Properties

Label 153.2.e.a
Level $153$
Weight $2$
Character orbit 153.e
Analytic conductor $1.222$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [153,2,Mod(52,153)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(153, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("153.52"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 153.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.22171115093\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (2 \beta_{3} + 1) q^{3} + ( - \beta_{3} + \beta_{2} + \beta_1) q^{4} + ( - \beta_{3} + 2 \beta_{2} + 2 \beta_1) q^{5} + ( - 2 \beta_{2} - \beta_1) q^{6} + (3 \beta_{3} + 3) q^{7} + (2 \beta_{2} + 1) q^{8}+ \cdots + (3 \beta_{3} - 12 \beta_1 + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + q^{4} + 3 q^{6} + 6 q^{7} - 12 q^{9} + 10 q^{10} + 2 q^{11} + 3 q^{12} - 2 q^{13} + 3 q^{14} + 3 q^{16} - 4 q^{17} + 3 q^{18} - 5 q^{20} - 18 q^{21} + 11 q^{22} + 6 q^{23} - 18 q^{26} + 6 q^{28}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 2x^{2} + x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 1 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 2\nu^{2} - 2\nu - 1 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta_{2} + \beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{2} - 1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/153\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(1\) \(\beta_{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
52.1
0.809017 1.40126i
−0.309017 + 0.535233i
0.809017 + 1.40126i
−0.309017 0.535233i
−0.809017 + 1.40126i 1.73205i −0.309017 0.535233i −1.11803 1.93649i 2.42705 + 1.40126i 1.50000 2.59808i −2.23607 −3.00000 3.61803
52.2 0.309017 0.535233i 1.73205i 0.809017 + 1.40126i 1.11803 + 1.93649i −0.927051 0.535233i 1.50000 2.59808i 2.23607 −3.00000 1.38197
103.1 −0.809017 1.40126i 1.73205i −0.309017 + 0.535233i −1.11803 + 1.93649i 2.42705 1.40126i 1.50000 + 2.59808i −2.23607 −3.00000 3.61803
103.2 0.309017 + 0.535233i 1.73205i 0.809017 1.40126i 1.11803 1.93649i −0.927051 + 0.535233i 1.50000 + 2.59808i 2.23607 −3.00000 1.38197
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 153.2.e.a 4
3.b odd 2 1 459.2.e.a 4
9.c even 3 1 inner 153.2.e.a 4
9.c even 3 1 1377.2.a.b 2
9.d odd 6 1 459.2.e.a 4
9.d odd 6 1 1377.2.a.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
153.2.e.a 4 1.a even 1 1 trivial
153.2.e.a 4 9.c even 3 1 inner
459.2.e.a 4 3.b odd 2 1
459.2.e.a 4 9.d odd 6 1
1377.2.a.a 2 9.d odd 6 1
1377.2.a.b 2 9.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + T_{2}^{3} + 2T_{2}^{2} - T_{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(153, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + T^{3} + 2 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 5T^{2} + 25 \) Copy content Toggle raw display
$7$ \( (T^{2} - 3 T + 9)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} - 2 T^{3} + \cdots + 361 \) Copy content Toggle raw display
$13$ \( T^{4} + 2 T^{3} + \cdots + 361 \) Copy content Toggle raw display
$17$ \( (T + 1)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} - 6 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$29$ \( T^{4} + 12 T^{3} + \cdots + 961 \) Copy content Toggle raw display
$31$ \( T^{4} - 2 T^{3} + \cdots + 6241 \) Copy content Toggle raw display
$37$ \( (T^{2} + 8 T - 4)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 12 T^{3} + \cdots + 961 \) Copy content Toggle raw display
$43$ \( T^{4} + 45T^{2} + 2025 \) Copy content Toggle raw display
$47$ \( T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$53$ \( (T^{2} - 4 T - 76)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 12 T^{3} + \cdots + 961 \) Copy content Toggle raw display
$61$ \( T^{4} - 8 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$67$ \( T^{4} - 16 T^{3} + \cdots + 361 \) Copy content Toggle raw display
$71$ \( (T^{2} - 20 T + 80)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 8 T - 4)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 3 T + 9)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} - 8 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$89$ \( (T^{2} - 20)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 4 T^{3} + \cdots + 14641 \) Copy content Toggle raw display
show more
show less