Properties

Label 153.2.d.b.118.1
Level $153$
Weight $2$
Character 153.118
Analytic conductor $1.222$
Analytic rank $0$
Dimension $2$
CM discriminant -51
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [153,2,Mod(118,153)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(153, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("153.118"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 153.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.22171115093\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-17}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 118.1
Root \(-4.12311i\) of defining polynomial
Character \(\chi\) \(=\) 153.118
Dual form 153.2.d.b.118.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{4} -4.12311i q^{5} -4.12311i q^{11} -1.00000 q^{13} +4.00000 q^{16} +4.12311i q^{17} +5.00000 q^{19} +8.24621i q^{20} -4.12311i q^{23} -12.0000 q^{25} +8.24621i q^{29} -4.12311i q^{41} +11.0000 q^{43} +8.24621i q^{44} +7.00000 q^{49} +2.00000 q^{52} -17.0000 q^{55} -8.00000 q^{64} +4.12311i q^{65} +8.00000 q^{67} -8.24621i q^{68} -16.4924i q^{71} -10.0000 q^{76} -16.4924i q^{80} +17.0000 q^{85} +8.24621i q^{92} -20.6155i q^{95} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{4} - 2 q^{13} + 8 q^{16} + 10 q^{19} - 24 q^{25} + 22 q^{43} + 14 q^{49} + 4 q^{52} - 34 q^{55} - 16 q^{64} + 16 q^{67} - 20 q^{76} + 34 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/153\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(3\) 0 0
\(4\) −2.00000 −1.00000
\(5\) − 4.12311i − 1.84391i −0.387298 0.921954i \(-0.626592\pi\)
0.387298 0.921954i \(-0.373408\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 4.12311i − 1.24316i −0.783349 0.621582i \(-0.786490\pi\)
0.783349 0.621582i \(-0.213510\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) 4.12311i 1.00000i
\(18\) 0 0
\(19\) 5.00000 1.14708 0.573539 0.819178i \(-0.305570\pi\)
0.573539 + 0.819178i \(0.305570\pi\)
\(20\) 8.24621i 1.84391i
\(21\) 0 0
\(22\) 0 0
\(23\) − 4.12311i − 0.859727i −0.902894 0.429863i \(-0.858562\pi\)
0.902894 0.429863i \(-0.141438\pi\)
\(24\) 0 0
\(25\) −12.0000 −2.40000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 8.24621i 1.53128i 0.643268 + 0.765641i \(0.277578\pi\)
−0.643268 + 0.765641i \(0.722422\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 4.12311i − 0.643921i −0.946753 0.321960i \(-0.895658\pi\)
0.946753 0.321960i \(-0.104342\pi\)
\(42\) 0 0
\(43\) 11.0000 1.67748 0.838742 0.544529i \(-0.183292\pi\)
0.838742 + 0.544529i \(0.183292\pi\)
\(44\) 8.24621i 1.24316i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 2.00000 0.277350
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) −17.0000 −2.29228
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 4.12311i 0.511408i
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) − 8.24621i − 1.00000i
\(69\) 0 0
\(70\) 0 0
\(71\) − 16.4924i − 1.95729i −0.205557 0.978645i \(-0.565900\pi\)
0.205557 0.978645i \(-0.434100\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −10.0000 −1.14708
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) − 16.4924i − 1.84391i
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 17.0000 1.84391
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 8.24621i 0.859727i
\(93\) 0 0
\(94\) 0 0
\(95\) − 20.6155i − 2.11511i
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 24.0000 2.40000
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) −19.0000 −1.87213 −0.936063 0.351833i \(-0.885559\pi\)
−0.936063 + 0.351833i \(0.885559\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 20.6155i 1.99298i 0.0837218 + 0.996489i \(0.473319\pi\)
−0.0837218 + 0.996489i \(0.526681\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 20.6155i 1.93935i 0.244406 + 0.969673i \(0.421407\pi\)
−0.244406 + 0.969673i \(0.578593\pi\)
\(114\) 0 0
\(115\) −17.0000 −1.58526
\(116\) − 16.4924i − 1.53128i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −6.00000 −0.545455
