Properties

Label 153.3.i.a.101.28
Level $153$
Weight $3$
Character 153.101
Analytic conductor $4.169$
Analytic rank $0$
Dimension $68$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [153,3,Mod(50,153)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(153, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("153.50"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 153.i (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.16894804471\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(34\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.28
Character \(\chi\) \(=\) 153.101
Dual form 153.3.i.a.50.28

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.91245 + 1.10416i) q^{2} +(1.04331 + 2.81274i) q^{3} +(0.438319 + 0.759190i) q^{4} +(1.77620 + 3.07647i) q^{5} +(-1.11042 + 6.53121i) q^{6} +(3.82505 + 2.20839i) q^{7} -6.89736i q^{8} +(-6.82301 + 5.86911i) q^{9} +7.84480i q^{10} +(-0.708179 + 1.22660i) q^{11} +(-1.67810 + 2.02495i) q^{12} +(-1.55468 - 2.69278i) q^{13} +(4.87682 + 8.44690i) q^{14} +(-6.80018 + 8.20569i) q^{15} +(9.36903 - 16.2276i) q^{16} +(-16.9994 + 0.139826i) q^{17} +(-19.5291 + 3.69074i) q^{18} +21.5252 q^{19} +(-1.55708 + 2.69694i) q^{20} +(-2.22093 + 13.0629i) q^{21} +(-2.70872 + 1.56388i) q^{22} +(0.883809 + 1.53080i) q^{23} +(19.4005 - 7.19607i) q^{24} +(6.19024 - 10.7218i) q^{25} -6.86643i q^{26} +(-23.6268 - 13.0681i) q^{27} +3.87192i q^{28} +(17.1717 - 29.7423i) q^{29} +(-22.0654 + 8.18455i) q^{30} +(-5.35110 + 3.08946i) q^{31} +(11.9425 - 6.89502i) q^{32} +(-4.18896 - 0.712198i) q^{33} +(-32.6650 - 18.5026i) q^{34} +15.6902i q^{35} +(-7.44643 - 2.60742i) q^{36} -7.71265i q^{37} +(41.1659 + 23.7671i) q^{38} +(5.95209 - 7.18231i) q^{39} +(21.2195 - 12.2511i) q^{40} +(9.30986 + 16.1252i) q^{41} +(-18.6709 + 22.5299i) q^{42} +(22.6064 - 39.1554i) q^{43} -1.24163 q^{44} +(-30.1752 - 10.5661i) q^{45} +3.90345i q^{46} +(27.3169 + 15.7714i) q^{47} +(55.4189 + 9.42221i) q^{48} +(-14.7460 - 25.5408i) q^{49} +(23.6771 - 13.6700i) q^{50} +(-18.1289 - 47.6691i) q^{51} +(1.36289 - 2.36059i) q^{52} +55.4075i q^{53} +(-30.7560 - 51.0797i) q^{54} -5.03146 q^{55} +(15.2321 - 26.3827i) q^{56} +(22.4574 + 60.5447i) q^{57} +(65.6802 - 37.9205i) q^{58} +(-49.6000 + 28.6366i) q^{59} +(-9.21032 - 1.56592i) q^{60} +(13.7839 + 7.95816i) q^{61} -13.6450 q^{62} +(-39.0597 + 7.38175i) q^{63} -44.4995 q^{64} +(5.52284 - 9.56584i) q^{65} +(-7.22481 - 5.98731i) q^{66} +(-52.9793 - 91.7628i) q^{67} +(-7.55732 - 12.8445i) q^{68} +(-3.38366 + 4.08302i) q^{69} +(-17.3244 + 30.0067i) q^{70} -100.875 q^{71} +(40.4814 + 47.0608i) q^{72} +44.3391i q^{73} +(8.51597 - 14.7501i) q^{74} +(36.6160 + 6.22537i) q^{75} +(9.43489 + 16.3417i) q^{76} +(-5.41764 + 3.12787i) q^{77} +(19.3135 - 7.16381i) q^{78} +(-68.3530 - 39.4636i) q^{79} +66.5650 q^{80} +(12.1070 - 80.0901i) q^{81} +41.1181i q^{82} +(73.2711 + 42.3031i) q^{83} +(-10.8907 + 4.03961i) q^{84} +(-30.6245 - 52.0498i) q^{85} +(86.4674 - 49.9220i) q^{86} +(101.573 + 17.2692i) q^{87} +(8.46031 + 4.88456i) q^{88} +150.514i q^{89} +(-46.0420 - 53.5252i) q^{90} -13.7334i q^{91} +(-0.774780 + 1.34196i) q^{92} +(-14.2727 - 11.8280i) q^{93} +(34.8282 + 60.3242i) q^{94} +(38.2330 + 66.2215i) q^{95} +(31.8536 + 26.3976i) q^{96} +(-96.3476 - 55.6263i) q^{97} -65.1275i q^{98} +(-2.36715 - 12.5255i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q - 6 q^{2} + 62 q^{4} - 8 q^{9} - 2 q^{13} - 106 q^{16} - 2 q^{18} - 32 q^{19} - 28 q^{21} - 132 q^{25} + 180 q^{30} - 98 q^{33} - 27 q^{34} + 158 q^{36} - 102 q^{38} + 110 q^{42} + 58 q^{43} - 312 q^{47}+ \cdots - 18 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/153\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.91245 + 1.10416i 0.956227 + 0.552078i 0.895010 0.446047i \(-0.147168\pi\)
0.0612170 + 0.998124i \(0.480502\pi\)
\(3\) 1.04331 + 2.81274i 0.347770 + 0.937580i
\(4\) 0.438319 + 0.759190i 0.109580 + 0.189798i
\(5\) 1.77620 + 3.07647i 0.355240 + 0.615293i 0.987159 0.159741i \(-0.0510659\pi\)
−0.631919 + 0.775034i \(0.717733\pi\)
\(6\) −1.11042 + 6.53121i −0.185070 + 1.08853i
\(7\) 3.82505 + 2.20839i 0.546436 + 0.315485i 0.747683 0.664056i \(-0.231166\pi\)
−0.201248 + 0.979540i \(0.564500\pi\)
\(8\) 6.89736i 0.862169i
\(9\) −6.82301 + 5.86911i −0.758113 + 0.652124i
\(10\) 7.84480i 0.784480i
\(11\) −0.708179 + 1.22660i −0.0643799 + 0.111509i −0.896419 0.443208i \(-0.853840\pi\)
0.832039 + 0.554717i \(0.187174\pi\)
\(12\) −1.67810 + 2.02495i −0.139842 + 0.168746i
\(13\) −1.55468 2.69278i −0.119591 0.207137i 0.800015 0.599980i \(-0.204825\pi\)
−0.919606 + 0.392843i \(0.871492\pi\)
\(14\) 4.87682 + 8.44690i 0.348344 + 0.603350i
\(15\) −6.80018 + 8.20569i −0.453345 + 0.547046i
\(16\) 9.36903 16.2276i 0.585564 1.01423i
\(17\) −16.9994 + 0.139826i −0.999966 + 0.00822508i
\(18\) −19.5291 + 3.69074i −1.08495 + 0.205041i
\(19\) 21.5252 1.13290 0.566452 0.824095i \(-0.308316\pi\)
0.566452 + 0.824095i \(0.308316\pi\)
\(20\) −1.55708 + 2.69694i −0.0778541 + 0.134847i
\(21\) −2.22093 + 13.0629i −0.105758 + 0.622043i
\(22\) −2.70872 + 1.56388i −0.123124 + 0.0710854i
\(23\) 0.883809 + 1.53080i 0.0384265 + 0.0665566i 0.884599 0.466352i \(-0.154432\pi\)
−0.846173 + 0.532909i \(0.821099\pi\)
\(24\) 19.4005 7.19607i 0.808353 0.299836i
\(25\) 6.19024 10.7218i 0.247610 0.428872i
\(26\) 6.86643i 0.264093i
\(27\) −23.6268 13.0681i −0.875067 0.484002i
\(28\) 3.87192i 0.138283i
\(29\) 17.1717 29.7423i 0.592128 1.02560i −0.401817 0.915720i \(-0.631621\pi\)
0.993945 0.109876i \(-0.0350454\pi\)
\(30\) −22.0654 + 8.18455i −0.735512 + 0.272818i
\(31\) −5.35110 + 3.08946i −0.172616 + 0.0996600i −0.583819 0.811884i \(-0.698442\pi\)
0.411203 + 0.911544i \(0.365109\pi\)
\(32\) 11.9425 6.89502i 0.373204 0.215469i
\(33\) −4.18896 0.712198i −0.126938 0.0215818i
\(34\) −32.6650 18.5026i −0.960735 0.544194i
\(35\) 15.6902i 0.448291i
\(36\) −7.44643 2.60742i −0.206845 0.0724284i
\(37\) 7.71265i 0.208450i −0.994554 0.104225i \(-0.966764\pi\)
0.994554 0.104225i \(-0.0332362\pi\)
\(38\) 41.1659 + 23.7671i 1.08331 + 0.625451i
\(39\) 5.95209 7.18231i 0.152618 0.184162i
\(40\) 21.2195 12.2511i 0.530487 0.306277i
\(41\) 9.30986 + 16.1252i 0.227070 + 0.393296i 0.956938 0.290291i \(-0.0937521\pi\)
−0.729869 + 0.683587i \(0.760419\pi\)
\(42\) −18.6709 + 22.5299i −0.444545 + 0.536427i
\(43\) 22.6064 39.1554i 0.525730 0.910591i −0.473821 0.880621i \(-0.657125\pi\)
0.999551 0.0299700i \(-0.00954118\pi\)
\(44\) −1.24163 −0.0282189
\(45\) −30.1752 10.5661i −0.670559 0.234801i
\(46\) 3.90345i 0.0848576i
\(47\) 27.3169 + 15.7714i 0.581211 + 0.335562i 0.761614 0.648030i \(-0.224407\pi\)
−0.180404 + 0.983593i \(0.557740\pi\)
\(48\) 55.4189 + 9.42221i 1.15456 + 0.196296i
\(49\) −14.7460 25.5408i −0.300939 0.521241i
\(50\) 23.6771 13.6700i 0.473542 0.273399i
\(51\) −18.1289 47.6691i −0.355470 0.934688i
\(52\) 1.36289 2.36059i 0.0262094 0.0453961i
\(53\) 55.4075i 1.04542i 0.852509 + 0.522712i \(0.175080\pi\)
−0.852509 + 0.522712i \(0.824920\pi\)
\(54\) −30.7560 51.0797i −0.569555 0.945921i
\(55\) −5.03146 −0.0914811
\(56\) 15.2321 26.3827i 0.272001 0.471120i
\(57\) 22.4574 + 60.5447i 0.393990 + 1.06219i
\(58\) 65.6802 37.9205i 1.13242 0.653802i
\(59\) −49.6000 + 28.6366i −0.840677 + 0.485365i −0.857494 0.514493i \(-0.827980\pi\)
0.0168170 + 0.999859i \(0.494647\pi\)
\(60\) −9.21032 1.56592i −0.153505 0.0260987i
\(61\) 13.7839 + 7.95816i 0.225966 + 0.130462i 0.608710 0.793393i \(-0.291687\pi\)
−0.382744 + 0.923855i \(0.625021\pi\)
\(62\) −13.6450 −0.220080
