Properties

Label 1520.2.bq.q.31.1
Level $1520$
Weight $2$
Character 1520.31
Analytic conductor $12.137$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1520,2,Mod(31,1520)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1520.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1520, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1520 = 2^{4} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1520.bq (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,-6,0,0,0,-4,0,0,0,18,0,0,0,18,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.1372611072\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 8x^{10} + 53x^{8} + 86x^{6} + 113x^{4} + 11x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.1
Root \(0.156347 + 0.270800i\) of defining polynomial
Character \(\chi\) \(=\) 1520.31
Dual form 1520.2.bq.q.1471.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.59901 - 2.76957i) q^{3} +(-0.500000 - 0.866025i) q^{5} +2.37033i q^{7} +(-3.61367 + 6.25906i) q^{9} -0.284720i q^{11} +(2.92290 + 1.68754i) q^{13} +(-1.59901 + 2.76957i) q^{15} +(0.788551 + 1.36581i) q^{17} +(-0.207178 - 4.35397i) q^{19} +(6.56478 - 3.79018i) q^{21} +(-2.52180 - 1.45596i) q^{23} +(-0.500000 + 0.866025i) q^{25} +13.5191 q^{27} +(5.85333 + 3.37942i) q^{29} +5.59020 q^{31} +(-0.788551 + 0.455270i) q^{33} +(2.05276 - 1.18516i) q^{35} +10.0449i q^{37} -10.7936i q^{39} +(-2.85333 + 1.64737i) q^{41} +(6.82569 - 3.94081i) q^{43} +7.22734 q^{45} +(5.66514 + 3.27077i) q^{47} +1.38155 q^{49} +(2.52180 - 4.36789i) q^{51} +(-0.788551 - 0.455270i) q^{53} +(-0.246575 + 0.142360i) q^{55} +(-11.7273 + 7.53584i) q^{57} +(-4.65597 - 8.06438i) q^{59} +(7.30445 - 12.6517i) q^{61} +(-14.8360 - 8.56559i) q^{63} -3.37507i q^{65} +(-2.57264 + 4.45593i) q^{67} +9.31241i q^{69} +(-6.09864 - 10.5631i) q^{71} +(-4.51589 - 7.82176i) q^{73} +3.19802 q^{75} +0.674879 q^{77} +(3.01757 + 5.22658i) q^{79} +(-10.7762 - 18.6650i) q^{81} +7.16394i q^{83} +(0.788551 - 1.36581i) q^{85} -21.6149i q^{87} +(-3.00000 - 1.73205i) q^{89} +(-4.00001 + 6.92822i) q^{91} +(-8.93879 - 15.4824i) q^{93} +(-3.66706 + 2.35641i) q^{95} +(8.77623 - 5.06696i) q^{97} +(1.78208 + 1.02888i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{5} - 4 q^{9} + 18 q^{13} + 18 q^{17} + 24 q^{21} - 6 q^{25} + 24 q^{29} - 18 q^{33} + 12 q^{41} + 8 q^{45} - 28 q^{49} - 18 q^{53} - 62 q^{57} + 26 q^{61} + 16 q^{73} + 56 q^{77} - 66 q^{81}+ \cdots + 42 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1520\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(401\) \(1141\) \(1217\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.59901 2.76957i −0.923189 1.59901i −0.794448 0.607333i \(-0.792239\pi\)
−0.128742 0.991678i \(-0.541094\pi\)
\(4\) 0 0
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 0 0
\(7\) 2.37033i 0.895900i 0.894059 + 0.447950i \(0.147846\pi\)