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 28.8617i 2.58147i
\(126\) 0 0
\(127\) −7.00000 −0.621150 −0.310575 0.950549i \(-0.600522\pi\)
−0.310575 + 0.950549i \(0.600522\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 4.12311i − 0.360237i −0.983645 0.180119i \(-0.942352\pi\)
0.983645 0.180119i \(-0.0576482\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.12311i 0.344791i
\(144\) 0 0
\(145\) 34.0000 2.82355
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 20.0000 1.62758 0.813788 0.581161i \(-0.197401\pi\)
0.813788 + 0.581161i \(0.197401\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −13.0000 −1.03751 −0.518756 0.854922i \(-0.673605\pi\)
−0.518756 + 0.854922i \(0.673605\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 8.24621i 0.643921i
\(165\) 0 0
\(166\) 0 0
\(167\) 20.6155i 1.59528i 0.603136 + 0.797639i \(0.293918\pi\)
−0.603136 + 0.797639i \(0.706082\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) −22.0000 −1.67748
\(173\) − 4.12311i − 0.313474i −0.987640 0.156737i \(-0.949903\pi\)
0.987640 0.156737i \(-0.0500975\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 16.4924i − 1.24316i
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 17.0000 1.24316
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −14.0000 −1.00000
\(197\) 20.6155i 1.46880i 0.678719 + 0.734398i \(0.262535\pi\)
−0.678719 + 0.734398i \(0.737465\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −17.0000 −1.18733
\(206\) 0 0
\(207\) 0 0
\(208\) −4.00000 −0.277350
\(209\) − 20.6155i − 1.42601i
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 45.3542i − 3.09313i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 34.0000 2.29228
\(221\) − 4.12311i − 0.277350i
\(222\) 0 0
\(223\) 29.0000 1.94198 0.970992 0.239113i \(-0.0768565\pi\)
0.970992 + 0.239113i \(0.0768565\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 28.8617i − 1.91562i −0.287401 0.957810i \(-0.592791\pi\)
0.287401 0.957810i \(-0.407209\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 20.6155i 1.35057i 0.737558 + 0.675284i \(0.235979\pi\)
−0.737558 + 0.675284i \(0.764021\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 28.8617i − 1.84391i
\(246\) 0 0
\(247\) −5.00000 −0.318142
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) −17.0000 −1.06878
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) − 8.24621i − 0.511408i
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −16.0000 −0.977356
\(269\) − 28.8617i − 1.75973i −0.475223 0.879866i \(-0.657632\pi\)
0.475223 0.879866i \(-0.342368\pi\)
\(270\) 0 0
\(271\) −25.0000 −1.51864 −0.759321 0.650716i \(-0.774469\pi\)
−0.759321 + 0.650716i \(0.774469\pi\)
\(272\) 16.4924i 1.00000i
\(273\) 0 0
\(274\) 0 0
\(275\) 49.4773i 2.98359i
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 32.9848i 1.95729i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.12311i 0.238445i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 20.0000 1.14708
\(305\) 0 0
\(306\) 0 0
\(307\) 32.0000 1.82634 0.913168 0.407583i \(-0.133628\pi\)
0.913168 + 0.407583i \(0.133628\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 16.4924i − 0.935199i −0.883940 0.467600i \(-0.845119\pi\)
0.883940 0.467600i \(-0.154881\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8.24621i 0.463153i 0.972817 + 0.231577i \(0.0743884\pi\)
−0.972817 + 0.231577i \(0.925612\pi\)
\(318\) 0 0
\(319\) 34.0000 1.90363
\(320\) 32.9848i 1.84391i
\(321\) 0 0
\(322\) 0 0
\(323\) 20.6155i 1.14708i
\(324\) 0 0
\(325\) 12.0000 0.665640
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −7.00000 −0.384755 −0.192377 0.981321i \(-0.561620\pi\)
−0.192377 + 0.981321i \(0.561620\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 32.9848i − 1.80215i
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) −34.0000 −1.84391
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 32.9848i 1.77072i 0.464907 + 0.885360i \(0.346088\pi\)
−0.464907 + 0.885360i \(0.653912\pi\)