\(63\) −39.0597 + 7.38175i −0.619995 + 0.117171i
\(64\) −44.4995 −0.695305
\(65\) 5.52284 9.56584i 0.0849667 0.147167i
\(66\) −7.22481 5.98731i −0.109467 0.0907168i
\(67\) −52.9793 91.7628i −0.790736 1.36959i −0.925512 0.378719i \(-0.876365\pi\)
0.134776 0.990876i \(-0.456969\pi\)
\(68\) −7.55732 12.8445i −0.111137 0.188890i
\(69\) −3.38366 + 4.08302i −0.0490386 + 0.0591743i
\(70\) −17.3244 + 30.0067i −0.247491 + 0.428668i
\(71\) −100.875 −1.42078 −0.710388 0.703810i \(-0.751481\pi\)
−0.710388 + 0.703810i \(0.751481\pi\)
\(72\) 40.4814 + 47.0608i 0.562241 + 0.653622i
\(73\) 44.3391i 0.607385i 0.952770 + 0.303692i \(0.0982195\pi\)
−0.952770 + 0.303692i \(0.901780\pi\)
\(74\) 8.51597 14.7501i 0.115081 0.199326i
\(75\) 36.6160 + 6.22537i 0.488213 + 0.0830050i
\(76\) 9.43489 + 16.3417i 0.124143 + 0.215022i
\(77\) −5.41764 + 3.12787i −0.0703589 + 0.0406217i
\(78\) 19.3135 7.16381i 0.247609 0.0918437i
\(79\) −68.3530 39.4636i −0.865228 0.499540i 0.000531310 1.00000i \(-0.499831\pi\)
−0.865760 + 0.500460i \(0.833164\pi\)
\(80\) 66.5650 0.832063
\(81\) 12.1070 80.0901i 0.149469 0.988766i
\(82\) 41.1181i 0.501441i
\(83\) 73.2711 + 42.3031i 0.882784 + 0.509675i 0.871575 0.490262i \(-0.163099\pi\)
0.0112086 + 0.999937i \(0.496432\pi\)
\(84\) −10.8907 + 4.03961i −0.129651 + 0.0480906i
\(85\) −30.6245 52.0498i −0.360288 0.612350i
\(86\) 86.4674 49.9220i 1.00543 0.580488i
\(87\) 101.573 + 17.2692i 1.16750 + 0.198496i
\(88\) 8.46031 + 4.88456i 0.0961398 + 0.0555064i
\(89\) 150.514i 1.69117i 0.533840 + 0.845585i \(0.320748\pi\)
−0.533840 + 0.845585i \(0.679252\pi\)
\(90\) −46.0420 53.5252i −0.511578 0.594724i
\(91\) 13.7334i 0.150916i
\(92\) −0.774780 + 1.34196i −0.00842152 + 0.0145865i
\(93\) −14.2727 11.8280i −0.153470 0.127183i
\(94\) 34.8282 + 60.3242i 0.370513 + 0.641747i
\(95\) 38.2330 + 66.2215i 0.402452 + 0.697068i
\(96\) 31.8536 + 26.3976i 0.331809 + 0.274975i
\(97\) −96.3476 55.6263i −0.993274 0.573467i −0.0870227 0.996206i \(-0.527735\pi\)
−0.906251 + 0.422739i \(0.861069\pi\)
\(98\) 65.1275i 0.664566i
\(99\) −2.36715 12.5255i −0.0239106 0.126520i
\(100\) 10.8532 0.108532
\(101\) −81.4139 47.0043i −0.806078 0.465389i 0.0395141 0.999219i \(-0.487419\pi\)
−0.845592 + 0.533830i \(0.820752\pi\)
\(102\) 17.9633 111.182i 0.176111 1.09002i
\(103\) 17.7283 + 30.7063i 0.172120 + 0.298120i 0.939161 0.343478i \(-0.111605\pi\)
−0.767041 + 0.641598i \(0.778272\pi\)
\(104\) −18.5731 + 10.7232i −0.178587 + 0.103107i
\(105\) −44.1324 + 16.3697i −0.420308 + 0.155902i
\(106\) −61.1785 + 105.964i −0.577156 + 0.999663i
\(107\) −148.903 −1.39161 −0.695807 0.718229i \(-0.744953\pi\)
−0.695807 + 0.718229i \(0.744953\pi\)
\(108\) −0.434921 23.6652i −0.00402704 0.219122i
\(109\) 203.589i 1.86779i 0.357544 + 0.933896i \(0.383614\pi\)
−0.357544 + 0.933896i \(0.616386\pi\)
\(110\) −9.62244 5.55552i −0.0874767 0.0505047i
\(111\) 21.6937 8.04668i 0.195439 0.0724926i
\(112\) 71.6740 41.3810i 0.639946 0.369473i
\(113\) 62.6190 + 108.459i 0.554150 + 0.959816i 0.997969 + 0.0636997i \(0.0202900\pi\)
−0.443819 + 0.896116i \(0.646377\pi\)
\(114\) −23.9020 + 140.585i −0.209667 + 1.23321i
\(115\) −3.13964 + 5.43802i −0.0273012 + 0.0472871i
\(116\) 30.1067 0.259541
\(117\) 26.4118 + 9.24831i 0.225742 + 0.0790454i
\(118\) −126.477 −1.07184
\(119\) −65.3324 37.0066i −0.549012 0.310980i
\(120\) 56.5976 + 46.9032i 0.471646 + 0.390860i
\(121\) 59.4970 + 103.052i 0.491710 + 0.851668i
\(122\) 17.5741 + 30.4392i 0.144050 + 0.249502i
\(123\) −35.6428 + 43.0097i −0.289779 + 0.349673i
\(124\) −4.69098 2.70834i −0.0378305 0.0218414i
\(125\) 132.790 1.06232
\(126\) −82.8504 29.0107i −0.657543 0.230244i
\(127\) 76.3604 0.601263 0.300631 0.953740i \(-0.402803\pi\)
0.300631 + 0.953740i \(0.402803\pi\)
\(128\) −132.873 76.7145i −1.03807 0.599332i
\(129\) 133.720 + 22.7347i 1.03659 + 0.176238i
\(130\) 21.1243 12.1961i 0.162495 0.0938165i
\(131\) 7.14440 + 12.3745i 0.0545374 + 0.0944615i 0.892005 0.452025i \(-0.149298\pi\)
−0.837468 + 0.546487i \(0.815965\pi\)
\(132\) −1.29541 3.49239i −0.00981368 0.0264575i
\(133\) 82.3349 + 47.5361i 0.619059 + 0.357414i
\(134\) 233.990i 1.74619i
\(135\) −1.76243 95.8985i −0.0130550 0.710359i
\(136\) 0.964432 + 117.251i 0.00709141 + 0.862140i
\(137\) −81.9500 47.3139i −0.598175 0.345357i 0.170148 0.985419i \(-0.445575\pi\)
−0.768323 + 0.640062i \(0.778909\pi\)
\(138\) −10.9794 + 4.07250i −0.0795608 + 0.0295109i
\(139\) 72.1283 41.6433i 0.518909 0.299592i −0.217579 0.976043i \(-0.569816\pi\)
0.736488 + 0.676451i \(0.236483\pi\)
\(140\) −11.9118 + 6.87730i −0.0850845 + 0.0491236i
\(141\) −15.8609 + 93.2898i −0.112489 + 0.661630i
\(142\) −192.919 111.382i −1.35858 0.784379i
\(143\) 4.40396 0.0307969
\(144\) 31.3168 + 165.709i 0.217478 + 1.15076i
\(145\) 122.002 0.841390
\(146\) −48.9573 + 84.7964i −0.335324 + 0.580798i
\(147\) 56.4551 68.1236i 0.384048 0.463426i
\(148\) 5.85537 3.38060i 0.0395633 0.0228419i
\(149\) −175.664 + 101.420i −1.17895 + 0.680668i −0.955772 0.294109i \(-0.904977\pi\)
−0.223180 + 0.974777i \(0.571644\pi\)
\(150\) 63.1526 + 52.3355i 0.421017 + 0.348903i
\(151\) 12.4662 21.5922i 0.0825579 0.142994i −0.821790 0.569790i \(-0.807024\pi\)
0.904348 + 0.426796i \(0.140358\pi\)
\(152\) 148.467i 0.976755i
\(153\) 115.167 100.726i 0.752723 0.658337i
\(154\) −13.8146 −0.0897054
\(155\) −19.0092 10.9750i −0.122640 0.0708064i
\(156\) 8.06165 + 1.37063i 0.0516773 + 0.00878606i
\(157\) 127.288 + 220.468i 0.810748 + 1.40426i 0.912341 + 0.409431i \(0.134273\pi\)
−0.101592 + 0.994826i \(0.532394\pi\)
\(158\) −87.1480 150.945i −0.551570 0.955347i
\(159\) −155.847 + 57.8072i −0.980169 + 0.363567i
\(160\) 42.4246 + 24.4938i 0.265154 + 0.153086i
\(161\) 7.80719i 0.0484919i
\(162\) 111.586 139.801i 0.688803 0.862966i
\(163\) 80.6427i 0.494740i −0.968921 0.247370i \(-0.920434\pi\)
0.968921 0.247370i \(-0.0795664\pi\)
\(164\) −8.16137 + 14.1359i −0.0497645 + 0.0861946i
\(165\) −5.24937 14.1522i −0.0318144 0.0857709i
\(166\) 93.4183 + 161.805i 0.562761 + 0.974731i
\(167\) −130.070 225.288i −0.778862 1.34903i −0.932598 0.360917i \(-0.882464\pi\)
0.153736 0.988112i \(-0.450869\pi\)
\(168\) 90.0995 + 15.3185i 0.536307 + 0.0911817i
\(169\) 79.6659 137.985i 0.471396 0.816482i
\(170\) −1.09691 133.357i −0.00645241 0.784453i
\(171\) −146.867 + 126.334i −0.858869 + 0.738794i
\(172\) 39.6352 0.230437
\(173\) 65.8536 114.062i 0.380657 0.659317i −0.610500 0.792017i \(-0.709031\pi\)
0.991156 + 0.132700i \(0.0423646\pi\)
\(174\) 175.185 + 145.179i 1.00681 + 0.834360i
\(175\) 47.3559 27.3410i 0.270605 0.156234i
\(176\) 13.2699 + 22.9841i 0.0753971 + 0.130592i
\(177\) −132.295 109.635i −0.747431 0.619407i
\(178\) −166.191 + 287.851i −0.933658 + 1.61714i
\(179\) 115.487i 0.645179i −0.946539 0.322589i \(-0.895447\pi\)
0.946539 0.322589i \(-0.104553\pi\)
\(180\) −5.20468 27.5400i −0.0289149 0.153000i
\(181\) 199.995i 1.10495i −0.833530 0.552474i \(-0.813684\pi\)
0.833530 0.552474i \(-0.186316\pi\)
\(182\) 15.1638 26.2644i 0.0833175 0.144310i
\(183\) −8.00333 + 47.0734i −0.0437340 + 0.257232i
\(184\) 10.5585 6.09595i 0.0573831 0.0331301i
\(185\) 23.7277 13.6992i 0.128258 0.0740498i
\(186\) −14.2359 38.3798i −0.0765373 0.206343i
\(187\) 11.8671 20.9505i 0.0634605 0.112035i
\(188\) 27.6516i 0.147083i
\(189\) −61.5142 102.163i −0.325472 0.540546i
\(190\) 168.861i 0.888740i
\(191\) 53.6891 + 30.9974i 0.281095 + 0.162290i 0.633919 0.773399i \(-0.281445\pi\)
−0.352824 + 0.935690i \(0.614779\pi\)
\(192\) −46.4268 125.166i −0.241806 0.651904i