−0.894059 + 0.447950i \(0.852154\pi\)
\(8\) 0 0
\(9\) −3.61367 + 6.25906i −1.20456 + 2.08635i
\(10\) 0 0
\(11\) 0.284720i 0.0858463i −0.999078 0.0429231i \(-0.986333\pi\)
0.999078 0.0429231i \(-0.0136671\pi\)
\(12\) 0 0
\(13\) 2.92290 + 1.68754i 0.810666 + 0.468038i 0.847187 0.531295i \(-0.178294\pi\)
−0.0365211 + 0.999333i \(0.511628\pi\)
\(14\) 0 0
\(15\) −1.59901 + 2.76957i −0.412863 + 0.715099i
\(16\) 0 0
\(17\) 0.788551 + 1.36581i 0.191252 + 0.331258i 0.945665 0.325142i \(-0.105412\pi\)
−0.754414 + 0.656399i \(0.772079\pi\)
\(18\) 0 0
\(19\) −0.207178 4.35397i −0.0475299 0.998870i
\(20\) 0 0
\(21\) 6.56478 3.79018i 1.43255 0.827085i
\(22\) 0 0
\(23\) −2.52180 1.45596i −0.525832 0.303589i 0.213485 0.976946i \(-0.431518\pi\)
−0.739318 + 0.673357i \(0.764852\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 13.5191 2.60176
\(28\) 0 0
\(29\) 5.85333 + 3.37942i 1.08694 + 0.627543i 0.932759 0.360500i \(-0.117394\pi\)
0.154178 + 0.988043i \(0.450727\pi\)
\(30\) 0 0
\(31\) 5.59020 1.00403 0.502015 0.864859i \(-0.332592\pi\)
0.502015 + 0.864859i \(0.332592\pi\)
\(32\) 0 0
\(33\) −0.788551 + 0.455270i −0.137269 + 0.0792524i
\(34\) 0 0
\(35\) 2.05276 1.18516i 0.346980 0.200329i
\(36\) 0 0
\(37\) 10.0449i 1.65137i 0.564132 + 0.825685i \(0.309211\pi\)
−0.564132 + 0.825685i \(0.690789\pi\)
\(38\) 0 0
\(39\) 10.7936i 1.72835i
\(40\) 0 0
\(41\) −2.85333 + 1.64737i −0.445616 + 0.257276i −0.705977 0.708235i \(-0.749492\pi\)
0.260361 + 0.965511i \(0.416158\pi\)
\(42\) 0 0
\(43\) 6.82569 3.94081i 1.04091 0.600968i 0.120817 0.992675i \(-0.461448\pi\)
0.920090 + 0.391707i \(0.128115\pi\)
\(44\) 0 0
\(45\) 7.22734 1.07739
\(46\) 0 0
\(47\) 5.66514 + 3.27077i 0.826346 + 0.477091i 0.852600 0.522564i \(-0.175025\pi\)
−0.0262540 + 0.999655i \(0.508358\pi\)
\(48\) 0 0
\(49\) 1.38155 0.197364
\(50\) 0 0
\(51\) 2.52180 4.36789i 0.353123 0.611627i
\(52\) 0 0
\(53\) −0.788551 0.455270i −0.108316 0.0625362i 0.444863 0.895598i \(-0.353252\pi\)
−0.553179 + 0.833062i \(0.686586\pi\)
\(54\) 0 0
\(55\) −0.246575 + 0.142360i −0.0332481 + 0.0191958i
\(56\) 0 0
\(57\) −11.7273 + 7.53584i −1.55332 + 0.998147i
\(58\) 0 0
\(59\) −4.65597 8.06438i −0.606156 1.04989i −0.991868 0.127274i \(-0.959377\pi\)
0.385712 0.922619i \(-0.373956\pi\)
\(60\) 0 0
\(61\) 7.30445 12.6517i 0.935238 1.61988i 0.161030 0.986949i \(-0.448518\pi\)
0.774208 0.632931i \(-0.218148\pi\)
\(62\) 0 0
\(63\) −14.8360 8.56559i −1.86916 1.07916i
\(64\) 0 0
\(65\) 3.37507i 0.418626i
\(66\) 0 0
\(67\) −2.57264 + 4.45593i −0.314297 + 0.544379i −0.979288 0.202473i \(-0.935102\pi\)
0.664990 + 0.746852i \(0.268436\pi\)
\(68\) 0 0
\(69\) 9.31241i 1.12108i
\(70\) 0 0
\(71\) −6.09864 10.5631i −0.723775 1.25362i −0.959476 0.281790i \(-0.909072\pi\)
0.235701 0.971826i \(-0.424261\pi\)
\(72\) 0 0
\(73\) −4.51589 7.82176i −0.528545 0.915468i −0.999446 0.0332813i \(-0.989404\pi\)