\(348\) 0 0
\(349\) 11.0000 0.588817 0.294408 0.955680i \(-0.404877\pi\)
0.294408 + 0.955680i \(0.404877\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) −68.0000 −3.60907
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) − 16.4924i − 0.859727i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 26.0000 1.34623 0.673114 0.739538i \(-0.264956\pi\)
0.673114 + 0.739538i \(0.264956\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 8.24621i − 0.424701i
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 41.2311i 2.11511i
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 17.0000 0.859727
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −48.0000 −2.40000
\(401\) − 4.12311i − 0.205898i −0.994687 0.102949i \(-0.967172\pi\)
0.994687 0.102949i \(-0.0328279\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −19.0000 −0.939490 −0.469745 0.882802i \(-0.655654\pi\)
−0.469745 + 0.882802i \(0.655654\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 38.0000 1.87213
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 32.9848i 1.61142i 0.592314 + 0.805708i \(0.298215\pi\)
−0.592314 + 0.805708i \(0.701785\pi\)
\(420\) 0 0
\(421\) 35.0000 1.70580 0.852898 0.522078i \(-0.174843\pi\)
0.852898 + 0.522078i \(0.174843\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 49.4773i − 2.40000i
\(426\) 0 0
\(427\) 0 0
\(428\) − 41.2311i − 1.99298i
\(429\) 0 0
\(430\) 0 0
\(431\) − 16.4924i − 0.794412i −0.917729 0.397206i \(-0.869980\pi\)
0.917729 0.397206i \(-0.130020\pi\)
\(432\) 0 0
\(433\) 41.0000 1.97033 0.985167 0.171598i \(-0.0548929\pi\)
0.985167 + 0.171598i \(0.0548929\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 20.6155i − 0.986174i
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 8.24621i 0.389163i 0.980886 + 0.194581i \(0.0623348\pi\)
−0.980886 + 0.194581i \(0.937665\pi\)
\(450\) 0 0
\(451\) −17.0000 −0.800499
\(452\) − 41.2311i − 1.93935i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −37.0000 −1.73079 −0.865393 0.501093i \(-0.832931\pi\)
−0.865393 + 0.501093i \(0.832931\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 34.0000 1.58526
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) 32.9848i 1.53128i
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 45.3542i − 2.08539i
\(474\) 0 0
\(475\) −60.0000 −2.75299
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 28.8617i − 1.31873i −0.751825 0.659363i \(-0.770826\pi\)
0.751825 0.659363i \(-0.229174\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 12.0000 0.545455
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) −34.0000 −1.53128
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) − 57.7235i − 2.58147i
\(501\) 0 0
\(502\) 0 0
\(503\) 20.6155i 0.919201i 0.888126 + 0.459600i \(0.152007\pi\)
−0.888126 + 0.459600i \(0.847993\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 14.0000 0.621150
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 78.3390i 3.45203i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 45.3542i 1.98700i 0.113824 + 0.993501i \(0.463690\pi\)
−0.113824 + 0.993501i \(0.536310\pi\)
\(522\) 0 0
\(523\) −16.0000 −0.699631 −0.349816 0.936819i \(-0.613756\pi\)
−0.349816 + 0.936819i \(0.613756\pi\)
\(524\) 8.24621i 0.360237i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 6.00000 0.260870
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 4.12311i 0.178592i
\(534\) 0 0
\(535\) 85.0000 3.67487
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 28.8617i − 1.24316i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 41.2311i 1.75650i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) −11.0000 −0.465250
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 85.0000 3.57598
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) − 8.24621i − 0.344791i
\(573\) 0 0
\(574\) 0 0
\(575\) 49.4773i 2.06334i
\(576\) 0 0
\(577\) −43.0000 −1.79011 −0.895057 0.445952i \(-0.852865\pi\)
−0.895057 + 0.445952i \(0.852865\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) −68.0000 −2.82355