\(193\) 143.537 82.8710i 0.743714 0.429384i −0.0797040 0.996819i \(-0.525398\pi\)
0.823418 + 0.567435i \(0.192064\pi\)
\(194\) −122.840 212.765i −0.633197 1.09673i
\(195\) 32.6682 + 5.55419i 0.167529 + 0.0284830i
\(196\) 12.9269 22.3900i 0.0659535 0.114235i
\(197\) 33.9096 0.172130 0.0860649 0.996290i \(-0.472571\pi\)
0.0860649 + 0.996290i \(0.472571\pi\)
\(198\) 9.30303 26.5681i 0.0469850 0.134182i
\(199\) 216.086i 1.08586i −0.839778 0.542929i \(-0.817315\pi\)
0.839778 0.542929i \(-0.182685\pi\)
\(200\) −73.9521 42.6963i −0.369761 0.213481i
\(201\) 202.831 244.754i 1.00911 1.21768i
\(202\) −103.800 179.787i −0.513862 0.890035i
\(203\) 131.365 75.8438i 0.647120 0.373615i
\(204\) 28.2436 34.6576i 0.138449 0.169890i
\(205\) −33.0723 + 57.2829i −0.161328 + 0.279429i
\(206\) 78.2993i 0.380094i
\(207\) −15.0147 5.25751i −0.0725348 0.0253986i
\(208\) −58.2633 −0.280112
\(209\) −15.2437 + 26.4028i −0.0729362 + 0.126329i
\(210\) −102.476 17.4227i −0.487980 0.0829654i
\(211\) −68.8378 + 39.7435i −0.326245 + 0.188358i −0.654173 0.756345i \(-0.726983\pi\)
0.327927 + 0.944703i \(0.393650\pi\)
\(212\) −42.0648 + 24.2862i −0.198419 + 0.114557i
\(213\) −105.244 283.735i −0.494103 1.33209i
\(214\) −284.769 164.412i −1.33070 0.768279i
\(215\) 160.614 0.747041
\(216\) −90.1351 + 162.962i −0.417292 + 0.754456i
\(217\) −27.2910 −0.125765
\(218\) −224.794 + 389.355i −1.03117 + 1.78603i
\(219\) −124.714 + 46.2594i −0.569472 + 0.211230i
\(220\) −2.20538 3.81984i −0.0100245 0.0173629i
\(221\) 26.8052 + 45.5584i 0.121290 + 0.206147i
\(222\) 50.3730 + 8.56431i 0.226905 + 0.0385780i
\(223\) −5.57705 + 9.65974i −0.0250092 + 0.0433172i −0.878259 0.478185i \(-0.841295\pi\)
0.853250 + 0.521502i \(0.174628\pi\)
\(224\) 60.9076 0.271909
\(225\) 20.6914 + 109.486i 0.0919619 + 0.486606i
\(226\) 276.564i 1.22374i
\(227\) −9.08769 + 15.7403i −0.0400339 + 0.0693407i −0.885348 0.464929i \(-0.846080\pi\)
0.845314 + 0.534270i \(0.179413\pi\)
\(228\) −36.1215 + 43.5873i −0.158427 + 0.191173i
\(229\) −29.0162 50.2575i −0.126708 0.219465i 0.795691 0.605703i \(-0.207108\pi\)
−0.922399 + 0.386237i \(0.873775\pi\)
\(230\) −12.0088 + 6.93330i −0.0522123 + 0.0301448i
\(231\) −14.4502 11.9751i −0.0625548 0.0518401i
\(232\) −205.143 118.439i −0.884238 0.510515i
\(233\) 393.043 1.68688 0.843439 0.537224i \(-0.180527\pi\)
0.843439 + 0.537224i \(0.180527\pi\)
\(234\) 40.2999 + 46.8497i 0.172222 + 0.200213i
\(235\) 112.053i 0.476820i
\(236\) −43.4812 25.1039i −0.184242 0.106372i
\(237\) 39.6876 233.432i 0.167458 0.984946i
\(238\) −84.0842 142.910i −0.353295 0.600464i
\(239\) −134.761 + 77.8044i −0.563854 + 0.325541i −0.754691 0.656080i \(-0.772213\pi\)
0.190837 + 0.981622i \(0.438880\pi\)
\(240\) 69.4479 + 187.230i 0.289366 + 0.780125i
\(241\) 118.785 + 68.5806i 0.492884 + 0.284567i 0.725770 0.687937i \(-0.241484\pi\)
−0.232886 + 0.972504i \(0.574817\pi\)
\(242\) 262.776i 1.08585i
\(243\) 237.904 49.5048i 0.979028 0.203723i
\(244\) 13.9528i 0.0571838i
\(245\) 52.3836 90.7311i 0.213811 0.370331i
\(246\) −115.655 + 42.8989i −0.470141 + 0.174386i
\(247\) −33.4647 57.9626i −0.135485 0.234667i
\(248\) 21.3091 + 36.9085i 0.0859238 + 0.148824i
\(249\) −42.5432 + 250.228i −0.170856 + 1.00493i
\(250\) 253.955 + 146.621i 1.01582 + 0.586484i
\(251\) 234.999i 0.936250i 0.883662 + 0.468125i \(0.155070\pi\)
−0.883662 + 0.468125i \(0.844930\pi\)
\(252\) −22.7247 26.4182i −0.0901775 0.104834i
\(253\) −2.50358 −0.00989557
\(254\) 146.036 + 84.3137i 0.574944 + 0.331944i
\(255\) 114.452 140.443i 0.448830 0.550756i
\(256\) −80.4103 139.275i −0.314103 0.544042i
\(257\) 82.7205 47.7587i 0.321870 0.185832i −0.330356 0.943856i \(-0.607169\pi\)
0.652226 + 0.758025i \(0.273835\pi\)
\(258\) 230.630 + 191.126i 0.893913 + 0.740799i
\(259\) 17.0326 29.5013i 0.0657628 0.113905i
\(260\) 9.68305 0.0372425
\(261\) 57.3980 + 303.715i 0.219916 + 1.16366i
\(262\) 31.5541i 0.120436i
\(263\) 313.310 + 180.890i 1.19129 + 0.687793i 0.958600 0.284757i \(-0.0919130\pi\)
0.232693 + 0.972550i \(0.425246\pi\)
\(264\) −4.91229 + 28.8927i −0.0186071 + 0.109442i
\(265\) −170.459 + 98.4147i −0.643243 + 0.371376i
\(266\) 104.974 + 181.821i 0.394641 + 0.683537i
\(267\) −423.357 + 157.033i −1.58561 + 0.588138i
\(268\) 46.4436 80.4427i 0.173297 0.300159i
\(269\) −420.642 −1.56373 −0.781863 0.623450i \(-0.785730\pi\)
−0.781863 + 0.623450i \(0.785730\pi\)
\(270\) 102.516 185.347i 0.379690 0.686472i
\(271\) −100.068 −0.369253 −0.184627 0.982809i \(-0.559108\pi\)
−0.184627 + 0.982809i \(0.559108\pi\)
\(272\) −156.999 + 277.170i −0.577202 + 1.01901i
\(273\) 38.6284 14.3281i 0.141496 0.0524841i
\(274\) −104.484 180.971i −0.381328 0.660479i
\(275\) 8.76759 + 15.1859i 0.0318821 + 0.0552215i
\(276\) −4.58292 0.779178i −0.0166048 0.00282311i
\(277\) 473.610 + 273.439i 1.70978 + 0.987143i 0.934810 + 0.355147i \(0.115569\pi\)
0.774972 + 0.631996i \(0.217764\pi\)
\(278\) 183.923 0.661592
\(279\) 18.3783 52.4857i 0.0658719 0.188121i
\(280\) 108.221 0.386503
\(281\) 133.786 + 77.2417i 0.476109 + 0.274881i 0.718793 0.695224i \(-0.244695\pi\)
−0.242685 + 0.970105i \(0.578028\pi\)
\(282\) −133.340 + 160.899i −0.472836 + 0.570566i
\(283\) −276.014 + 159.357i −0.975314 + 0.563098i −0.900852 0.434126i \(-0.857057\pi\)
−0.0744622 + 0.997224i \(0.523724\pi\)
\(284\) −44.2154 76.5834i −0.155688 0.269660i
\(285\) −146.375 + 176.629i −0.513596 + 0.619751i
\(286\) 8.42237 + 4.86266i 0.0294489 + 0.0170023i
\(287\) 82.2393i 0.286548i
\(288\) −41.0163 + 117.137i −0.142418 + 0.406725i
\(289\) 288.961 4.75393i 0.999865 0.0164496i
\(290\) 233.322 + 134.709i 0.804559 + 0.464513i
\(291\) 55.9420 329.036i 0.192241 1.13071i
\(292\) −33.6618 + 19.4347i −0.115280 + 0.0665570i
\(293\) 87.7848 50.6826i 0.299607 0.172978i −0.342659 0.939460i \(-0.611328\pi\)
0.642266 + 0.766482i \(0.277994\pi\)
\(294\) 183.187 67.9481i 0.623084 0.231116i
\(295\) −176.199 101.728i −0.597284 0.344842i
\(296\) −53.1969 −0.179719
\(297\) 32.7613 19.7261i 0.110307 0.0664180i
\(298\) −447.932 −1.50313
\(299\) 2.74808 4.75981i 0.00919090 0.0159191i
\(300\) 11.3232 + 30.5272i 0.0377441 + 0.101757i
\(301\) 172.941 99.8476i 0.574555 0.331720i
\(302\) 47.6822 27.5293i 0.157888 0.0911567i
\(303\) 47.2711 278.036i 0.156010 0.917611i
\(304\) 201.670 349.303i 0.663388 1.14902i
\(305\) 56.5411i 0.185381i
\(306\) 331.468 65.4711i 1.08323 0.213958i
\(307\) −114.755 −0.373794 −0.186897 0.982380i \(-0.559843\pi\)
−0.186897 + 0.982380i \(0.559843\pi\)
\(308\) −4.74930 2.74201i −0.0154198 0.00890263i
\(309\) −67.8729 + 81.9013i −0.219653 + 0.265053i
\(310\) −24.2362 41.9783i −0.0781813 0.135414i
\(311\) 49.0382 + 84.9367i 0.157679 + 0.273108i 0.934031 0.357191i \(-0.116265\pi\)
−0.776352 + 0.630299i \(0.782932\pi\)
\(312\) −49.5390 41.0537i −0.158779 0.131582i
\(313\) 276.012 + 159.356i 0.881829 + 0.509124i 0.871261 0.490820i \(-0.163303\pi\)
0.0105678 + 0.999944i \(0.496636\pi\)
\(314\) 562.181i 1.79038i
\(315\) −92.0874 107.054i −0.292341 0.339855i
\(316\) 69.1906i 0.218958i
\(317\) −84.7398 + 146.774i −0.267318 + 0.463008i −0.968168 0.250300i \(-0.919471\pi\)
0.700850 + 0.713308i \(0.252804\pi\)
\(318\) −361.878 61.5258i −1.13798 0.193477i
\(319\) 24.3213 + 42.1257i 0.0762423 + 0.132055i
\(320\) −79.0400 136.901i −0.247000 0.427817i
\(321\) −155.351 418.824i −0.483961 1.30475i
\(322\) −8.62035 + 14.9309i −0.0267713 + 0.0463692i
\(323\) −365.916 + 3.00979i −1.13287 + 0.00931822i
\(324\) 66.1103 25.9134i 0.204044 0.0799798i
\(325\) −38.4953 −0.118447
\(326\) 89.0421 154.225i 0.273135 0.473084i