0.470901 0.882186i \(-0.343929\pi\)
\(74\) 0 0
\(75\) 3.19802 0.369276
\(76\) 0 0
\(77\) 0.674879 0.0769096
\(78\) 0 0
\(79\) 3.01757 + 5.22658i 0.339503 + 0.588036i 0.984339 0.176285i \(-0.0564079\pi\)
−0.644837 + 0.764320i \(0.723075\pi\)
\(80\) 0 0
\(81\) −10.7762 18.6650i −1.19736 2.07389i
\(82\) 0 0
\(83\) 7.16394i 0.786344i 0.919465 + 0.393172i \(0.128622\pi\)
−0.919465 + 0.393172i \(0.871378\pi\)
\(84\) 0 0
\(85\) 0.788551 1.36581i 0.0855304 0.148143i
\(86\) 0 0
\(87\) 21.6149i 2.31737i
\(88\) 0 0
\(89\) −3.00000 1.73205i −0.317999 0.183597i 0.332501 0.943103i \(-0.392107\pi\)
−0.650500 + 0.759506i \(0.725441\pi\)
\(90\) 0 0
\(91\) −4.00001 + 6.92822i −0.419315 + 0.726275i
\(92\) 0 0
\(93\) −8.93879 15.4824i −0.926910 1.60545i
\(94\) 0 0
\(95\) −3.66706 + 2.35641i −0.376233 + 0.241762i
\(96\) 0 0
\(97\) 8.77623 5.06696i 0.891091 0.514472i 0.0167920 0.999859i \(-0.494655\pi\)
0.874299 + 0.485387i \(0.161321\pi\)
\(98\) 0 0
\(99\) 1.78208 + 1.02888i 0.179106 + 0.103407i
\(100\) 0 0
\(101\) 4.53657 7.85757i 0.451406 0.781857i −0.547068 0.837088i \(-0.684256\pi\)
0.998474 + 0.0552308i \(0.0175895\pi\)
\(102\) 0 0
\(103\) −5.30808 −0.523021 −0.261510 0.965201i \(-0.584221\pi\)
−0.261510 + 0.965201i \(0.584221\pi\)
\(104\) 0 0
\(105\) −6.56478 3.79018i −0.640657 0.369884i
\(106\) 0 0
\(107\) −7.48401 −0.723506 −0.361753 0.932274i \(-0.617822\pi\)
−0.361753 + 0.932274i \(0.617822\pi\)
\(108\) 0 0
\(109\) −2.21899 + 1.28113i −0.212540 + 0.122710i −0.602492 0.798125i \(-0.705825\pi\)
0.389951 + 0.920836i \(0.372492\pi\)
\(110\) 0 0
\(111\) 27.8200 16.0619i 2.64056 1.52453i
\(112\) 0 0
\(113\) 20.0095i 1.88233i 0.337946 + 0.941166i \(0.390268\pi\)
−0.337946 + 0.941166i \(0.609732\pi\)
\(114\) 0 0
\(115\) 2.91193i 0.271539i
\(116\) 0 0
\(117\) −21.1248 + 12.1964i −1.95299 + 1.12756i
\(118\) 0 0
\(119\) −3.23742 + 1.86912i −0.296774 + 0.171342i
\(120\) 0 0
\(121\) 10.9189 0.992630
\(122\) 0 0
\(123\) 9.12503 + 5.26834i 0.822776 + 0.475030i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −5.90289 + 10.2241i −0.523797 + 0.907243i 0.475819 + 0.879543i \(0.342152\pi\)
−0.999616 + 0.0277001i \(0.991182\pi\)
\(128\) 0 0
\(129\) −21.8287 12.6028i −1.92191 1.10961i
\(130\) 0 0
\(131\) −5.66514 + 3.27077i −0.494966 + 0.285769i −0.726632 0.687027i \(-0.758916\pi\)
0.231666 + 0.972795i \(0.425582\pi\)
\(132\) 0 0
\(133\) 10.3203 0.491080i 0.894887 0.0425820i
\(134\) 0 0
\(135\) −6.75957 11.7079i −0.581771 1.00766i
\(136\) 0 0
\(137\) −0.935217 + 1.61984i −0.0799010 + 0.138393i −0.903207 0.429205i \(-0.858794\pi\)
0.823306 + 0.567598i \(0.192127\pi\)
\(138\) 0 0
\(139\) 15.9507 + 9.20915i 1.35292 + 0.781110i 0.988658 0.150186i \(-0.0479872\pi\)
0.364264 + 0.931296i \(0.381321\pi\)
\(140\) 0 0
\(141\) 20.9200i 1.76178i
\(142\) 0 0
\(143\) 0.480475 0.832207i 0.0401793 0.0695927i
