.371606 + 0.928390i \(0.621193\pi\)
\(620\) 19.2422i 0.0310358i
\(621\) −0.876957 + 47.7176i −0.00141217 + 0.0768400i
\(622\) 216.583i 0.348205i
\(623\) 332.394 + 575.724i 0.533539 + 0.924116i
\(624\) 60.7867 163.880i 0.0974145 0.262628i
\(625\) 81.1059 140.480i 0.129769 0.224767i
\(626\) −351.907 + 609.521i −0.562152 + 0.973676i
\(627\) −90.1681 + 15.3302i −0.143809 + 0.0244501i
\(628\) −111.585 193.271i −0.177683 0.307756i
\(629\) −1.07843 131.111i −0.00171452 0.208443i
\(630\) −57.9083 + 306.415i −0.0919180 + 0.486373i
\(631\) −850.171 −1.34734 −0.673669 0.739033i \(-0.735283\pi\)
−0.673669 + 0.739033i \(0.735283\pi\)
\(632\) 272.195 + 471.455i 0.430688 + 0.745973i
\(633\) −183.607 + 152.158i −0.290059 + 0.240376i
\(634\) 324.122 + 187.132i 0.511233 + 0.295161i
\(635\) −135.631 + 234.920i −0.213592 + 0.369953i
\(636\) 112.197 92.9795i 0.176411 0.146194i
\(637\) −45.8506 79.4156i −0.0719790 0.124671i
\(638\) 107.418i 0.168367i
\(639\) −688.272 592.047i −1.07711 0.926522i
\(640\) 545.041i 0.851626i
\(641\) −472.888 819.066i −0.737735 1.27779i −0.953513 0.301351i \(-0.902562\pi\)
0.215779 0.976442i \(-0.430771\pi\)
\(642\) 165.345 + 972.514i 0.257547 + 1.51482i
\(643\) 670.084 + 386.873i 1.04212 + 0.601669i 0.920433 0.390900i \(-0.127836\pi\)
0.121688 + 0.992568i \(0.461169\pi\)
\(644\) −5.92714 3.42204i −0.00920364 0.00531372i
\(645\) 167.570 451.765i 0.259798 0.700411i
\(646\) 696.473 409.784i 1.07813 0.634340i
\(647\) 329.359i 0.509056i 0.967065 + 0.254528i \(0.0819200\pi\)
−0.967065 + 0.254528i \(0.918080\pi\)
\(648\) −552.410 + 83.5064i −0.852484 + 0.128868i
\(649\) 81.1192i 0.124991i
\(650\) −73.6205 + 42.5048i −0.113262 + 0.0653921i
\(651\) 28.4729 76.7624i 0.0437372 0.117915i
\(652\) −61.2231 35.3472i −0.0939005 0.0542135i
\(653\) 469.925 813.934i 0.719640 1.24645i −0.241503 0.970400i \(-0.577640\pi\)
0.961143 0.276052i \(-0.0890263\pi\)
\(654\) −1329.68 + 226.070i −2.03316 + 0.345673i
\(655\) −25.3797 43.9590i −0.0387477 0.0671130i
\(656\) −348.897 −0.531856
\(657\) 260.231 302.526i 0.396090 0.460466i
\(658\) 307.657i 0.467565i
\(659\) −257.584 + 148.716i −0.390871 + 0.225669i −0.682537 0.730851i \(-0.739124\pi\)
0.291667 + 0.956520i \(0.405790\pi\)
\(660\) −8.44331 10.1884i −0.0127929 0.0154370i
\(661\) 165.831 287.228i 0.250879 0.434535i −0.712889 0.701277i \(-0.752614\pi\)
0.963768 + 0.266742i \(0.0859471\pi\)
\(662\) −567.818 327.830i −0.857732 0.495212i
\(663\) −102.186 121.263i −0.154127 0.182900i
\(664\) 291.779 + 505.377i 0.439427 + 0.761109i
\(665\) 337.734i 0.507870i
\(666\) −28.4654 + 150.621i −0.0427408 + 0.226158i
\(667\) 60.7061 0.0910136