\(327\) −572.644 + 212.407i −1.75120 + 0.649561i
\(328\) 111.221 64.2134i 0.339088 0.195773i
\(329\) 69.6590 + 120.653i 0.211729 + 0.366726i
\(330\) 5.58705 32.8615i 0.0169305 0.0995804i
\(331\) −148.453 + 257.128i −0.448498 + 0.776821i −0.998289 0.0584812i \(-0.981374\pi\)
0.549790 + 0.835303i \(0.314708\pi\)
\(332\) 74.1689i 0.223400i
\(333\) 45.2664 + 52.6235i 0.135935 + 0.158029i
\(334\) 574.470i 1.71997i
\(335\) 188.204 325.978i 0.561802 0.973069i
\(336\) 191.172 + 158.427i 0.568965 + 0.471509i
\(337\) −454.800 + 262.579i −1.34955 + 0.779166i −0.988186 0.153257i \(-0.951024\pi\)
−0.361368 + 0.932423i \(0.617690\pi\)
\(338\) 304.715 175.927i 0.901523 0.520495i
\(339\) −239.737 + 289.287i −0.707188 + 0.853355i
\(340\) 26.0924 46.0642i 0.0767423 0.135483i
\(341\) 8.75156i 0.0256644i
\(342\) −420.368 + 79.4438i −1.22914 + 0.232292i
\(343\) 346.682i 1.01074i
\(344\) −270.069 155.924i −0.785084 0.453269i
\(345\) −18.5713 3.15746i −0.0538300 0.00915206i
\(346\) 251.884 145.425i 0.727988 0.420304i
\(347\) −209.954 363.652i −0.605056 1.04799i −0.992043 0.125902i \(-0.959818\pi\)
0.386987 0.922085i \(-0.373516\pi\)
\(348\) 31.4106 + 84.6824i 0.0902604 + 0.243340i
\(349\) 274.372 475.226i 0.786166 1.36168i −0.142135 0.989847i \(-0.545397\pi\)
0.928300 0.371831i \(-0.121270\pi\)
\(350\) 120.755 0.345013
\(351\) 1.54263 + 83.9385i 0.00439495 + 0.239141i
\(352\) 19.5316i 0.0554875i
\(353\) 400.248 + 231.083i 1.13385 + 0.654627i 0.944900 0.327360i \(-0.106159\pi\)
0.188947 + 0.981987i \(0.439492\pi\)
\(354\) −131.954 355.746i −0.372753 1.00493i
\(355\) −179.174 310.339i −0.504716 0.874194i
\(356\) −114.269 + 65.9732i −0.320980 + 0.185318i
\(357\) 35.9280 222.372i 0.100639 0.622892i
\(358\) 127.516 220.864i 0.356189 0.616937i
\(359\) 377.149i 1.05055i −0.850931 0.525277i \(-0.823962\pi\)
0.850931 0.525277i \(-0.176038\pi\)
\(360\) −72.8779 + 208.129i −0.202439 + 0.578135i
\(361\) 102.333 0.283472
\(362\) 220.826 382.482i 0.610017 1.05658i
\(363\) −227.784 + 274.864i −0.627504 + 0.757202i
\(364\) 10.4262 6.01959i 0.0286435 0.0165373i
\(365\) −136.408 + 78.7550i −0.373720 + 0.215767i
\(366\) −67.2824 + 81.1888i −0.183832 + 0.221827i
\(367\) −481.665 278.090i −1.31244 0.757737i −0.329940 0.944002i \(-0.607028\pi\)
−0.982500 + 0.186265i \(0.940362\pi\)
\(368\) 33.1217 0.0900047
\(369\) −158.162 55.3815i −0.428622 0.150085i
\(370\) 60.5042 0.163525
\(371\) −122.362 + 211.936i −0.329816 + 0.571257i
\(372\) 2.72371 16.0201i 0.00732180 0.0430649i
\(373\) 182.405 + 315.935i 0.489022 + 0.847010i 0.999920 0.0126306i \(-0.00402055\pi\)
−0.510899 + 0.859641i \(0.670687\pi\)
\(374\) 45.8280 26.9638i 0.122535 0.0720957i
\(375\) 138.541 + 373.505i 0.369443 + 0.996012i
\(376\) 108.781 188.414i 0.289311 0.501102i
\(377\) −106.786 −0.283252
\(378\) −4.83901 263.304i −0.0128016 0.696571i
\(379\) 555.368i 1.46535i 0.680579 + 0.732675i \(0.261728\pi\)
−0.680579 + 0.732675i \(0.738272\pi\)
\(380\) −33.5165 + 58.0522i −0.0882012 + 0.152769i
\(381\) 79.6675 + 214.782i 0.209101 + 0.563732i
\(382\) 68.4520 + 118.562i 0.179194 + 0.310373i
\(383\) 446.221 257.626i 1.16507 0.672652i 0.212554 0.977149i \(-0.431822\pi\)
0.952513 + 0.304498i \(0.0984886\pi\)
\(384\) 77.1499 453.775i 0.200911 1.18171i
\(385\) −19.2456 11.1114i −0.0499885 0.0288609i
\(386\) 366.010 0.948213
\(387\) 75.5639 + 399.838i 0.195256 + 1.03317i
\(388\) 97.5282i 0.251361i
\(389\) −560.338 323.511i −1.44046 0.831649i −0.442578 0.896730i \(-0.645936\pi\)
−0.997880 + 0.0650808i \(0.979269\pi\)
\(390\) 56.3438 + 46.6929i 0.144471 + 0.119725i
\(391\) −15.2383 25.8992i −0.0389726 0.0662383i
\(392\) −176.164 + 101.708i −0.449398 + 0.259460i
\(393\) −27.3523 + 33.0057i −0.0695988 + 0.0839840i
\(394\) 64.8505 + 37.4414i 0.164595 + 0.0950291i
\(395\) 280.381i 0.709825i
\(396\) 8.47167 7.28728i 0.0213931 0.0184022i
\(397\) 687.340i 1.73134i −0.500619 0.865668i \(-0.666894\pi\)
0.500619 0.865668i \(-0.333106\pi\)
\(398\) 238.592 413.254i 0.599479 1.03833i
\(399\) −47.8059 + 281.181i −0.119814 + 0.704715i
\(400\) −115.993 200.906i −0.289983 0.502265i
\(401\) 120.496 + 208.705i 0.300489 + 0.520462i 0.976247 0.216662i \(-0.0695168\pi\)
−0.675758 + 0.737124i \(0.736183\pi\)
\(402\) 658.152 244.123i 1.63719 0.607272i
\(403\) 16.6385 + 9.60624i 0.0412866 + 0.0238368i
\(404\) 82.4115i 0.203989i
\(405\) 267.899 105.009i 0.661479 0.259282i
\(406\) 334.973 0.825058
\(407\) 9.46035 + 5.46194i 0.0232441 + 0.0134200i
\(408\) −328.791 + 125.042i −0.805859 + 0.306475i
\(409\) 288.068 + 498.948i 0.704322 + 1.21992i 0.966936 + 0.255020i \(0.0820820\pi\)
−0.262614 + 0.964901i \(0.584585\pi\)
\(410\) −126.499 + 73.0340i −0.308533 + 0.178132i
\(411\) 47.5824 279.867i 0.115772 0.680942i
\(412\) −15.5413 + 26.9183i −0.0377216 + 0.0653357i
\(413\) −252.963 −0.612501
\(414\) −22.9098 26.6333i −0.0553377 0.0643316i
\(415\) 300.555i 0.724228i
\(416\) −37.1336 21.4391i −0.0892634 0.0515362i
\(417\) 192.384 + 159.431i 0.461352 + 0.382329i
\(418\) −58.3056 + 33.6628i −0.139487 + 0.0805329i
\(419\) 398.013 + 689.378i 0.949911 + 1.64529i 0.745607 + 0.666386i \(0.232160\pi\)
0.204304 + 0.978908i \(0.434507\pi\)
\(420\) −31.7718 26.3297i −0.0756471 0.0626898i
\(421\) −52.6204 + 91.1413i −0.124989 + 0.216488i −0.921729 0.387835i \(-0.873223\pi\)
0.796740 + 0.604323i \(0.206556\pi\)
\(422\) −175.532 −0.415953
\(423\) −278.948 + 52.7174i −0.659451 + 0.124627i
\(424\) 382.165 0.901333
\(425\) −103.731 + 183.130i −0.244074 + 0.430894i
\(426\) 112.014 658.836i 0.262944 1.54656i
\(427\) 35.1495 + 60.8807i 0.0823173 + 0.142578i
\(428\) −65.2668 113.045i −0.152493 0.264125i
\(429\) 4.59469 + 12.3872i 0.0107102 + 0.0288746i
\(430\) 307.166 + 177.343i 0.714340 + 0.412425i
\(431\) 251.529 0.583594 0.291797 0.956480i \(-0.405747\pi\)
0.291797 + 0.956480i \(0.405747\pi\)
\(432\) −433.424 + 260.972i −1.00330 + 0.604102i
\(433\) 247.092 0.570651 0.285325 0.958431i \(-0.407898\pi\)
0.285325 + 0.958431i \(0.407898\pi\)
\(434\) −52.1927 30.1335i −0.120260 0.0694320i
\(435\) 127.285 + 343.159i 0.292610 + 0.788870i
\(436\) −154.563 + 89.2370i −0.354502 + 0.204672i
\(437\) 19.0241 + 32.9508i 0.0435335 + 0.0754023i
\(438\) −289.588 49.2351i −0.661160 0.112409i
\(439\) 536.953 + 310.010i 1.22313 + 0.706173i 0.965583 0.260094i \(-0.0837535\pi\)
0.257544 + 0.966267i \(0.417087\pi\)
\(440\) 34.7038i 0.0788722i
\(441\) 250.514 + 87.7194i 0.568059 + 0.198910i
\(442\) 0.960108 + 116.725i 0.00217219 + 0.264085i
\(443\) 321.142 + 185.411i 0.724925 + 0.418536i 0.816563 0.577257i \(-0.195877\pi\)
−0.0916378 + 0.995792i \(0.529210\pi\)
\(444\) 15.6177 + 12.9426i 0.0351750 + 0.0291501i
\(445\) −463.052 + 267.343i −1.04057 + 0.600771i
\(446\) −21.3317 + 12.3159i −0.0478289 + 0.0276140i
\(447\) −468.539 388.285i −1.04818 0.868646i
\(448\) −170.213 98.2725i −0.379940 0.219358i
\(449\) −454.217 −1.01162 −0.505810 0.862645i \(-0.668806\pi\)
−0.505810 + 0.862645i \(0.668806\pi\)
\(450\) −81.3185 + 232.234i −0.180708 + 0.516075i
\(451\) −26.3722 −0.0584749
\(452\) −54.8941 + 95.0794i −0.121447 + 0.210353i
\(453\) 73.7393 + 12.5370i 0.162780 + 0.0276755i
\(454\) −34.7596 + 20.0685i −0.0765629 + 0.0442036i
\(455\) 42.2503 24.3932i 0.0928577 0.0536114i
\(456\) 417.599 154.897i 0.915786 0.339686i
\(457\) −412.915 + 715.190i −0.903534 + 1.56497i −0.0806614 + 0.996742i \(0.525703\pi\)
−0.822873 + 0.568226i \(0.807630\pi\)
\(458\) 128.154i 0.279811i
\(459\) 403.469 + 218.846i 0.879018 + 0.476789i
\(460\) −5.50465 −0.0119666