\(144\) 0 0
\(145\) 6.75885i 0.561292i
\(146\) 0 0
\(147\) −2.20911 3.82629i −0.182204 0.315587i
\(148\) 0 0
\(149\) −4.61367 7.99111i −0.377967 0.654658i 0.612800 0.790238i \(-0.290043\pi\)
−0.990766 + 0.135581i \(0.956710\pi\)
\(150\) 0 0
\(151\) 20.0956 1.63536 0.817680 0.575673i \(-0.195260\pi\)
0.817680 + 0.575673i \(0.195260\pi\)
\(152\) 0 0
\(153\) −11.3983 −0.921495
\(154\) 0 0
\(155\) −2.79510 4.84126i −0.224508 0.388859i
\(156\) 0 0
\(157\) −4.66256 8.07579i −0.372113 0.644518i 0.617778 0.786353i \(-0.288033\pi\)
−0.989890 + 0.141835i \(0.954700\pi\)
\(158\) 0 0
\(159\) 2.91193i 0.230931i
\(160\) 0 0
\(161\) 3.45111 5.97750i 0.271986 0.471093i
\(162\) 0 0
\(163\) 3.91433i 0.306594i −0.988180 0.153297i \(-0.951011\pi\)
0.988180 0.153297i \(-0.0489892\pi\)
\(164\) 0 0
\(165\) 0.788551 + 0.455270i 0.0613886 + 0.0354427i
\(166\) 0 0
\(167\) 8.26835 14.3212i 0.639824 1.10821i −0.345647 0.938365i \(-0.612340\pi\)
0.985471 0.169843i \(-0.0543262\pi\)
\(168\) 0 0
\(169\) −0.804446 1.39334i −0.0618804 0.107180i
\(170\) 0 0
\(171\) 28.0005 + 14.4371i 2.14125 + 1.10403i
\(172\) 0 0
\(173\) 16.2762 9.39709i 1.23746 0.714447i 0.268885 0.963172i \(-0.413345\pi\)
0.968574 + 0.248725i \(0.0800115\pi\)
\(174\) 0 0
\(175\) −2.05276 1.18516i −0.155174 0.0895900i
\(176\) 0 0
\(177\) −14.8899 + 25.7901i −1.11919 + 1.93850i
\(178\) 0 0
\(179\) 17.5712 1.31333 0.656667 0.754180i \(-0.271966\pi\)
0.656667 + 0.754180i \(0.271966\pi\)
\(180\) 0 0
\(181\) 12.7591 + 7.36649i 0.948379 + 0.547547i 0.892577 0.450895i \(-0.148895\pi\)
0.0558019 + 0.998442i \(0.482228\pi\)
\(182\) 0 0
\(183\) −46.7196 −3.45361
\(184\) 0 0
\(185\) 8.69913 5.02244i 0.639573 0.369257i
\(186\) 0 0
\(187\) 0.388873 0.224516i 0.0284372 0.0164182i
\(188\) 0 0
\(189\) 32.0448i 2.33091i
\(190\) 0 0
\(191\) 9.99507i 0.723218i 0.932330 + 0.361609i \(0.117772\pi\)
−0.932330 + 0.361609i \(0.882228\pi\)
\(192\) 0 0
\(193\) 5.07232 2.92851i 0.365114 0.210799i −0.306208 0.951965i \(-0.599060\pi\)
0.671322 + 0.741166i \(0.265727\pi\)
\(194\) 0 0
\(195\) −9.34749 + 5.39678i −0.669388 + 0.386471i
\(196\) 0 0
\(197\) 16.6653 1.18735 0.593677 0.804703i \(-0.297676\pi\)
0.593677 + 0.804703i \(0.297676\pi\)
\(198\) 0 0
\(199\) 16.4680 + 9.50779i 1.16738 + 0.673989i 0.953062 0.302774i \(-0.0979128\pi\)
0.214321 + 0.976763i \(0.431246\pi\)
\(200\) 0 0
\(201\) 16.4547 1.16062
\(202\) 0 0
\(203\) −8.01034 + 13.8743i −0.562216 + 0.973786i
\(204\) 0 0
\(205\) 2.85333 + 1.64737i 0.199286 + 0.115058i
\(206\) 0 0
\(207\) 18.2259 10.5228i 1.26679 0.731382i
\(208\) 0 0
\(209\) −1.23966 + 0.0589877i −0.0857493 + 0.00408027i
\(210\) 0 0
\(211\) −3.06578 5.31009i −0.211057 0.365562i 0.740988 0.671518i \(-0.234357\pi\)
−0.952046 + 0.305956i \(0.901024\pi\)
\(212\) 0 0
\(213\) −19.5036 + 33.7812i −1.33636 + 2.31465i
\(214\) 0 0
