Properties

Label 1520.4.a.m
Level $1520$
Weight $4$
Character orbit 1520.a
Self dual yes
Analytic conductor $89.683$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1520,4,Mod(1,1520)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1520, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1520.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1520 = 2^{4} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1520.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,5,0,-10,0,-17] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.6829032087\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{177}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 44 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 760)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{177})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta + 3) q^{3} - 5 q^{5} + ( - 3 \beta - 7) q^{7} + ( - 5 \beta + 26) q^{9} + (4 \beta - 4) q^{11} + ( - \beta - 73) q^{13} + (5 \beta - 15) q^{15} + (13 \beta + 1) q^{17} + 19 q^{19} + (\beta + 111) q^{21}+ \cdots + (104 \beta - 984) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 5 q^{3} - 10 q^{5} - 17 q^{7} + 47 q^{9} - 4 q^{11} - 147 q^{13} - 25 q^{15} + 15 q^{17} + 38 q^{19} + 223 q^{21} + 23 q^{23} + 50 q^{25} + 425 q^{27} + 159 q^{29} - 218 q^{31} - 364 q^{33} + 85 q^{35}+ \cdots - 1864 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
7.15207
−6.15207
0 −4.15207 0 −5.00000 0 −28.4562 0 −9.76034 0
1.2 0 9.15207 0 −5.00000 0 11.4562 0 56.7603 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1520.4.a.m 2
4.b odd 2 1 760.4.a.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
760.4.a.b 2 4.b odd 2 1
1520.4.a.m 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1520))\):

\( T_{3}^{2} - 5T_{3} - 38 \) Copy content Toggle raw display
\( T_{7}^{2} + 17T_{7} - 326 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 5T - 38 \) Copy content Toggle raw display
$5$ \( (T + 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 17T - 326 \) Copy content Toggle raw display
$11$ \( T^{2} + 4T - 704 \) Copy content Toggle raw display
$13$ \( T^{2} + 147T + 5358 \) Copy content Toggle raw display
$17$ \( T^{2} - 15T - 7422 \) Copy content Toggle raw display
$19$ \( (T - 19)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 23T - 37082 \) Copy content Toggle raw display
$29$ \( T^{2} - 159T - 25938 \) Copy content Toggle raw display
$31$ \( T^{2} + 218T - 39272 \) Copy content Toggle raw display
$37$ \( T^{2} - 368T + 33148 \) Copy content Toggle raw display
$41$ \( T^{2} + 304T + 22396 \) Copy content Toggle raw display
$43$ \( T^{2} - 96T - 32388 \) Copy content Toggle raw display
$47$ \( T^{2} + 582T + 63264 \) Copy content Toggle raw display
$53$ \( T^{2} + 127T - 28226 \) Copy content Toggle raw display
$59$ \( T^{2} - 617T + 27868 \) Copy content Toggle raw display
$61$ \( T^{2} + 1690 T + 713848 \) Copy content Toggle raw display
$67$ \( T^{2} - 25T - 262202 \) Copy content Toggle raw display
$71$ \( T^{2} + 1580 T + 617728 \) Copy content Toggle raw display
$73$ \( T^{2} - 221T - 163418 \) Copy content Toggle raw display
$79$ \( T^{2} - 2050 T + 1050448 \) Copy content Toggle raw display
$83$ \( T^{2} - 1800 T + 554412 \) Copy content Toggle raw display
$89$ \( T^{2} + 996T - 570444 \) Copy content Toggle raw display
$97$ \( T^{2} - 1656 T + 667884 \) Copy content Toggle raw display
show more
show less