\(461\) −373.424 215.597i −0.810031 0.467672i 0.0369358 0.999318i \(-0.488240\pi\)
−0.846967 + 0.531646i \(0.821574\pi\)
\(462\) −14.4129 38.8570i −0.0311968 0.0841060i
\(463\) −257.345 445.734i −0.555821 0.962709i −0.997839 0.0657036i \(-0.979071\pi\)
0.442019 0.897006i \(-0.354263\pi\)
\(464\) −321.765 557.313i −0.693458 1.20110i
\(465\) 11.0373 64.9184i 0.0237361 0.139609i
\(466\) 751.676 + 433.980i 1.61304 + 0.931288i
\(467\) 453.857i 0.971858i −0.873998 0.485929i \(-0.838481\pi\)
0.873998 0.485929i \(-0.161519\pi\)
\(468\) 4.55558 + 24.1053i 0.00973415 + 0.0515071i
\(469\) 467.996i 0.997860i
\(470\) −123.724 + 214.296i −0.263242 + 0.455948i
\(471\) −487.320 + 588.043i −1.03465 + 1.24850i
\(472\) 197.517 + 342.109i 0.418467 + 0.724806i
\(473\) 32.0187 + 55.4581i 0.0676929 + 0.117248i
\(474\) 333.646 402.607i 0.703895 0.849381i
\(475\) 133.246 230.789i 0.280518 0.485871i
\(476\) −0.541396 65.8204i −0.00113739 0.138278i
\(477\) −325.193 378.046i −0.681746 0.792550i
\(478\) −343.632 −0.718896
\(479\) 233.447 404.343i 0.487364 0.844139i −0.512530 0.858669i \(-0.671292\pi\)
0.999894 + 0.0145299i \(0.00462518\pi\)
\(480\) −24.6329 + 144.884i −0.0513185 + 0.301841i
\(481\) −20.7685 + 11.9907i −0.0431778 + 0.0249287i
\(482\) 151.447 + 262.315i 0.314206 + 0.544221i
\(483\) −21.9596 + 8.14531i −0.0454650 + 0.0168640i
\(484\) −52.1573 + 90.3390i −0.107763 + 0.186651i
\(485\) 395.213i 0.814873i
\(486\) 509.641 + 168.007i 1.04864 + 0.345694i
\(487\) 610.782i 1.25417i −0.778950 0.627086i \(-0.784248\pi\)
0.778950 0.627086i \(-0.215752\pi\)
\(488\) 54.8902 95.0727i 0.112480 0.194821i
\(489\) 226.827 84.1352i 0.463859 0.172056i
\(490\) 200.363 115.679i 0.408903 0.236080i
\(491\) −157.490 + 90.9272i −0.320755 + 0.185188i −0.651729 0.758452i \(-0.725956\pi\)
0.330974 + 0.943640i \(0.392623\pi\)
\(492\) −48.2755 8.20770i −0.0981209 0.0166823i
\(493\) −287.751 + 508.003i −0.583673 + 1.03043i
\(494\) 147.801i 0.299193i
\(495\) 34.3297 29.5302i 0.0693530 0.0596570i
\(496\) 115.781i 0.233429i
\(497\) −385.852 222.772i −0.776363 0.448233i
\(498\) −357.652 + 431.574i −0.718177 + 0.866615i
\(499\) −633.250 + 365.607i −1.26904 + 0.732679i −0.974806 0.223055i \(-0.928397\pi\)
−0.294232 + 0.955734i \(0.595064\pi\)
\(500\) 58.2045 + 100.813i 0.116409 + 0.201626i
\(501\) 497.973 600.898i 0.993958 1.19940i
\(502\) −259.475 + 449.424i −0.516883 + 0.895267i
\(503\) −489.996 −0.974147 −0.487073 0.873361i \(-0.661936\pi\)
−0.487073 + 0.873361i \(0.661936\pi\)
\(504\) 50.9146 + 269.408i 0.101021 + 0.534541i
\(505\) 333.956i 0.661299i
\(506\) −4.78798 2.76434i −0.00946241 0.00546312i
\(507\) 471.233 + 80.1181i 0.929454 + 0.158024i
\(508\) 33.4702 + 57.9721i 0.0658862 + 0.114118i
\(509\) −501.158 + 289.344i −0.984593 + 0.568455i −0.903654 0.428264i \(-0.859125\pi\)
−0.0809394 + 0.996719i \(0.525792\pi\)
\(510\) 373.954 142.218i 0.733244 0.278859i
\(511\) −97.9181 + 169.599i −0.191621 + 0.331897i
\(512\) 258.574i 0.505027i
\(513\) −508.571 281.292i −0.991367 0.548328i
\(514\) 210.932 0.410374
\(515\) −62.9780 + 109.081i −0.122287 + 0.211808i
\(516\) 41.3518 + 111.484i 0.0801391 + 0.216053i
\(517\) −38.6905 + 22.3380i −0.0748365 + 0.0432069i
\(518\) 65.1480 37.6132i 0.125768 0.0726124i
\(519\) 389.532 + 66.2274i 0.750543 + 0.127606i
\(520\) −65.9790 38.0930i −0.126883 0.0732557i
\(521\) 353.079 0.677695 0.338848 0.940841i \(-0.389963\pi\)
0.338848 + 0.940841i \(0.389963\pi\)
\(522\) −225.577 + 644.217i −0.432140 + 1.23413i
\(523\) −584.015 −1.11666 −0.558332 0.829618i \(-0.688559\pi\)
−0.558332 + 0.829618i \(0.688559\pi\)
\(524\) −6.26305 + 10.8479i −0.0119524 + 0.0207021i
\(525\) 126.310 + 104.675i 0.240590 + 0.199381i
\(526\) 399.460 + 691.886i 0.759430 + 1.31537i
\(527\) 90.5337 53.2673i 0.171791 0.101076i
\(528\) −50.8038 + 61.3043i −0.0962193 + 0.116107i
\(529\) 262.938 455.422i 0.497047 0.860910i
\(530\) −434.661 −0.820115
\(531\) 170.350 486.495i 0.320810 0.916187i
\(532\) 83.3438i 0.156661i
\(533\) 28.9477 50.1389i 0.0543109 0.0940692i
\(534\) −983.040 167.134i −1.84090 0.312986i
\(535\) −264.481 458.094i −0.494356 0.856250i
\(536\) −632.921 + 365.417i −1.18082 + 0.681748i
\(537\) 324.835 120.489i 0.604907 0.224374i
\(538\) −804.459 464.454i −1.49528 0.863298i
\(539\) 41.7712 0.0774976
\(540\) 72.0327 43.3721i 0.133394 0.0803188i
\(541\) 203.117i 0.375448i 0.982222 + 0.187724i \(0.0601110\pi\)
−0.982222 + 0.187724i \(0.939889\pi\)
\(542\) −191.375 110.490i −0.353090 0.203856i
\(543\) 562.535 208.657i 1.03598 0.384267i
\(544\) −202.052 + 118.881i −0.371419 + 0.218532i
\(545\) −626.336 + 361.615i −1.14924 + 0.663514i
\(546\) 89.6955 + 15.2498i 0.164278 + 0.0279301i
\(547\) 632.756 + 365.322i 1.15677 + 0.667864i 0.950529 0.310636i \(-0.100542\pi\)
0.206246 + 0.978500i \(0.433875\pi\)
\(548\) 82.9542i 0.151376i
\(549\) −140.755 + 26.6009i −0.256385 + 0.0484533i
\(550\) 38.7231i 0.0704057i
\(551\) 369.624 640.208i 0.670824 1.16190i
\(552\) 28.1621 + 23.3383i 0.0510183 + 0.0422796i
\(553\) −174.302 301.901i −0.315194 0.545933i
\(554\) 603.838 + 1045.88i 1.08996 + 1.88787i
\(555\) 63.2876 + 52.4474i 0.114032 + 0.0944998i
\(556\) 63.2304 + 36.5061i 0.113724 + 0.0656584i
\(557\) 274.409i 0.492654i 0.969187 + 0.246327i \(0.0792238\pi\)
−0.969187 + 0.246327i \(0.920776\pi\)
\(558\) 93.0999 80.0839i 0.166846 0.143520i
\(559\) −140.583 −0.251490
\(560\) 254.614 + 147.002i 0.454669 + 0.262503i
\(561\) 71.3095 + 11.5212i 0.127111 + 0.0205370i
\(562\) 170.574 + 295.442i 0.303512 + 0.525698i
\(563\) 838.226 483.950i 1.48886 0.859592i 0.488937 0.872319i \(-0.337385\pi\)
0.999919 + 0.0127273i \(0.00405134\pi\)
\(564\) −77.7769 + 28.8492i −0.137902 + 0.0511511i
\(565\) −222.447 + 385.290i −0.393712 + 0.681930i
\(566\) −703.819 −1.24350
\(567\) 223.180 279.611i 0.393616 0.493142i
\(568\) 695.771i 1.22495i
\(569\) −350.531 202.379i −0.616048 0.355675i 0.159281 0.987233i \(-0.449082\pi\)
−0.775329 + 0.631558i \(0.782416\pi\)
\(570\) −474.961 + 176.174i −0.833265 + 0.309077i
\(571\) 539.740 311.619i 0.945253 0.545742i 0.0536499 0.998560i \(-0.482914\pi\)
0.891603 + 0.452818i \(0.149581\pi\)
\(572\) 1.93034 + 3.34345i 0.00337472 + 0.00584518i
\(573\) −31.1734 + 183.353i −0.0544038 + 0.319989i
\(574\) −90.8050 + 157.279i −0.158197 + 0.274005i
\(575\) 21.8840 0.0380591
\(576\) 303.621 261.173i 0.527120 0.453425i
\(577\) −116.940 −0.202669 −0.101335 0.994852i \(-0.532311\pi\)
−0.101335 + 0.994852i \(0.532311\pi\)
\(578\) 557.873 + 309.966i 0.965179 + 0.536274i
\(579\) 382.848 + 317.272i 0.661223 + 0.547965i
\(580\) 53.4755 + 92.6224i 0.0921992 + 0.159694i
\(581\) 186.844 + 323.623i 0.321590 + 0.557010i
\(582\) 470.294 567.498i 0.808065 0.975082i
\(583\) −67.9629 39.2384i −0.116574 0.0673043i
\(584\) 305.822 0.523669
\(585\) 18.4606 + 97.6820i 0.0315565 + 0.166978i
\(586\) 223.846 0.381989
\(587\) 164.072 + 94.7270i 0.279509 + 0.161375i 0.633201 0.773987i \(-0.281741\pi\)
−0.353692 + 0.935362i \(0.615074\pi\)
\(588\) 76.4641 + 13.0003i 0.130041 + 0.0221093i
\(589\) −115.183 + 66.5012i −0.195558 + 0.112905i
\(590\) −224.648 389.102i −0.380759 0.659494i
\(591\) 35.3782 + 95.3788i 0.0598615 + 0.161386i
\(592\) −125.158 72.2601i −0.211416 0.122061i
\(593\) 436.488i 0.736068i 0.929812 + 0.368034i \(0.119969\pi\)
−0.929812 + 0.368034i \(0.880031\pi\)
\(594\) 84.4352 1.55175i 0.142147 0.00261238i
\(595\) −2.19390 266.724i −0.00368723 0.448276i
\(596\) −153.994 88.9082i −0.258378 0.149175i
\(597\) 607.794 225.444i 1.01808 0.377629i
\(598\) 10.5111 6.06861i 0.0175772 0.0101482i