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −40.0000 −1.62758
\(605\) 24.7386i 1.00577i
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −49.0000 −1.97909 −0.989546 0.144220i \(-0.953933\pi\)
−0.989546 + 0.144220i \(0.953933\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 41.2311i − 1.65990i −0.557838 0.829950i \(-0.688369\pi\)
0.557838 0.829950i \(-0.311631\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 59.0000 2.36000
\(626\) 0 0
\(627\) 0 0
\(628\) 26.0000 1.03751
\(629\) 0 0
\(630\) 0 0
\(631\) 5.00000 0.199047 0.0995234 0.995035i \(-0.468268\pi\)
0.0995234 + 0.995035i \(0.468268\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 28.8617i 1.14534i
\(636\) 0 0
\(637\) −7.00000 −0.277350
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 45.3542i 1.79138i 0.444677 + 0.895691i \(0.353318\pi\)
−0.444677 + 0.895691i \(0.646682\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 20.6155i 0.806748i 0.915035 + 0.403374i \(0.132163\pi\)
−0.915035 + 0.403374i \(0.867837\pi\)
\(654\) 0 0
\(655\) −17.0000 −0.664245
\(656\) − 16.4924i − 0.643921i
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −37.0000 −1.43913 −0.719567 0.694423i \(-0.755660\pi\)
−0.719567 + 0.694423i \(0.755660\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 34.0000 1.31649
\(668\) − 41.2311i − 1.59528i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 24.0000 0.923077
\(677\) − 28.8617i − 1.10925i −0.832102 0.554623i \(-0.812862\pi\)
0.832102 0.554623i \(-0.187138\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 45.3542i 1.73543i 0.497063 + 0.867714i \(0.334412\pi\)
−0.497063 + 0.867714i \(0.665588\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 44.0000 1.67748
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 8.24621i 0.313474i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 17.0000 0.643921
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 32.9848i 1.24316i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 17.0000 0.635764
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 53.6004i − 1.99896i −0.0322973 0.999478i \(-0.510282\pi\)
0.0322973 0.999478i \(-0.489718\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 98.9545i − 3.67508i
\(726\) 0 0
\(727\) −52.0000 −1.92857 −0.964287 0.264861i \(-0.914674\pi\)
−0.964287 + 0.264861i \(0.914674\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 45.3542i 1.67748i
\(732\) 0 0
\(733\) −46.0000 −1.69905 −0.849524 0.527549i \(-0.823111\pi\)
−0.849524 + 0.527549i \(0.823111\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 32.9848i − 1.21501i
\(738\) 0 0
\(739\) 41.0000 1.50821 0.754105 0.656754i \(-0.228071\pi\)
0.754105 + 0.656754i \(0.228071\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 16.4924i − 0.605048i −0.953142 0.302524i \(-0.902171\pi\)
0.953142 0.302524i \(-0.0978293\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) −34.0000 −1.24316
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 82.4621i − 3.00110i
\(756\) 0 0
\(757\) 23.0000 0.835949 0.417975 0.908459i \(-0.362740\pi\)
0.417975 + 0.908459i \(0.362740\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −55.0000 −1.98335 −0.991675 0.128763i \(-0.958899\pi\)
−0.991675 + 0.128763i \(0.958899\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 20.6155i − 0.738628i
\(780\) 0 0
\(781\) −68.0000 −2.43323
\(782\) 0 0
\(783\) 0 0
\(784\) 28.0000 1.00000
\(785\) 53.6004i 1.91308i
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) − 41.2311i − 1.46880i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 53.6004i − 1.88449i −0.334926 0.942244i \(-0.608711\pi\)
0.334926 0.942244i \(-0.391289\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 55.0000 1.92421
\(818\) 0 0
\(819\) 0 0
\(820\) 34.0000 1.18733
\(821\) − 4.12311i − 0.143897i −0.997408 0.0719487i \(-0.977078\pi\)
0.997408 0.0719487i \(-0.0229218\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 20.6155i 0.716872i 0.933554 + 0.358436i \(0.116690\pi\)