\(668\) −114.024 197.496i −0.170695 0.295652i
\(669\) 32.9889 5.60871i 0.0493108 0.00838372i
\(670\) −719.861 415.612i −1.07442 0.620316i
\(671\) −19.5230 11.2716i −0.0290953 0.0167982i
\(672\) 63.5455 171.317i 0.0945617 0.254936i
\(673\) 505.629 291.925i 0.751307 0.433767i −0.0748591 0.997194i \(-0.523851\pi\)
0.826166 + 0.563427i \(0.190517\pi\)
\(674\) 1159.71 1.72064
\(675\) 286.369 + 172.428i 0.424250 + 0.255448i
\(676\) 139.676 0.206622
\(677\) −66.8519 115.791i −0.0987473 0.171035i 0.812419 0.583074i \(-0.198150\pi\)
−0.911166 + 0.412039i \(0.864817\pi\)
\(678\) −777.903 288.542i −1.14735 0.425578i
\(679\) −245.689 + 425.547i −0.361840 + 0.626726i
\(680\) −362.432 205.294i −0.532988 0.301903i
\(681\) −53.7548 + 9.13928i −0.0789350 + 0.0134204i
\(682\) 9.66308 + 16.7370i 0.0141687 + 0.0245410i
\(683\) −867.670 −1.27038 −0.635190 0.772356i \(-0.719078\pi\)
−0.635190 + 0.772356i \(0.719078\pi\)
\(684\) −160.286 + 56.1252i −0.234336 + 0.0820544i
\(685\) 336.155i 0.490738i
\(686\) −382.791 663.014i −0.558005 0.966493i
\(687\) −111.088 134.049i −0.161701 0.195122i
\(688\) −423.600 + 733.697i −0.615698 + 1.06642i
\(689\) 149.200 + 86.1409i 0.216546 + 0.125023i
\(690\) 32.0305 26.5442i 0.0464210 0.0384698i
\(691\) 157.602 90.9914i 0.228078 0.131681i −0.381607 0.924325i \(-0.624629\pi\)
0.609685 + 0.792644i \(0.291296\pi\)
\(692\) −115.459 −0.166849
\(693\) 18.6068 + 53.1382i 0.0268496 + 0.0766786i
\(694\) 927.289i 1.33615i
\(695\) 256.228 147.933i 0.368674 0.212854i
\(696\) 119.112 + 700.583i 0.171138 + 1.00659i
\(697\) −156.008 + 275.420i −0.223827 + 0.395151i
\(698\) 1049.45 + 605.898i 1.50351 + 0.868049i
\(699\) 410.065 1105.53i 0.586645 1.58158i
\(700\) −41.5140 + 23.9681i −0.0593057 + 0.0342402i
\(701\) 637.468i 0.909369i −0.890653 0.454684i \(-0.849752\pi\)
0.890653 0.454684i \(-0.150248\pi\)
\(702\) 89.7310 + 162.232i 0.127822 + 0.231099i
\(703\) 166.016i 0.236154i
\(704\) −31.5136 54.5832i −0.0447637 0.0775330i
\(705\) −315.175 116.906i −0.447057 0.165824i
\(706\) 510.304 883.872i 0.722810 1.25194i
\(707\) 207.608 359.588i 0.293646 0.508611i
\(708\) −25.2464 148.492i −0.0356587 0.209735i
\(709\) −675.791 + 390.168i −0.953160 + 0.550307i −0.894061 0.447945i \(-0.852156\pi\)
−0.0590992 + 0.998252i \(0.518823\pi\)
\(710\) 791.345i 1.11457i
\(711\) −697.990 131.911i −0.981702 0.185528i
\(712\) 1038.15 1.45808
\(713\) −9.45871 + 5.46099i −0.0132661 + 0.00765917i
\(714\) −320.545 380.385i −0.448942 0.532753i
\(715\) 7.82231 13.5486i 0.0109403 0.0189491i
\(716\) 87.6766 + 50.6201i 0.122453 + 0.0706985i
\(717\) 359.441 297.874i 0.501312 0.415445i
\(718\) 416.431 + 721.279i 0.579987 + 1.00457i