\(599\) 205.367 118.569i 0.342850 0.197944i −0.318682 0.947862i \(-0.603240\pi\)
0.661531 + 0.749917i \(0.269907\pi\)
\(600\) 42.9386 252.554i 0.0715644 0.420923i
\(601\) 167.618 + 96.7745i 0.278899 + 0.161022i 0.632925 0.774213i \(-0.281854\pi\)
−0.354026 + 0.935236i \(0.615188\pi\)
\(602\) 440.989 0.732540
\(603\) 900.045 + 315.158i 1.49261 + 0.522649i
\(604\) 21.8567 0.0361867
\(605\) −211.357 + 366.081i −0.349350 + 0.605092i
\(606\) 397.399 479.536i 0.655774 0.791314i
\(607\) 127.850 73.8140i 0.210625 0.121605i −0.390977 0.920401i \(-0.627863\pi\)
0.601602 + 0.798796i \(0.294529\pi\)
\(608\) 257.065 148.416i 0.422804 0.244106i
\(609\) 350.383 + 290.368i 0.575342 + 0.476795i
\(610\) −62.4301 + 108.132i −0.102344 + 0.177266i
\(611\) 98.0780i 0.160520i
\(612\) 126.950 + 43.2835i 0.207434 + 0.0707247i
\(613\) −980.994 −1.60032 −0.800158 0.599789i \(-0.795251\pi\)
−0.800158 + 0.599789i \(0.795251\pi\)
\(614\) −219.463 126.707i −0.357432 0.206363i
\(615\) −195.627 33.2600i −0.318092 0.0540814i
\(616\) 21.5741 + 37.3674i 0.0350228 + 0.0606613i
\(617\) −378.719 655.961i −0.613808 1.06315i −0.990592 0.136845i \(-0.956304\pi\)
0.376785 0.926301i \(-0.377030\pi\)
\(618\) −220.235 + 81.6903i −0.356368 + 0.132185i
\(619\) 842.718 + 486.544i 1.36142 + 0.786016i 0.989813 0.142375i \(-0.0454738\pi\)
0.371606 + 0.928390i \(0.378807\pi\)
\(620\) 19.2422i 0.0310358i
\(621\) −0.876957 47.7176i −0.00141217 0.0768400i
\(622\) 216.583i 0.348205i
\(623\) −332.394 + 575.724i −0.533539 + 0.924116i
\(624\) −60.7867 163.880i −0.0974145 0.262628i
\(625\) 81.1059 + 140.480i 0.129769 + 0.224767i
\(626\) 351.907 + 609.521i 0.562152 + 0.973676i
\(627\) −90.1681 15.3302i −0.143809 0.0244501i
\(628\) −111.585 + 193.271i −0.177683 + 0.307756i
\(629\) 1.07843 + 131.111i 0.00171452 + 0.208443i
\(630\) −57.9083 306.415i −0.0919180 0.486373i
\(631\) −850.171 −1.34734 −0.673669 0.739033i \(-0.735283\pi\)
−0.673669 + 0.739033i \(0.735283\pi\)
\(632\) −272.195 + 471.455i −0.430688 + 0.745973i
\(633\) −183.607 152.158i −0.290059 0.240376i
\(634\) −324.122 + 187.132i −0.511233 + 0.295161i
\(635\) 135.631 + 234.920i 0.213592 + 0.369953i
\(636\) −112.197 92.9795i −0.176411 0.146194i
\(637\) −45.8506 + 79.4156i −0.0719790 + 0.124671i
\(638\) 107.418i 0.168367i
\(639\) 688.272 592.047i 1.07711 0.926522i
\(640\) 545.041i 0.851626i
\(641\) 472.888 819.066i 0.737735 1.27779i −0.215779 0.976442i \(-0.569229\pi\)
0.953513 0.301351i \(-0.0974377\pi\)
\(642\) 165.345 972.514i 0.257547 1.51482i
\(643\) −670.084 + 386.873i −1.04212 + 0.601669i −0.920433 0.390900i \(-0.872164\pi\)
−0.121688 + 0.992568i \(0.538831\pi\)
\(644\) −5.92714 + 3.42204i −0.00920364 + 0.00531372i
\(645\) 167.570 + 451.765i 0.259798 + 0.700411i
\(646\) −703.120 398.272i −1.08842 0.616520i
\(647\) 329.359i 0.509056i −0.967065 0.254528i \(-0.918080\pi\)
0.967065 0.254528i \(-0.0819200\pi\)
\(648\) −552.410 83.5064i −0.852484 0.128868i
\(649\) 81.1192i 0.124991i
\(650\) −73.6205 42.5048i −0.113262 0.0653921i
\(651\) −28.4729 76.7624i −0.0437372 0.117915i
\(652\) 61.2231 35.3472i 0.0939005 0.0542135i
\(653\) −469.925 813.934i −0.719640 1.24645i −0.961143 0.276052i \(-0.910974\pi\)
0.241503 0.970400i \(-0.422360\pi\)
\(654\) −1329.68 226.070i −2.03316 0.345673i
\(655\) −25.3797 + 43.9590i −0.0387477 + 0.0671130i
\(656\) 348.897 0.531856
\(657\) −260.231 302.526i −0.396090 0.460466i
\(658\) 307.657i 0.467565i
\(659\) −257.584 148.716i −0.390871 0.225669i 0.291667 0.956520i \(-0.405790\pi\)
−0.682537 + 0.730851i \(0.739124\pi\)
\(660\) 8.44331 10.1884i 0.0127929 0.0154370i
\(661\) 165.831 + 287.228i 0.250879 + 0.434535i 0.963768 0.266742i \(-0.0859471\pi\)
−0.712889 + 0.701277i \(0.752614\pi\)
\(662\) −567.818 + 327.830i −0.857732 + 0.495212i
\(663\) −100.178 + 122.927i −0.151098 + 0.185411i
\(664\) 291.779 505.377i 0.439427 0.761109i
\(665\) 337.734i 0.507870i
\(666\) 28.4654 + 150.621i 0.0427408 + 0.226158i
\(667\) 60.7061 0.0910136
\(668\) 114.024 197.496i 0.170695 0.295652i
\(669\) −32.9889 5.60871i −0.0493108 0.00838372i
\(670\) 719.861 415.612i 1.07442 0.620316i
\(671\) −19.5230 + 11.2716i −0.0290953 + 0.0167982i
\(672\) 63.5455 + 171.317i 0.0945617 + 0.254936i
\(673\) −505.629 291.925i −0.751307 0.433767i 0.0748591 0.997194i \(-0.476149\pi\)
−0.826166 + 0.563427i \(0.809483\pi\)
\(674\) −1159.71 −1.72064
\(675\) −286.369 + 172.428i −0.424250 + 0.255448i
\(676\) 139.676 0.206622
\(677\) 66.8519 115.791i 0.0987473 0.171035i −0.812419 0.583074i \(-0.801850\pi\)
0.911166 + 0.412039i \(0.135183\pi\)
\(678\) −777.903 + 288.542i −1.14735 + 0.425578i
\(679\) −245.689 425.547i −0.361840 0.626726i
\(680\) −359.006 + 211.228i −0.527950 + 0.310630i
\(681\) −53.7548 9.13928i −0.0789350 0.0134204i
\(682\) 9.66308 16.7370i 0.0141687 0.0245410i
\(683\) 867.670 1.27038 0.635190 0.772356i \(-0.280922\pi\)
0.635190 + 0.772356i \(0.280922\pi\)
\(684\) −160.286 56.1252i −0.234336 0.0820544i
\(685\) 336.155i 0.490738i
\(686\) 382.791 663.014i 0.558005 0.966493i
\(687\) 111.088 134.049i 0.161701 0.195122i
\(688\) −423.600 733.697i −0.615698 1.06642i
\(689\) 149.200 86.1409i 0.216546 0.125023i
\(690\) −32.0305 26.5442i −0.0464210 0.0384698i
\(691\) −157.602 90.9914i −0.228078 0.131681i 0.381607 0.924325i \(-0.375371\pi\)
−0.609685 + 0.792644i \(0.708704\pi\)
\(692\) 115.459 0.166849
\(693\) 18.6068 53.1382i 0.0268496 0.0766786i
\(694\) 927.289i 1.33615i
\(695\) 256.228 + 147.933i 0.368674 + 0.212854i
\(696\) 119.112 700.583i 0.171138 1.00659i
\(697\) −160.517 272.817i −0.230297 0.391415i
\(698\) 1049.45 605.898i 1.50351 0.868049i
\(699\) 410.065 + 1105.53i 0.586645 + 1.58158i
\(700\) 41.5140 + 23.9681i 0.0593057 + 0.0342402i
\(701\) 637.468i 0.909369i 0.890653 + 0.454684i \(0.150248\pi\)
−0.890653 + 0.454684i \(0.849752\pi\)
\(702\) −89.7310 + 162.232i −0.127822 + 0.231099i
\(703\) 166.016i 0.236154i
\(704\) 31.5136 54.5832i 0.0447637 0.0775330i
\(705\) −315.175 + 116.906i −0.447057 + 0.165824i
\(706\) 510.304 + 883.872i 0.722810 + 1.25194i
\(707\) −207.608 359.588i −0.293646 0.508611i
\(708\) 25.2464 148.492i 0.0356587 0.209735i
\(709\) 675.791 + 390.168i 0.953160 + 0.550307i 0.894061 0.447945i \(-0.147844\pi\)
0.0590992 + 0.998252i \(0.481177\pi\)
\(710\) 791.345i 1.11457i
\(711\) 697.990 131.911i 0.981702 0.185528i
\(712\) 1038.15 1.45808
\(713\) −9.45871 5.46099i −0.0132661 0.00765917i
\(714\) 314.244 385.607i 0.440118 0.540066i
\(715\) 7.82231 + 13.5486i 0.0109403 + 0.0189491i
\(716\) 87.6766 50.6201i 0.122453 0.0706985i
\(717\) −359.441 297.874i −0.501312 0.415445i
\(718\) 416.431 721.279i 0.579987 1.00457i
\(719\) 942.607 1.31100 0.655498 0.755197i \(-0.272459\pi\)
0.655498 + 0.755197i \(0.272459\pi\)
\(720\) −454.174 + 390.678i −0.630797 + 0.542608i
\(721\) 156.604i 0.217204i
\(722\) 195.708 + 112.992i 0.271063 + 0.156498i
\(723\) −68.9699 + 405.662i −0.0953941 + 0.561082i
\(724\) 151.835 87.6617i 0.209716 0.121080i
\(725\) −212.594 368.224i −0.293233 0.507895i
\(726\) −739.119 + 274.156i −1.01807 + 0.377626i
\(727\) 498.869 864.067i 0.686202 1.18854i −0.286855 0.957974i \(-0.592610\pi\)
0.973057 0.230563i \(-0.0740569\pi\)
\(728\) −94.7240 −0.130115
\(729\) 387.451 + 617.513i 0.531483 + 0.847069i
\(730\) −347.831 −0.476481
\(731\) −378.821 + 668.781i −0.518223 + 0.914885i
\(732\) −39.2457 + 14.5571i −0.0536143 + 0.0198868i
\(733\) 416.123 + 720.746i 0.567698 + 0.983283i 0.996793 + 0.0800230i \(0.0254994\pi\)
−0.429095 + 0.903260i \(0.641167\pi\)
\(734\) −614.108 1063.67i −0.836660 1.44914i