\(215\) −6.82569 3.94081i −0.465508 0.268761i
\(216\) 0 0
\(217\) 13.2506i 0.899510i
\(218\) 0 0
\(219\) −14.4419 + 25.0142i −0.975895 + 1.69030i
\(220\) 0 0
\(221\) 5.32283i 0.358052i
\(222\) 0 0
\(223\) −2.01337 3.48725i −0.134825 0.233524i 0.790706 0.612197i \(-0.209714\pi\)
−0.925531 + 0.378673i \(0.876381\pi\)
\(224\) 0 0
\(225\) −3.61367 6.25906i −0.240911 0.417271i
\(226\) 0 0
\(227\) −28.8533 −1.91506 −0.957530 0.288334i \(-0.906899\pi\)
−0.957530 + 0.288334i \(0.906899\pi\)
\(228\) 0 0
\(229\) 17.7480 1.17282 0.586411 0.810014i \(-0.300540\pi\)
0.586411 + 0.810014i \(0.300540\pi\)
\(230\) 0 0
\(231\) −1.07914 1.86912i −0.0710022 0.122979i
\(232\) 0 0
\(233\) 11.3692 + 19.6921i 0.744823 + 1.29007i 0.950277 + 0.311405i \(0.100799\pi\)
−0.205454 + 0.978667i \(0.565867\pi\)
\(234\) 0 0
\(235\) 6.54154i 0.426723i
\(236\) 0 0
\(237\) 9.65024 16.7147i 0.626851 1.08574i
\(238\) 0 0
\(239\) 9.16875i 0.593077i −0.955021 0.296539i \(-0.904168\pi\)
0.955021 0.296539i \(-0.0958323\pi\)
\(240\) 0 0
\(241\) 9.15420 + 5.28518i 0.589674 + 0.340449i 0.764969 0.644068i \(-0.222754\pi\)
−0.175295 + 0.984516i \(0.556088\pi\)
\(242\) 0 0
\(243\) −14.1839 + 24.5673i −0.909899 + 1.57599i
\(244\) 0 0
\(245\) −0.690774 1.19646i −0.0441319 0.0764388i
\(246\) 0 0
\(247\) 6.74192 13.0758i 0.428978 0.831996i
\(248\) 0 0
\(249\) 19.8410 11.4552i 1.25737 0.725945i
\(250\) 0 0
\(251\) 19.8314 + 11.4497i 1.25175 + 0.722697i 0.971456 0.237218i \(-0.0762355\pi\)
0.280292 + 0.959915i \(0.409569\pi\)
\(252\) 0 0
\(253\) −0.414542 + 0.718008i −0.0260620 + 0.0451408i
\(254\) 0 0
\(255\) −5.04361 −0.315843
\(256\) 0 0
\(257\) 14.3287 + 8.27268i 0.893800 + 0.516035i 0.875183 0.483791i \(-0.160741\pi\)
0.0186161 + 0.999827i \(0.494074\pi\)
\(258\) 0 0
\(259\) −23.8097 −1.47946
\(260\) 0 0
\(261\) −42.3041 + 24.4243i −2.61856 + 1.51182i
\(262\) 0 0
\(263\) 1.73622 1.00241i 0.107060 0.0618110i −0.445514 0.895275i \(-0.646979\pi\)
0.552574 + 0.833464i \(0.313646\pi\)
\(264\) 0 0
\(265\) 0.910540i 0.0559341i
\(266\) 0 0
\(267\) 11.0783i 0.677979i
\(268\) 0 0
\(269\) 7.34580 4.24110i 0.447881 0.258584i −0.259054 0.965863i \(-0.583411\pi\)
0.706935 + 0.707279i \(0.250077\pi\)
\(270\) 0 0
\(271\) −27.9966 + 16.1639i −1.70067 + 0.981884i −0.755595 + 0.655039i \(0.772652\pi\)
−0.945078 + 0.326845i \(0.894014\pi\)
\(272\) 0 0
\(273\) 25.5843 1.54843
\(274\) 0 0
\(275\) 0.246575 + 0.142360i 0.0148690 + 0.00858463i
\(276\) 0 0
\(277\) −4.45469 −0.267656 −0.133828 0.991005i \(-0.542727\pi\)
−0.133828 + 0.991005i \(0.542727\pi\)
\(278\) 0 0
\(279\) −20.2012 + 34.9894i −1.20941 + 2.09476i
\(280\) 0 0
\(281\) −22.2468 12.8442i −1.32713 0.766221i −0.342278 0.939599i \(-0.611199\pi\)
−0.984855 + 0.173378i \(0.944532\pi\)
\(282\) 0 0
\(283\) 4.12964 2.38425i 0.245481 0.141729i −0.372212 0.928148i \(-0.621401\pi\)
0.617693 + 0.786419i \(0.288067\pi\)