\(719\) −942.607 −1.31100 −0.655498 0.755197i \(-0.727541\pi\)
−0.655498 + 0.755197i \(0.727541\pi\)
\(720\) 454.174 + 390.678i 0.630797 + 0.542608i
\(721\) 156.604i 0.217204i
\(722\) 195.708 112.992i 0.271063 0.156498i
\(723\) −68.9699 405.662i −0.0953941 0.561082i
\(724\) −151.835 87.6617i −0.209716 0.121080i
\(725\) 212.594 368.224i 0.293233 0.507895i
\(726\) 739.119 + 274.156i 1.01807 + 0.377626i
\(727\) 498.869 + 864.067i 0.686202 + 1.18854i 0.973057 + 0.230563i \(0.0740569\pi\)
−0.286855 + 0.957974i \(0.592610\pi\)
\(728\) 94.7240 0.130115
\(729\) 387.451 617.513i 0.531483 0.847069i
\(730\) −347.831 −0.476481
\(731\) 389.771 + 662.459i 0.533202 + 0.906236i
\(732\) −39.2457 14.5571i −0.0536143 0.0198868i
\(733\) 416.123 720.746i 0.567698 0.983283i −0.429095 0.903260i \(-0.641167\pi\)
0.996793 0.0800230i \(-0.0254994\pi\)
\(734\) 614.108 1063.67i 0.836660 1.44914i
\(735\) 309.855 52.6810i 0.421572 0.0716748i
\(736\) −21.1098 + 12.1878i −0.0286818 + 0.0165595i
\(737\) −150.075 −0.203630
\(738\) 241.327 280.550i 0.327001 0.380149i
\(739\) 587.105 0.794458 0.397229 0.917719i \(-0.369972\pi\)
0.397229 + 0.917719i \(0.369972\pi\)
\(740\) 20.8006 12.0092i 0.0281089 0.0162287i
\(741\) −128.120 154.601i −0.172901 0.208638i
\(742\) 468.022 + 270.212i 0.630757 + 0.364168i
\(743\) 271.448 470.162i 0.365341 0.632789i −0.623490 0.781831i \(-0.714286\pi\)
0.988831 + 0.149042i \(0.0476191\pi\)
\(744\) −81.5819 98.4439i −0.109653 0.132317i
\(745\) 624.028 360.283i 0.837621 0.483601i
\(746\) 805.614i 1.07991i
\(747\) −748.211 141.402i −1.00162 0.189293i
\(748\) 21.1070 0.173613i 0.0282179 0.000232103i
\(749\) −569.560 + 328.836i −0.760427 + 0.439033i
\(750\) −147.453 867.281i −0.196604 1.15637i
\(751\) −324.334 187.254i −0.431869 0.249340i 0.268273 0.963343i \(-0.413547\pi\)
−0.700143 + 0.714003i \(0.746880\pi\)
\(752\) 511.866 + 295.526i 0.680673 + 0.392986i
\(753\) 660.990 + 245.176i 0.877809 + 0.325599i
\(754\) 204.223 117.908i 0.270853 0.156377i
\(755\) −88.5700 −0.117311
\(756\) 50.5985 + 91.4811i 0.0669292 + 0.121007i
\(757\) 1006.50 1.32959 0.664795 0.747026i \(-0.268519\pi\)
0.664795 + 0.747026i \(0.268519\pi\)
\(758\) 613.212 + 1062.11i 0.808987 + 1.40121i
\(759\) 2.61201 7.04192i 0.00344138 0.00927789i
\(760\) −456.753 263.707i −0.600991 0.346982i
\(761\) 2.45474 + 1.41725i 0.00322568 + 0.00186235i 0.501612 0.865093i \(-0.332741\pi\)
−0.498386 + 0.866955i \(0.666074\pi\)
\(762\) 84.7923 + 498.726i 0.111276 + 0.654496i
\(763\) −449.605 778.739i −0.589260 1.02063i
\(764\) 54.3470i 0.0711348i
\(765\) 511.483 183.836i 0.668605 0.240309i
\(766\) 1137.83 1.48542
\(767\) 154.224 89.0413i 0.201074 0.116090i