\(735\) 309.855 + 52.6810i 0.421572 + 0.0716748i
\(736\) 21.1098 + 12.1878i 0.0286818 + 0.0165595i
\(737\) 150.075 0.203630
\(738\) −241.327 280.550i −0.327001 0.380149i
\(739\) 587.105 0.794458 0.397229 0.917719i \(-0.369972\pi\)
0.397229 + 0.917719i \(0.369972\pi\)
\(740\) 20.8006 + 12.0092i 0.0281089 + 0.0162287i
\(741\) 128.120 154.601i 0.172901 0.208638i
\(742\) −468.022 + 270.212i −0.630757 + 0.364168i
\(743\) −271.448 470.162i −0.365341 0.632789i 0.623490 0.781831i \(-0.285714\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(744\) −81.5819 + 98.4439i −0.109653 + 0.132317i
\(745\) −624.028 360.283i −0.837621 0.483601i
\(746\) 805.614i 1.07991i
\(747\) −748.211 + 141.402i −1.00162 + 0.189293i
\(748\) 21.1070 0.173613i 0.0282179 0.000232103i
\(749\) −569.560 328.836i −0.760427 0.439033i
\(750\) −147.453 + 867.281i −0.196604 + 1.15637i
\(751\) 324.334 187.254i 0.431869 0.249340i −0.268273 0.963343i \(-0.586453\pi\)
0.700143 + 0.714003i \(0.253120\pi\)
\(752\) 511.866 295.526i 0.680673 0.392986i
\(753\) −660.990 + 245.176i −0.877809 + 0.325599i
\(754\) −204.223 117.908i −0.270853 0.156377i
\(755\) 88.5700 0.117311
\(756\) 50.5985 91.4811i 0.0669292 0.121007i
\(757\) 1006.50 1.32959 0.664795 0.747026i \(-0.268519\pi\)
0.664795 + 0.747026i \(0.268519\pi\)
\(758\) −613.212 + 1062.11i −0.808987 + 1.40121i
\(759\) −2.61201 7.04192i −0.00344138 0.00927789i
\(760\) 456.753 263.707i 0.600991 0.346982i
\(761\) 2.45474 1.41725i 0.00322568 0.00186235i −0.498386 0.866955i \(-0.666074\pi\)
0.501612 + 0.865093i \(0.332741\pi\)
\(762\) −84.7923 + 498.726i −0.111276 + 0.654496i
\(763\) −449.605 + 778.739i −0.589260 + 1.02063i
\(764\) 54.3470i 0.0711348i
\(765\) 514.438 + 175.398i 0.672468 + 0.229278i
\(766\) 1137.83 1.48542
\(767\) 154.224 + 89.0413i 0.201074 + 0.116090i
\(768\) 307.851 371.480i 0.400848 0.483698i
\(769\) −121.604 210.625i −0.158133 0.273895i 0.776062 0.630656i \(-0.217214\pi\)
−0.934195 + 0.356762i \(0.883881\pi\)
\(770\) −24.5375 42.5002i −0.0318669 0.0551951i
\(771\) 220.636 + 182.844i 0.286169 + 0.237152i
\(772\) 125.830 + 72.6478i 0.162992 + 0.0941034i
\(773\) 1414.57i 1.82997i −0.403485 0.914986i \(-0.632201\pi\)
0.403485 0.914986i \(-0.367799\pi\)
\(774\) −296.970 + 848.105i −0.383683 + 1.09574i
\(775\) 76.4980i 0.0987071i
\(776\) −383.674 + 664.544i −0.494426 + 0.856371i
\(777\) 100.750 + 17.1293i 0.129665 + 0.0220454i
\(778\) −714.414 1237.40i −0.918270 1.59049i
\(779\) 200.396 + 347.097i 0.257248 + 0.445567i
\(780\) 10.1024 + 27.2359i 0.0129518 + 0.0349178i
\(781\) 71.4376 123.734i 0.0914694 0.158430i
\(782\) −0.545805 66.3564i −0.000697960 0.0848548i
\(783\) −794.387 + 478.314i −1.01454 + 0.610873i
\(784\) −552.623 −0.704876
\(785\) −452.176 + 783.191i −0.576020 + 0.997696i
\(786\) −88.7535 + 32.9207i −0.112918 + 0.0418838i
\(787\) 940.172 542.809i 1.19463 0.689719i 0.235276 0.971929i \(-0.424401\pi\)
0.959353 + 0.282210i \(0.0910674\pi\)
\(788\) 14.8632 + 25.7438i 0.0188619 + 0.0326698i
\(789\) −181.916 + 1069.98i −0.230566 + 1.35613i
\(790\) 309.584 536.216i 0.391879 0.678754i
\(791\) 553.149i 0.699304i
\(792\) −86.3928 + 16.3271i −0.109082 + 0.0206150i
\(793\) 49.4895i 0.0624080i
\(794\) 758.930 1314.51i 0.955832 1.65555i
\(795\) −454.657 376.781i −0.571895 0.473938i
\(796\) 164.050 94.7145i 0.206093 0.118988i
\(797\) −326.560 + 188.539i −0.409736 + 0.236561i −0.690676 0.723164i \(-0.742687\pi\)
0.280940 + 0.959725i \(0.409354\pi\)
\(798\) −401.894 + 484.961i −0.503627 + 0.607721i
\(799\) −466.577 264.286i −0.583951 0.330770i
\(800\) 170.727i 0.213409i
\(801\) −883.385 1026.96i −1.10285 1.28210i
\(802\) 532.186i 0.663573i
\(803\) −54.3864 31.4000i −0.0677290 0.0391034i
\(804\) 274.720 + 46.7073i 0.341691 + 0.0580936i
\(805\) −24.0186 + 13.8671i −0.0298367 + 0.0172262i
\(806\) 21.2136 + 36.7430i 0.0263196 + 0.0455868i
\(807\) −438.860 1183.16i −0.543816 1.46612i
\(808\) −324.206 + 561.540i −0.401244 + 0.694976i
\(809\) −335.596 −0.414828 −0.207414 0.978253i \(-0.566505\pi\)
−0.207414 + 0.978253i \(0.566505\pi\)
\(810\) 628.290 + 94.9771i 0.775667 + 0.117256i
\(811\) 1601.45i 1.97466i 0.158674 + 0.987331i \(0.449278\pi\)
−0.158674 + 0.987331i \(0.550722\pi\)
\(812\) 115.160 + 66.4875i 0.141822 + 0.0818812i
\(813\) −104.401 281.464i −0.128415 0.346204i
\(814\) 12.0617 + 20.8914i 0.0148178 + 0.0256651i
\(815\) 248.094 143.237i 0.304410 0.175751i
\(816\) −943.407 152.423i −1.15614 0.186793i
\(817\) 486.607 842.828i 0.595602 1.03161i
\(818\) 1272.29i 1.55536i
\(819\) 80.6027 + 93.7030i 0.0984160 + 0.114411i
\(820\) −57.9849 −0.0707133
\(821\) −89.3883 + 154.825i −0.108877 + 0.188581i −0.915316 0.402737i \(-0.868059\pi\)
0.806438 + 0.591318i \(0.201392\pi\)
\(822\) 400.016 482.694i 0.486637 0.587219i
\(823\) 447.254 258.222i 0.543444 0.313758i −0.203030 0.979173i \(-0.565079\pi\)
0.746474 + 0.665415i \(0.231745\pi\)
\(824\) 211.793 122.279i 0.257030 0.148396i
\(825\) −33.5667 + 40.5045i −0.0406869 + 0.0490964i
\(826\) −483.780 279.311i −0.585690 0.338148i
\(827\) 602.569 0.728620 0.364310 0.931278i \(-0.381305\pi\)
0.364310 + 0.931278i \(0.381305\pi\)
\(828\) −2.58977 13.7035i −0.00312774 0.0165501i
\(829\) 667.735 0.805471 0.402735 0.915316i \(-0.368060\pi\)
0.402735 + 0.915316i \(0.368060\pi\)
\(830\) −331.859 + 574.797i −0.399830 + 0.692526i
\(831\) −274.991 + 1617.42i −0.330915 + 1.94636i
\(832\) 69.1825 + 119.828i 0.0831521 + 0.144024i
\(833\) 254.245 + 432.117i 0.305216 + 0.518748i
\(834\) 191.888 + 517.327i 0.230082 + 0.620296i
\(835\) 462.060 800.312i 0.553365 0.958457i
\(836\) −26.7263 −0.0319693
\(837\) 166.803 3.06551i 0.199286 0.00366250i
\(838\) 1757.87i 2.09770i
\(839\) −607.384 + 1052.02i −0.723938 + 1.25390i 0.235471 + 0.971881i \(0.424337\pi\)
−0.959409 + 0.282017i \(0.908997\pi\)
\(840\) 112.908 + 304.397i 0.134414 + 0.362377i
\(841\) −169.236 293.125i −0.201232 0.348543i
\(842\) −201.268 + 116.202i −0.239036 + 0.138007i
\(843\) −77.6801 + 456.894i −0.0921472 + 0.541985i
\(844\) −60.3458 34.8407i −0.0714997 0.0412804i
\(845\) 566.010 0.669834
\(846\) −591.683 207.182i −0.699389 0.244896i
\(847\) 525.571i 0.620509i
\(848\) 899.133 + 519.115i 1.06030 + 0.612163i
\(849\) −736.197 610.097i −0.867134 0.718607i
\(850\) −400.585 + 235.692i −0.471277 + 0.277285i
\(851\) 11.8065 6.81651i 0.0138737 0.00801001i
\(852\) 169.279 204.267i 0.198684 0.239750i
\(853\) −131.958 76.1857i −0.154698 0.0893150i 0.420653 0.907222i \(-0.361801\pi\)
−0.575351 + 0.817907i \(0.695134\pi\)
\(854\) 155.242i 0.181782i
\(855\) −649.525 227.436i −0.759679 0.266007i
\(856\) 1027.03i 1.19981i
\(857\) 291.231 504.426i 0.339826 0.588596i −0.644574 0.764542i \(-0.722965\pi\)
0.984400 + 0.175946i \(0.0562986\pi\)
\(858\) −4.89026 + 28.7632i −0.00569960 + 0.0335235i
\(859\) −219.907 380.890i −0.256004 0.443412i 0.709164 0.705044i \(-0.249073\pi\)
−0.965168 + 0.261632i \(0.915739\pi\)
\(860\) 70.4000 + 121.936i 0.0818605 + 0.141787i
\(861\) −231.318 + 85.8010i −0.268662 + 0.0996528i
\(862\) 481.037 + 277.727i 0.558048 + 0.322189i
\(863\) 1284.95i 1.48893i −0.667659 0.744467i \(-0.732703\pi\)
0.667659 0.744467i \(-0.267297\pi\)
\(864\) −372.268 + 6.84156i −0.430866 + 0.00791847i
\(865\) 467.876 0.540897
\(866\) 472.552 + 272.828i 0.545672 + 0.315044i
\(867\) 314.847 + 807.812i 0.363145 + 0.931732i
\(868\) −11.9621 20.7190i −0.0137813 0.0238699i
\(869\) 96.8123 55.8946i 0.111407 0.0643206i
\(870\) −135.473 + 796.817i −0.155716 + 0.915882i
\(871\) −164.732 + 285.324i −0.189129 + 0.327582i
\(872\) 1404.23 1.61035