\(284\) 0 0
\(285\) 12.3899 + 6.38826i 0.733915 + 0.378408i
\(286\) 0 0
\(287\) −3.90481 6.76334i −0.230494 0.399227i
\(288\) 0 0
\(289\) 7.25637 12.5684i 0.426846 0.739318i
\(290\) 0 0
\(291\) −28.0666 16.2042i −1.64529 0.949910i
\(292\) 0 0
\(293\) 4.46367i 0.260771i −0.991463 0.130385i \(-0.958379\pi\)
0.991463 0.130385i \(-0.0416214\pi\)
\(294\) 0 0
\(295\) −4.65597 + 8.06438i −0.271081 + 0.469526i
\(296\) 0 0
\(297\) 3.84917i 0.223351i
\(298\) 0 0
\(299\) −4.91398 8.51127i −0.284183 0.492219i
\(300\) 0 0
\(301\) 9.34102 + 16.1791i 0.538407 + 0.932549i
\(302\) 0 0
\(303\) −29.0161 −1.66693
\(304\) 0 0
\(305\) −14.6089 −0.836503
\(306\) 0 0
\(307\) 14.2894 + 24.7500i 0.815541 + 1.41256i 0.908939 + 0.416930i \(0.136894\pi\)
−0.0933976 + 0.995629i \(0.529773\pi\)
\(308\) 0 0
\(309\) 8.48768 + 14.7011i 0.482847 + 0.836316i
\(310\) 0 0
\(311\) 7.16666i 0.406384i −0.979139 0.203192i \(-0.934868\pi\)
0.979139 0.203192i \(-0.0651316\pi\)
\(312\) 0 0
\(313\) −14.6455 + 25.3667i −0.827810 + 1.43381i 0.0719419 + 0.997409i \(0.477080\pi\)
−0.899752 + 0.436401i \(0.856253\pi\)
\(314\) 0 0
\(315\) 17.1312i 0.965232i
\(316\) 0 0
\(317\) −16.9257 9.77203i −0.950640 0.548852i −0.0573600 0.998354i \(-0.518268\pi\)
−0.893280 + 0.449502i \(0.851602\pi\)
\(318\) 0 0
\(319\) 0.962189 1.66656i 0.0538723 0.0933095i
\(320\) 0 0
\(321\) 11.9670 + 20.7275i 0.667933 + 1.15689i
\(322\) 0 0
\(323\) 5.78333 3.71630i 0.321793 0.206780i
\(324\) 0 0
\(325\) −2.92290 + 1.68754i −0.162133 + 0.0936076i
\(326\) 0 0
\(327\) 7.09637 + 4.09709i 0.392430 + 0.226570i
\(328\) 0 0
\(329\) −7.75280 + 13.4282i −0.427426 + 0.740323i
\(330\) 0 0
\(331\) 14.5360 0.798971 0.399486 0.916739i \(-0.369189\pi\)
0.399486 + 0.916739i \(0.369189\pi\)
\(332\) 0 0
\(333\) −62.8716 36.2989i −3.44534 1.98917i
\(334\) 0 0
\(335\) 5.14527 0.281116
\(336\) 0 0
\(337\) 10.7313 6.19572i 0.584572 0.337503i −0.178377 0.983962i \(-0.557085\pi\)
0.762948 + 0.646460i \(0.223751\pi\)
\(338\) 0 0
\(339\) 55.4175 31.9953i 3.00987 1.73775i
\(340\) 0 0
\(341\) 1.59164i 0.0861922i
\(342\) 0 0
\(343\) 19.8670i 1.07272i
\(344\) 0 0
\(345\) 8.06478 4.65620i 0.434193 0.250682i
\(346\) 0 0
\(347\) 16.9611 9.79251i 0.910521 0.525689i 0.0299220 0.999552i \(-0.490474\pi\)
0.880599 + 0.473863i \(0.157141\pi\)
\(348\) 0 0
\(349\) −20.4300 −1.09360 −0.546798 0.837265i \(-0.684153\pi\)
−0.546798 + 0.837265i \(0.684153\pi\)
\(350\) 0 0
\(351\) 39.5151 + 22.8140i 2.10916 + 1.21772i
\(352\) 0 0
\(353\) 28.5692 1.52058 0.760292 0.649582i \(-0.225056\pi\)
0.760292 + 0.649582i \(0.225056\pi\)
\(354\) 0 0
\(355\) −6.09864 + 10.5631i −0.323682 + 0.560634i
\(356\) 0 0
\(357\) 10.3533 + 5.97750i 0.547957 + 0.316363i
\(358\) 0 0
\(359\) −8.87845 + 5.12598i −0.468587 + 0.270539i −0.715648 0.698461i \(-0.753868\pi\)
0.247061 + 0.969000i \(0.420535\pi\)
\(360\) 0 0