−0.933554 + 0.358436i \(0.883310\pi\)
\(828\) 0 0
\(829\) 50.0000 1.73657 0.868286 0.496064i \(-0.165222\pi\)
0.868286 + 0.496064i \(0.165222\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 8.00000 0.277350
\(833\) 28.8617i 1.00000i
\(834\) 0 0
\(835\) 85.0000 2.94155
\(836\) 41.2311i 1.42601i
\(837\) 0 0
\(838\) 0 0
\(839\) − 28.8617i − 0.996418i −0.867057 0.498209i \(-0.833991\pi\)
0.867057 0.498209i \(-0.166009\pi\)
\(840\) 0 0
\(841\) −39.0000 −1.34483
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 49.4773i 1.70207i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 41.2311i − 1.40843i −0.709989 0.704213i \(-0.751300\pi\)
0.709989 0.704213i \(-0.248700\pi\)
\(858\) 0 0
\(859\) −40.0000 −1.36478 −0.682391 0.730987i \(-0.739060\pi\)
−0.682391 + 0.730987i \(0.739060\pi\)
\(860\) 90.7083i 3.09313i
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) −17.0000 −0.578017
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −68.0000 −2.29228
\(881\) 57.7235i 1.94475i 0.233417 + 0.972377i \(0.425009\pi\)
−0.233417 + 0.972377i \(0.574991\pi\)
\(882\) 0 0
\(883\) 59.0000 1.98551 0.992754 0.120164i \(-0.0383421\pi\)
0.992754 + 0.120164i \(0.0383421\pi\)
\(884\) 8.24621i 0.277350i
\(885\) 0 0
\(886\) 0 0
\(887\) − 53.6004i − 1.79972i −0.436174 0.899862i \(-0.643667\pi\)
0.436174 0.899862i \(-0.356333\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) −58.0000 −1.94198
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 57.7235i 1.91562i
\(909\) 0 0
\(910\) 0 0
\(911\) 45.3542i 1.50265i 0.659932 + 0.751325i \(0.270585\pi\)
−0.659932 + 0.751325i \(0.729415\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 20.0000 0.660819
\(917\) 0 0
\(918\) 0 0
\(919\) −49.0000 −1.61636 −0.808180 0.588935i \(-0.799547\pi\)
−0.808180 + 0.588935i \(0.799547\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 16.4924i 0.542855i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 28.8617i − 0.946923i −0.880815 0.473461i \(-0.843004\pi\)
0.880815 0.473461i \(-0.156996\pi\)
\(930\) 0 0
\(931\) 35.0000 1.14708
\(932\) − 41.2311i − 1.35057i
\(933\) 0 0
\(934\) 0 0
\(935\) − 70.0928i − 2.29228i
\(936\) 0 0
\(937\) −22.0000 −0.718709 −0.359354 0.933201i \(-0.617003\pi\)
−0.359354 + 0.933201i \(0.617003\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 57.7235i 1.88173i 0.338779 + 0.940866i \(0.389986\pi\)
−0.338779 + 0.940866i \(0.610014\pi\)
\(942\) 0 0
\(943\) −17.0000 −0.553596
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 32.9848i 1.07186i 0.844261 + 0.535932i \(0.180040\pi\)
−0.844261 + 0.535932i \(0.819960\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −37.0000 −1.18984 −0.594920 0.803785i \(-0.702816\pi\)
−0.594920 + 0.803785i \(0.702816\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 57.7235i 1.84391i
\(981\) 0 0
\(982\) 0 0
\(983\) 45.3542i 1.44657i 0.690548 + 0.723287i \(0.257369\pi\)
−0.690548 + 0.723287i \(0.742631\pi\)
\(984\) 0 0
\(985\) 85.0000 2.70833
\(986\) 0 0
\(987\) 0 0
\(988\) 10.0000 0.318142
\(989\) − 45.3542i − 1.44218i
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.2.d.b.118.1 2
3.2 odd 2 inner 153.2.d.b.118.2 yes 2
4.3 odd 2 2448.2.c.g.577.1 2
12.11 even 2 2448.2.c.g.577.2 2
17.4 even 4 2601.2.a.o.1.1 2
17.13 even 4 2601.2.a.o.1.2 2
17.16 even 2 inner 153.2.d.b.118.2 yes 2
51.38 odd 4 2601.2.a.o.1.2 2
51.47 odd 4 2601.2.a.o.1.1 2
51.50 odd 2 CM 153.2.d.b.118.1 2
68.67 odd 2 2448.2.c.g.577.2 2
204.203 even 2 2448.2.c.g.577.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.2.d.b.118.1 2 1.1 even 1 trivial
153.2.d.b.118.1 2 51.50 odd 2 CM
153.2.d.b.118.2 yes 2 3.2 odd 2 inner
153.2.d.b.118.2 yes 2 17.16 even 2 inner
2448.2.c.g.577.1 2 4.3 odd 2
2448.2.c.g.577.1 2 204.203 even 2
2448.2.c.g.577.2 2 12.11 even 2
2448.2.c.g.577.2 2 68.67 odd 2
2601.2.a.o.1.1 2 17.4 even 4
2601.2.a.o.1.1 2 51.47 odd 4
2601.2.a.o.1.2 2 17.13 even 4
2601.2.a.o.1.2 2 51.38 odd 4