\(873\) 983.858 185.936i 1.12699 0.212985i
\(874\) 84.0225i 0.0961356i
\(875\) 507.929 + 293.253i 0.580491 + 0.335146i
\(876\) −89.7843 74.4056i −0.102493 0.0849379i
\(877\) −1065.73 + 615.297i −1.21519 + 0.701593i −0.963886 0.266315i \(-0.914194\pi\)
−0.251308 + 0.967907i \(0.580861\pi\)
\(878\) 684.598 + 1185.76i 0.779725 + 1.35052i
\(879\) 234.144 + 194.038i 0.266375 + 0.220749i
\(880\) −47.1399 + 81.6487i −0.0535681 + 0.0927826i
\(881\) 168.980 0.191804 0.0959022 0.995391i \(-0.469426\pi\)
0.0959022 + 0.995391i \(0.469426\pi\)
\(882\) 382.241 + 444.366i 0.433380 + 0.503816i
\(883\) −1721.94 −1.95011 −0.975053 0.221971i \(-0.928751\pi\)
−0.975053 + 0.221971i \(0.928751\pi\)
\(884\) −22.8383 + 40.3193i −0.0258352 + 0.0456101i
\(885\) 102.306 601.735i 0.115600 0.679927i
\(886\) 409.446 + 709.181i 0.462128 + 0.800430i
\(887\) 47.2929 + 81.9137i 0.0533178 + 0.0923492i 0.891452 0.453114i \(-0.149687\pi\)
−0.838135 + 0.545463i \(0.816354\pi\)
\(888\) −55.5008 149.629i −0.0625009 0.168501i
\(889\) 292.082 + 168.634i 0.328551 + 0.189689i
\(890\) −1180.75 −1.32669
\(891\) 89.6647 + 71.5686i 0.100634 + 0.0803239i
\(892\) −9.77810 −0.0109620
\(893\) 588.001 + 339.483i 0.658456 + 0.380160i
\(894\) −467.331 1259.92i −0.522742 1.40930i
\(895\) 355.292 205.128i 0.396974 0.229193i
\(896\) −338.831 586.873i −0.378160 0.654993i
\(897\) 16.2552 + 2.76368i 0.0181218 + 0.00308102i
\(898\) −868.669 501.526i −0.967338 0.558493i
\(899\) 212.205i 0.236046i
\(900\) −74.0515 + 63.6986i −0.0822794 + 0.0707762i
\(901\) −7.74743 941.896i −0.00859870 1.04539i
\(902\) −50.4356 29.1190i −0.0559153 0.0322827i
\(903\) 461.276 + 382.267i 0.510827 + 0.423330i
\(904\) 748.082 431.905i 0.827524 0.477771i
\(905\) 615.279 355.232i 0.679866 0.392521i
\(906\) 127.180 + 105.396i 0.140375 + 0.116331i
\(907\) −336.689 194.387i −0.371212 0.214319i 0.302776 0.953062i \(-0.402087\pi\)
−0.673988 + 0.738743i \(0.735420\pi\)
\(908\) −15.9332 −0.0175476
\(909\) 831.362 157.116i 0.914589 0.172845i
\(910\) 107.736 0.118391
\(911\) −10.7455 + 18.6118i −0.0117953 + 0.0204301i −0.871863 0.489750i \(-0.837088\pi\)
0.860067 + 0.510180i \(0.170421\pi\)
\(912\) 1192.90 + 202.815i 1.30801 + 0.222385i
\(913\) −103.778 + 59.9162i −0.113667 + 0.0656257i
\(914\) −1579.36 + 911.845i −1.72797 + 0.997642i
\(915\) −159.035 + 58.9898i −0.173809 + 0.0644697i
\(916\) 25.4367 44.0576i 0.0277693 0.0480978i
\(917\) 63.1106i 0.0688229i
\(918\) 529.976 + 864.025i 0.577316 + 0.941204i
\(919\) −987.516 −1.07456 −0.537278 0.843406i \(-0.680547\pi\)
−0.537278 + 0.843406i \(0.680547\pi\)
\(920\) 37.5079 + 21.6552i 0.0407695 + 0.0235383i
\(921\) −119.725 322.775i −0.129994 0.350462i
\(922\) −476.104 824.637i −0.516382 0.894400i
\(923\) 156.828 + 271.635i 0.169912 + 0.294296i
\(924\) 2.75757 16.2193i 0.00298439 0.0175534i
\(925\) −82.6936 47.7432i −0.0893985 0.0516142i
\(926\) 1136.60i 1.22742i
\(927\) −301.180 105.460i −0.324897 0.113765i
\(928\) 473.597i 0.510342i
\(929\) −360.372 + 624.183i −0.387914 + 0.671887i −0.992169 0.124904i \(-0.960138\pi\)
0.604254 + 0.796791i \(0.293471\pi\)
\(930\) 92.7883 111.966i 0.0997723 0.120394i
\(931\) −317.410 549.771i −0.340935 0.590516i
\(932\) 172.278 + 298.394i 0.184848 + 0.320165i
\(933\) −187.743 + 226.547i −0.201225 + 0.242816i
\(934\) 501.129 867.981i 0.536541 0.929316i
\(935\) 85.5320 0.703531i 0.0914780 0.000752439i
\(936\) 63.7889 182.172i 0.0681505 0.194628i
\(937\) 726.411 0.775251 0.387626 0.921817i \(-0.373295\pi\)
0.387626 + 0.921817i \(0.373295\pi\)
\(938\) 516.741 895.021i 0.550896 0.954181i
\(939\) −160.260 + 942.609i −0.170671 + 1.00384i
\(940\) −85.0693 + 49.1148i −0.0904993 + 0.0522498i
\(941\) −699.817 1212.12i −0.743695 1.28812i −0.950802 0.309799i \(-0.899738\pi\)
0.207108 0.978318i \(-0.433595\pi\)
\(942\) −1581.27 + 586.528i −1.67863 + 0.622641i
\(943\) −16.4563 + 28.5031i −0.0174510 + 0.0302260i
\(944\) 1073.19i 1.13685i
\(945\) 205.040 370.709i 0.216974 0.392284i
\(946\) 141.415i 0.149487i
\(947\) −777.033 + 1345.86i −0.820520 + 1.42118i 0.0847748 + 0.996400i \(0.472983\pi\)
−0.905295 + 0.424783i \(0.860350\pi\)
\(948\) 194.615 72.1872i 0.205290 0.0761468i
\(949\) 119.396 68.9331i 0.125812 0.0726376i
\(950\) 509.653 294.249i 0.536477 0.309735i
\(951\) −501.246 85.2208i −0.527072 0.0896117i
\(952\) −255.247 + 450.621i −0.268117 + 0.473341i
\(953\) 770.289i 0.808278i 0.914698 + 0.404139i \(0.132429\pi\)
−0.914698 + 0.404139i \(0.867571\pi\)
\(954\) −204.495 1082.06i −0.214355 1.13423i
\(955\) 220.230i 0.230608i
\(956\) −118.137 68.2062i −0.123574 0.0713454i
\(957\) −93.1140 + 112.360i −0.0972978 + 0.117408i
\(958\) 892.914 515.524i 0.932061 0.538126i
\(959\) −208.975 361.956i −0.217910 0.377430i
\(960\) 302.605 365.149i 0.315213 0.380364i
\(961\) −461.410 + 799.186i −0.480136 + 0.831620i
\(962\) −52.9584 −0.0550503
\(963\) 1015.96 873.926i 1.05500 0.907504i
\(964\) 120.241i 0.124731i
\(965\) 509.900 + 294.391i 0.528394 + 0.305068i
\(966\) −50.9904 8.66928i −0.0527851 0.00897441i
\(967\) −65.1526 112.848i −0.0673760 0.116699i 0.830369 0.557213i \(-0.188129\pi\)
−0.897745 + 0.440515i \(0.854796\pi\)
\(968\) 710.785 410.372i 0.734282 0.423938i
\(969\) −390.229 1026.09i −0.402713 1.05891i
\(970\) 436.377 755.827i 0.449873 0.779203i
\(971\) 643.927i 0.663158i 0.943427 + 0.331579i \(0.107581\pi\)
−0.943427 + 0.331579i \(0.892419\pi\)
\(972\) 141.861 + 158.915i 0.145948 + 0.163493i
\(973\) 367.859 0.378067
\(974\) 674.398 1168.09i 0.692400 1.19927i
\(975\) −40.1625 108.277i −0.0411923 0.111054i
\(976\) 258.284 149.120i 0.264635 0.152787i
\(977\) −417.532 + 241.062i −0.427362 + 0.246737i −0.698222 0.715881i \(-0.746025\pi\)
0.270860 + 0.962619i \(0.412692\pi\)
\(978\) 526.694 + 89.5475i 0.538542 + 0.0915618i
\(979\) −184.621 106.591i −0.188581 0.108877i
\(980\) 91.8429 0.0937173
\(981\) −1194.89 1389.09i −1.21803 1.41600i
\(982\) −401.591 −0.408952
\(983\) 806.156 1396.30i 0.820097 1.42045i −0.0855119 0.996337i \(-0.527253\pi\)
0.905609 0.424113i \(-0.139414\pi\)
\(984\) 296.653 + 245.841i 0.301477 + 0.249839i
\(985\) 60.2301 + 104.322i 0.0611474 + 0.105910i
\(986\) −1111.22 + 653.810i −1.12700 + 0.663094i
\(987\) −266.689 + 321.811i −0.270202 + 0.326050i
\(988\) 29.3364 50.8122i 0.0296928 0.0514294i
\(989\) 79.9190 0.0808079
\(990\) 98.2600 18.5698i 0.0992525 0.0187574i
\(991\) 1219.44i 1.23051i −0.788327 0.615257i \(-0.789052\pi\)
0.788327 0.615257i \(-0.210948\pi\)
\(992\) −42.6038 + 73.7919i −0.0429473 + 0.0743870i
\(993\) −878.116 149.295i −0.884306 0.150348i
\(994\) −491.950 852.082i −0.494919 0.857225i
\(995\) 664.781 383.811i 0.668122 0.385740i
\(996\) −208.618 + 77.3811i −0.209456 + 0.0776918i
\(997\) −563.615 325.403i −0.565311 0.326383i 0.189963 0.981791i \(-0.439163\pi\)
−0.755274 + 0.655409i \(0.772496\pi\)
\(998\) −1614.75 −1.61798
\(999\) −100.789 + 182.225i −0.100890 + 0.182408i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.3.i.a.101.28 yes 68
3.2 odd 2 459.3.i.a.305.8 68
9.4 even 3 459.3.i.a.152.7 68
9.5 odd 6 inner 153.3.i.a.50.27 68
17.16 even 2 inner 153.3.i.a.101.27 yes 68
51.50 odd 2 459.3.i.a.305.7 68
153.50 odd 6 inner 153.3.i.a.50.28 yes 68
153.67 even 6 459.3.i.a.152.8 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.3.i.a.50.27 68 9.5 odd 6 inner
153.3.i.a.50.28 yes 68 153.50 odd 6 inner
153.3.i.a.101.27 yes 68 17.16 even 2 inner
153.3.i.a.101.28 yes 68 1.1 even 1 trivial
459.3.i.a.152.7 68 9.4 even 3
459.3.i.a.152.8 68 153.67 even 6
459.3.i.a.305.7 68 51.50 odd 2
459.3.i.a.305.8 68 3.2 odd 2