\(768\) −307.851 371.480i −0.400848 0.483698i
\(769\) −121.604 + 210.625i −0.158133 + 0.273895i −0.934195 0.356762i \(-0.883881\pi\)
0.776062 + 0.630656i \(0.217214\pi\)
\(770\) 24.5375 42.5002i 0.0318669 0.0551951i
\(771\) −220.636 + 182.844i −0.286169 + 0.237152i
\(772\) −125.830 + 72.6478i −0.162992 + 0.0941034i
\(773\) 1414.57i 1.82997i 0.403485 + 0.914986i \(0.367799\pi\)
−0.403485 + 0.914986i \(0.632201\pi\)
\(774\) −296.970 848.105i −0.383683 1.09574i
\(775\) 76.4980i 0.0987071i
\(776\) 383.674 + 664.544i 0.494426 + 0.856371i
\(777\) −100.750 + 17.1293i −0.129665 + 0.0220454i
\(778\) −714.414 + 1237.40i −0.918270 + 1.59049i
\(779\) −200.396 + 347.097i −0.257248 + 0.445567i
\(780\) 10.1024 27.2359i 0.0129518 0.0349178i
\(781\) 71.4376 + 123.734i 0.0914694 + 0.158430i
\(782\) 0.545805 + 66.3564i 0.000697960 + 0.0848548i
\(783\) −794.387 478.314i −1.01454 0.610873i
\(784\) −552.623 −0.704876
\(785\) 452.176 + 783.191i 0.576020 + 0.997696i
\(786\) −88.7535 32.9207i −0.112918 0.0418838i
\(787\) −940.172 542.809i −1.19463 0.689719i −0.235276 0.971929i \(-0.575599\pi\)
−0.959353 + 0.282210i \(0.908933\pi\)
\(788\) −14.8632 + 25.7438i −0.0188619 + 0.0326698i
\(789\) 181.916 + 1069.98i 0.230566 + 1.35613i
\(790\) 309.584 + 536.216i 0.391879 + 0.678754i
\(791\) 553.149i 0.699304i
\(792\) 86.3928 + 16.3271i 0.109082 + 0.0206150i
\(793\) 49.4895i 0.0624080i
\(794\) −758.930 1314.51i −0.955832 1.65555i
\(795\) −454.657 + 376.781i −0.571895 + 0.473938i
\(796\) −164.050 94.7145i −0.206093 0.118988i
\(797\) −326.560 188.539i −0.409736 0.236561i 0.280940 0.959725i \(-0.409354\pi\)
−0.690676 + 0.723164i \(0.742687\pi\)
\(798\) −401.894 484.961i −0.503627 0.607721i
\(799\) 462.166 271.925i 0.578431 0.340331i
\(800\) 170.727i 0.213409i
\(801\) −883.385 + 1026.96i −1.10285 + 1.28210i
\(802\) 532.186i 0.663573i
\(803\) −54.3864 + 31.4000i −0.0677290 + 0.0391034i
\(804\) −274.720 + 46.7073i −0.341691 + 0.0580936i
\(805\) 24.0186 + 13.8671i 0.0298367 + 0.0172262i
\(806\) −21.2136 + 36.7430i −0.0263196 + 0.0455868i
\(807\) −438.860 + 1183.16i −0.543816 + 1.46612i
\(808\) −324.206 561.540i −0.401244 0.694976i
\(809\) 335.596 0.414828 0.207414 0.978253i \(-0.433495\pi\)
0.207414 + 0.978253i \(0.433495\pi\)
\(810\) −628.290 + 94.9771i −0.775667 + 0.117256i
\(811\) 1601.45i 1.97466i 0.158674 + 0.987331i \(0.449278\pi\)
−0.158674 + 0.987331i \(0.550722\pi\)
\(812\) 115.160 66.4875i 0.141822 0.0818812i
\(813\) 104.401 281.464i 0.128415 0.346204i
\(814\) 12.0617 20.8914i 0.0148178 0.0256651i
\(815\) 248.094 + 143.237i 0.304410 + 0.175751i
\(816\) −940.772 + 167.921i −1.15291 + 0.205786i