\(361\) −18.9142 + 1.80410i −0.995482 + 0.0949524i
\(362\) 0 0
\(363\) −17.4595 30.2407i −0.916386 1.58723i
\(364\) 0 0
\(365\) −4.51589 + 7.82176i −0.236373 + 0.409410i
\(366\) 0 0
\(367\) 5.46679 + 3.15625i 0.285364 + 0.164755i 0.635849 0.771813i \(-0.280650\pi\)
−0.350485 + 0.936568i \(0.613983\pi\)
\(368\) 0 0
\(369\) 23.8123i 1.23962i
\(370\) 0 0
\(371\) 1.07914 1.86912i 0.0560261 0.0970401i
\(372\) 0 0
\(373\) 10.9554i 0.567251i −0.958935 0.283625i \(-0.908463\pi\)
0.958935 0.283625i \(-0.0915372\pi\)
\(374\) 0 0
\(375\) −1.59901 2.76957i −0.0825726 0.143020i
\(376\) 0 0
\(377\) 11.4058 + 19.7554i 0.587429 + 1.01746i
\(378\) 0 0
\(379\) −8.80587 −0.452327 −0.226164 0.974089i \(-0.572618\pi\)
−0.226164 + 0.974089i \(0.572618\pi\)
\(380\) 0 0
\(381\) 37.7552 1.93426
\(382\) 0 0
\(383\) 1.26606 + 2.19288i 0.0646927 + 0.112051i 0.896558 0.442927i \(-0.146060\pi\)
−0.831865 + 0.554978i \(0.812727\pi\)
\(384\) 0 0
\(385\) −0.337440 0.584463i −0.0171975 0.0297870i
\(386\) 0 0
\(387\) 56.9632i 2.89560i
\(388\) 0 0
\(389\) 10.5807 18.3263i 0.536462 0.929179i −0.462629 0.886552i \(-0.653094\pi\)
0.999091 0.0426271i \(-0.0135727\pi\)
\(390\) 0 0
\(391\) 4.59241i 0.232248i
\(392\) 0 0
\(393\) 18.1172 + 10.4600i 0.913894 + 0.527637i
\(394\) 0 0
\(395\) 3.01757 5.22658i 0.151830 0.262978i
\(396\) 0 0
\(397\) −9.85333 17.0665i −0.494525 0.856542i 0.505455 0.862853i \(-0.331325\pi\)
−0.999980 + 0.00631086i \(0.997991\pi\)
\(398\) 0 0
\(399\) −17.8624 27.7976i −0.894239 1.39162i
\(400\) 0 0
\(401\) 11.3581 6.55761i 0.567197 0.327471i −0.188832 0.982009i \(-0.560470\pi\)
0.756029 + 0.654538i \(0.227137\pi\)
\(402\) 0 0
\(403\) 16.3396 + 9.43366i 0.813933 + 0.469924i
\(404\) 0 0
\(405\) −10.7762 + 18.6650i −0.535475 + 0.927470i
\(406\) 0 0
\(407\) 2.85998 0.141764
\(408\) 0 0
\(409\) −30.4181 17.5619i −1.50408 0.868380i −0.999989 0.00472953i \(-0.998495\pi\)
−0.504090 0.863651i \(-0.668172\pi\)
\(410\) 0 0
\(411\) 5.98169 0.295055
\(412\) 0 0
\(413\) 19.1152 11.0362i 0.940599 0.543055i
\(414\) 0 0
\(415\) 6.20415 3.58197i 0.304550 0.175832i
\(416\) 0 0
\(417\) 58.9021i 2.88445i
\(418\) 0 0
\(419\) 5.62265i 0.274685i −0.990524 0.137342i \(-0.956144\pi\)
0.990524 0.137342i \(-0.0438560\pi\)
\(420\) 0 0
\(421\) −26.0203 + 15.0228i −1.26815 + 0.732167i −0.974638 0.223788i \(-0.928158\pi\)
−0.293513 + 0.955955i \(0.594824\pi\)
\(422\) 0 0
\(423\) −40.9439 + 23.6390i −1.99076 + 1.14937i
\(424\) 0 0
\(425\) −1.57710 −0.0765007
\(426\) 0 0
\(427\) 29.9886 + 17.3139i 1.45125 + 0.837880i
\(428\) 0 0
\(429\) −3.07314 −0.148373
\(430\) 0 0
\(431\) 1.27750 2.21269i 0.0615348 0.106581i −0.833617 0.552343i \(-0.813734\pi\)
0.895152 + 0.445762i \(0.147067\pi\)
\(432\) 0 0
\(433\) 33.4432 + 19.3084i 1.60718 + 0.927904i 0.989998 + 0.141081i \(0.0450578\pi\)
0.617179 + 0.786823i \(0.288275\pi\)
\(434\) 0 0