\(817\) 486.607 + 842.828i 0.595602 + 1.03161i
\(818\) 1272.29i 1.55536i
\(819\) −80.6027 + 93.7030i −0.0984160 + 0.114411i
\(820\) −57.9849 −0.0707133
\(821\) 89.3883 + 154.825i 0.108877 + 0.188581i 0.915316 0.402737i \(-0.131941\pi\)
−0.806438 + 0.591318i \(0.798608\pi\)
\(822\) −400.016 482.694i −0.486637 0.587219i
\(823\) −447.254 258.222i −0.543444 0.313758i 0.203030 0.979173i \(-0.434921\pi\)
−0.746474 + 0.665415i \(0.768255\pi\)
\(824\) 211.793 + 122.279i 0.257030 + 0.148396i
\(825\) −33.5667 40.5045i −0.0406869 0.0490964i
\(826\) 483.780 279.311i 0.585690 0.338148i
\(827\) −602.569 −0.728620 −0.364310 0.931278i \(-0.618695\pi\)
−0.364310 + 0.931278i \(0.618695\pi\)
\(828\) 2.58977 13.7035i 0.00312774 0.0165501i
\(829\) 667.735 0.805471 0.402735 0.915316i \(-0.368060\pi\)
0.402735 + 0.915316i \(0.368060\pi\)
\(830\) 331.859 + 574.797i 0.399830 + 0.692526i
\(831\) −274.991 1617.42i −0.330915 1.94636i
\(832\) 69.1825 119.828i 0.0831521 0.144024i
\(833\) −247.102 + 436.241i −0.296641 + 0.523699i
\(834\) 191.888 517.327i 0.230082 0.620296i
\(835\) 462.060 + 800.312i 0.553365 + 0.958457i
\(836\) 26.7263 0.0319693
\(837\) 166.803 + 3.06551i 0.199286 + 0.00366250i
\(838\) 1757.87i 2.09770i
\(839\) 607.384 + 1052.02i 0.723938 + 1.25390i 0.959409 + 0.282017i \(0.0910034\pi\)
−0.235471 + 0.971881i \(0.575663\pi\)
\(840\) −112.908 + 304.397i −0.134414 + 0.362377i
\(841\) −169.236 + 293.125i −0.201232 + 0.348543i
\(842\) −201.268 116.202i −0.239036 0.138007i
\(843\) 77.6801 + 456.894i 0.0921472 + 0.541985i
\(844\) 60.3458 34.8407i 0.0714997 0.0412804i
\(845\) −566.010 −0.669834
\(846\) −591.683 + 207.182i −0.699389 + 0.244896i
\(847\) 525.571i 0.620509i
\(848\) 899.133 519.115i 1.06030 0.612163i
\(849\) −736.197 + 610.097i −0.867134 + 0.718607i
\(850\) 404.408 + 229.071i 0.475774 + 0.269495i
\(851\) 11.8065 + 6.81651i 0.0138737 + 0.00801001i
\(852\) 169.279 + 204.267i 0.198684 + 0.239750i
\(853\) 131.958 76.1857i 0.154698 0.0893150i −0.420653 0.907222i \(-0.638199\pi\)
0.575351 + 0.817907i \(0.304866\pi\)
\(854\) 155.242i 0.181782i
\(855\) 649.525 227.436i 0.759679 0.266007i
\(856\) 1027.03i 1.19981i
\(857\) −291.231 504.426i −0.339826 0.588596i 0.644574 0.764542i \(-0.277035\pi\)
−0.984400 + 0.175946i \(0.943701\pi\)
\(858\) −4.89026 28.7632i −0.00569960 0.0335235i
\(859\) −219.907 + 380.890i −0.256004 + 0.443412i −0.965168 0.261632i \(-0.915739\pi\)
0.709164 + 0.705044i \(0.249073\pi\)
\(860\) −70.4000 + 121.936i −0.0818605 + 0.141787i
\(861\) 231.318 + 85.8010i 0.268662 + 0.0996528i
\(862\) −481.037 + 277.727i −0.558048 + 0.322189i
\(863\) 1284.95i 1.48893i 0.667659 + 0.744467i \(0.267297\pi\)
−0.667659 + 0.744467i \(0.732703\pi\)
\(864\) 372.268 + 6.84156i 0.430866 + 0.00791847i
\(865\) 467.876 0.540897
\(866\) 472.552 272.828i 0.545672 0.315044i
\(867\) −288.104 + 817.732i −0.332300 + 0.943174i
\(868\) −11.9621 + 20.7190i −0.0137813 + 0.0238699i
\(869\) 96.8123 + 55.8946i 0.111407 + 0.0643206i
\(870\) 135.473 + 796.817i 0.155716 + 0.915882i
\(871\) −164.732 285.324i −0.189129 0.327582i
\(872\) −1404.23 −1.61035
\(873\) −983.858 185.936i −1.12699 0.212985i
\(874\) 84.0225i 0.0961356i
\(875\) 507.929 293.253i 0.580491 0.335146i
\(876\) −89.7843 + 74.4056i −0.102493 + 0.0849379i
\(877\) 1065.73 + 615.297i 1.21519 + 0.701593i 0.963886 0.266315i \(-0.0858060\pi\)
0.251308 + 0.967907i \(0.419139\pi\)
\(878\) −684.598 + 1185.76i −0.779725 + 1.35052i
\(879\) −234.144 + 194.038i −0.266375 + 0.220749i
\(880\) −47.1399 81.6487i −0.0535681 0.0927826i
\(881\) −168.980 −0.191804 −0.0959022 0.995391i \(-0.530574\pi\)
−0.0959022 + 0.995391i \(0.530574\pi\)
\(882\) 382.241 444.366i 0.433380 0.503816i
\(883\) −1721.94 −1.95011 −0.975053 0.221971i \(-0.928751\pi\)
−0.975053 + 0.221971i \(0.928751\pi\)
\(884\) 23.4984 + 39.9382i 0.0265819 + 0.0451789i
\(885\) 102.306 + 601.735i 0.115600 + 0.679927i
\(886\) 409.446 709.181i 0.462128 0.800430i
\(887\) −47.2929 + 81.9137i −0.0533178 + 0.0923492i −0.891452 0.453114i \(-0.850313\pi\)
0.838135 + 0.545463i \(0.183646\pi\)
\(888\) −55.5008 + 149.629i −0.0625009 + 0.168501i
\(889\) −292.082 + 168.634i −0.328551 + 0.189689i
\(890\) 1180.75 1.32669
\(891\) −89.6647 + 71.5686i −0.100634 + 0.0803239i
\(892\) −9.77810 −0.0109620
\(893\) 588.001 339.483i 0.658456 0.380160i
\(894\) 467.331 1259.92i 0.522742 1.40930i
\(895\) −355.292 205.128i −0.396974 0.229193i
\(896\) 338.831 586.873i 0.378160 0.654993i
\(897\) 16.2552 2.76368i 0.0181218 0.00308102i
\(898\) 868.669 501.526i 0.967338 0.558493i
\(899\) 212.205i 0.236046i
\(900\) −74.0515 63.6986i −0.0822794 0.0707762i
\(901\) −7.74743 941.896i −0.00859870 1.04539i
\(902\) −50.4356 + 29.1190i −0.0559153 + 0.0322827i
\(903\) 461.276 382.267i 0.510827 0.423330i
\(904\) −748.082 431.905i −0.827524 0.477771i
\(905\) 615.279 + 355.232i 0.679866 + 0.392521i
\(906\) −127.180 + 105.396i −0.140375 + 0.116331i
\(907\) 336.689 194.387i 0.371212 0.214319i −0.302776 0.953062i \(-0.597913\pi\)
0.673988 + 0.738743i \(0.264580\pi\)
\(908\) 15.9332 0.0175476
\(909\) 831.362 + 157.116i 0.914589 + 0.172845i
\(910\) 107.736 0.118391
\(911\) 10.7455 + 18.6118i 0.0117953 + 0.0204301i 0.871863 0.489750i \(-0.162912\pi\)
−0.860067 + 0.510180i \(0.829579\pi\)
\(912\) −1192.90 + 202.815i −1.30801 + 0.222385i
\(913\) 103.778 + 59.9162i 0.113667 + 0.0656257i
\(914\) −1579.36 911.845i −1.72797 0.997642i
\(915\) 159.035 + 58.9898i 0.173809 + 0.0644697i
\(916\) 25.4367 + 44.0576i 0.0277693 + 0.0480978i
\(917\) 63.1106i 0.0688229i
\(918\) 515.692 872.626i 0.561756 0.950573i
\(919\) −987.516 −1.07456 −0.537278 0.843406i \(-0.680547\pi\)
−0.537278 + 0.843406i \(0.680547\pi\)
\(920\) 37.5079 21.6552i 0.0407695 0.0235383i
\(921\) 119.725 322.775i 0.129994 0.350462i
\(922\) −476.104 + 824.637i −0.516382 + 0.894400i
\(923\) −156.828 + 271.635i −0.169912 + 0.294296i
\(924\) −2.75757 16.2193i −0.00298439 0.0175534i
\(925\) 82.6936 47.7432i 0.0893985 0.0516142i
\(926\) 1136.60i 1.22742i
\(927\) −301.180 + 105.460i −0.324897 + 0.113765i
\(928\) 473.597i 0.510342i
\(929\) 360.372 + 624.183i 0.387914 + 0.671887i 0.992169 0.124904i \(-0.0398623\pi\)
−0.604254 + 0.796791i \(0.706529\pi\)
\(930\) −92.7883 111.966i −0.0997723 0.120394i
\(931\) −317.410 + 549.771i −0.340935 + 0.590516i
\(932\) −172.278 + 298.394i −0.184848 + 0.320165i
\(933\) −187.743 226.547i −0.201225 0.242816i
\(934\) 501.129 + 867.981i 0.536541 + 0.929316i
\(935\) −85.5320 + 0.703531i −0.0914780 + 0.000752439i
\(936\) 63.7889 + 182.172i 0.0681505 + 0.194628i
\(937\) 726.411 0.775251 0.387626 0.921817i \(-0.373295\pi\)
0.387626 + 0.921817i \(0.373295\pi\)
\(938\) −516.741 895.021i −0.550896 0.954181i
\(939\) −160.260 942.609i −0.170671 1.00384i
\(940\) 85.0693 + 49.1148i 0.0904993 + 0.0522498i
\(941\) 699.817 1212.12i 0.743695 1.28812i −0.207108 0.978318i \(-0.566405\pi\)
0.950802 0.309799i \(-0.100262\pi\)
\(942\) 1581.27 + 586.528i 1.67863 + 0.622641i
\(943\) −16.4563 28.5031i −0.0174510 0.0302260i
\(944\) 1073.19i 1.13685i
\(945\) −205.040 370.709i −0.216974 0.392284i
\(946\) 141.415i 0.149487i
\(947\) 777.033 + 1345.86i 0.820520 + 1.42118i 0.905295 + 0.424783i \(0.139650\pi\)
−0.0847748 + 0.996400i \(0.527017\pi\)
\(948\) 194.615 + 72.1872i 0.205290 + 0.0761468i
\(949\) −119.396 68.9331i −0.125812 0.0726376i
\(950\) 509.653 + 294.249i 0.536477 + 0.309735i
\(951\) −501.246 + 85.2208i −0.527072 + 0.0896117i
\(952\) −262.625 446.361i −0.275867 0.468867i
\(953\) 770.289i 0.808278i −0.914698 0.404139i \(-0.867571\pi\)
0.914698 0.404139i \(-0.132429\pi\)
\(954\) −204.495 + 1082.06i −0.214355 + 1.13423i
\(955\) 220.230i 0.230608i
\(956\) −118.137 + 68.2062i −0.123574 + 0.0713454i
\(957\) 93.1140 + 112.360i 0.0972978 + 0.117408i
\(958\) −892.914 515.524i −0.932061 0.538126i
\(959\) 208.975 361.956i 0.217910 0.377430i
\(960\) 302.605 + 365.149i 0.315213 + 0.380364i
\(961\) −461.410 799.186i −0.480136 0.831620i
\(962\) 52.9584 0.0550503
\(963\) −1015.96 873.926i −1.05500 0.907504i
\(964\) 120.241i 0.124731i
\(965\) 509.900 294.391i 0.528394 0.305068i
\(966\) 50.9904 8.66928i 0.0527851 0.00897441i
\(967\) −65.1526 + 112.848i −0.0673760 + 0.116699i −0.897745 0.440515i \(-0.854796\pi\)
0.830369 + 0.557213i \(0.188129\pi\)
\(968\) 710.785 + 410.372i 0.734282 + 0.423938i
\(969\) −373.297 + 1032.37i −0.385240 + 1.06539i
\(970\) 436.377 + 755.827i 0.449873 + 0.779203i
\(971\) 643.927i 0.663158i −0.943427 0.331579i \(-0.892419\pi\)
0.943427 0.331579i \(-0.107581\pi\)
\(972\) −141.861 + 158.915i −0.145948 + 0.163493i
\(973\) 367.859 0.378067
\(974\) −674.398 1168.09i −0.692400 1.19927i
\(975\) 40.1625 108.277i 0.0411923 0.111054i
\(976\) −258.284 149.120i −0.264635 0.152787i
\(977\) −417.532 241.062i −0.427362 0.246737i 0.270860 0.962619i \(-0.412692\pi\)
−0.698222 + 0.715881i \(0.746025\pi\)
\(978\) 526.694 89.5475i 0.538542 0.0915618i
\(979\) 184.621 106.591i 0.188581 0.108877i
\(980\) −91.8429 −0.0937173
\(981\) 1194.89 1389.09i 1.21803 1.41600i
\(982\) −401.591 −0.408952
\(983\) −806.156 1396.30i −0.820097 1.42045i −0.905609 0.424113i \(-0.860586\pi\)
0.0855119 0.996337i \(-0.472747\pi\)
\(984\) 296.653 245.841i 0.301477 0.249839i
\(985\) 60.2301 104.322i 0.0611474 0.105910i
\(986\) −1121.83 635.443i −1.13776 0.644465i
\(987\) −266.689 321.811i −0.270202 0.326050i
\(988\) 29.3364 + 50.8122i 0.0296928 + 0.0514294i
\(989\) −79.9190 −0.0808079
\(990\) 98.2600 + 18.5698i 0.0992525 + 0.0187574i
\(991\) 1219.44i 1.23051i −0.788327 0.615257i \(-0.789052\pi\)
0.788327 0.615257i \(-0.210948\pi\)
\(992\) 42.6038 + 73.7919i 0.0429473 + 0.0743870i
\(993\) 878.116 149.295i 0.884306 0.150348i
\(994\) −491.950 + 852.082i −0.494919 + 0.857225i
\(995\) 664.781 + 383.811i 0.668122 + 0.385740i
\(996\) 208.618 + 77.3811i 0.209456 + 0.0776918i
\(997\) 563.615 325.403i 0.565311 0.326383i −0.189963 0.981791i \(-0.560837\pi\)
0.755274 + 0.655409i \(0.227504\pi\)
\(998\) 1614.75 1.61798
\(999\) −100.789 182.225i −0.100890 0.182408i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.3.i.a.50.27 68
3.2 odd 2 459.3.i.a.152.7 68
9.2 odd 6 inner 153.3.i.a.101.28 yes 68
9.7 even 3 459.3.i.a.305.8 68
17.16 even 2 inner 153.3.i.a.50.28 yes 68
51.50 odd 2 459.3.i.a.152.8 68
153.16 even 6 459.3.i.a.305.7 68
153.101 odd 6 inner 153.3.i.a.101.27 yes 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.3.i.a.50.27 68 1.1 even 1 trivial
153.3.i.a.50.28 yes 68 17.16 even 2 inner
153.3.i.a.101.27 yes 68 153.101 odd 6 inner
153.3.i.a.101.28 yes 68 9.2 odd 6 inner
459.3.i.a.152.7 68 3.2 odd 2
459.3.i.a.152.8 68 51.50 odd 2
459.3.i.a.305.7 68 153.16 even 6
459.3.i.a.305.8 68 9.7 even 3