\(435\) −18.7191 + 10.8075i −0.897512 + 0.518179i
\(436\) 0 0
\(437\) −5.81676 + 11.2815i −0.278254 + 0.539668i
\(438\) 0 0
\(439\) 1.31689 + 2.28092i 0.0628518 + 0.108863i 0.895739 0.444580i \(-0.146647\pi\)
−0.832887 + 0.553443i \(0.813314\pi\)
\(440\) 0 0
\(441\) −4.99246 + 8.64720i −0.237736 + 0.411771i
\(442\) 0 0
\(443\) −34.0506 19.6591i −1.61779 0.934034i −0.987489 0.157686i \(-0.949597\pi\)
−0.630305 0.776348i \(-0.717070\pi\)
\(444\) 0 0
\(445\) 3.46410i 0.164214i
\(446\) 0 0
\(447\) −14.7546 + 25.5558i −0.697870 + 1.20875i
\(448\) 0 0
\(449\) 24.8922i 1.17473i −0.809321 0.587367i \(-0.800165\pi\)
0.809321 0.587367i \(-0.199835\pi\)
\(450\) 0 0
\(451\) 0.469040 + 0.812401i 0.0220862 + 0.0382545i
\(452\) 0 0
\(453\) −32.1331 55.6562i −1.50975 2.61496i
\(454\) 0 0
\(455\) 8.00002 0.375047
\(456\) 0 0
\(457\) 17.5771 0.822222 0.411111 0.911585i \(-0.365141\pi\)
0.411111 + 0.911585i \(0.365141\pi\)
\(458\) 0 0
\(459\) 10.6605 + 18.4646i 0.497591 + 0.861853i
\(460\) 0 0
\(461\) −5.33266 9.23644i −0.248367 0.430184i 0.714706 0.699425i \(-0.246560\pi\)
−0.963073 + 0.269241i \(0.913227\pi\)
\(462\) 0 0
\(463\) 18.7309i 0.870497i 0.900310 + 0.435248i \(0.143339\pi\)
−0.900310 + 0.435248i \(0.856661\pi\)
\(464\) 0 0
\(465\) −8.93879 + 15.4824i −0.414527 + 0.717981i
\(466\) 0 0
\(467\) 4.25201i 0.196760i −0.995149 0.0983798i \(-0.968634\pi\)
0.995149 0.0983798i \(-0.0313660\pi\)
\(468\) 0 0
\(469\) −10.5620 6.09799i −0.487709 0.281579i
\(470\) 0 0
\(471\) −14.9110 + 25.8266i −0.687061 + 1.19002i
\(472\) 0 0
\(473\) −1.12203 1.94341i −0.0515909 0.0893580i
\(474\) 0 0
\(475\) 3.87424 + 1.99756i 0.177762 + 0.0916546i
\(476\) 0 0
\(477\) 5.69913 3.29039i 0.260945 0.150657i
\(478\) 0 0
\(479\) −31.8291 18.3765i −1.45431 0.839645i −0.455587 0.890191i \(-0.650571\pi\)
−0.998722 + 0.0505459i \(0.983904\pi\)
\(480\) 0 0
\(481\) −16.9511 + 29.3602i −0.772904 + 1.33871i
\(482\) 0 0
\(483\) −22.0735 −1.00438
\(484\) 0 0
\(485\) −8.77623 5.06696i −0.398508 0.230079i
\(486\) 0 0
\(487\) −2.52442 −0.114392 −0.0571961 0.998363i \(-0.518216\pi\)
−0.0571961 + 0.998363i \(0.518216\pi\)
\(488\) 0 0
\(489\) −10.8410 + 6.25906i −0.490248 + 0.283045i
\(490\) 0 0
\(491\) −12.4691 + 7.19902i −0.562722 + 0.324887i −0.754237 0.656602i \(-0.771993\pi\)
0.191516 + 0.981490i \(0.438660\pi\)
\(492\) 0 0
\(493\) 10.6594i 0.480075i
\(494\) 0 0
\(495\) 2.05777i 0.0924898i
\(496\) 0 0
\(497\) 25.0381 14.4558i 1.12311 0.648430i
\(498\) 0 0
\(499\) 11.8211 6.82490i 0.529184 0.305525i −0.211500 0.977378i \(-0.567835\pi\)
0.740684 + 0.671853i \(0.234502\pi\)
\(500\) 0 0
\(501\) −52.8847 −2.36272
\(502\) 0 0
\(503\) 1.23287 + 0.711800i 0.0549711 + 0.0317376i 0.527234 0.849720i \(-0.323229\pi\)
−0.472263 + 0.881458i \(0.656563\pi\)
\(504\) 0 0
\(505\) −9.07314 −0.403749
\(506\) 0 0
\(507\) −2.57264 + 4.45593i −0.114255 + 0.197895i
\(508\) 0 0
\(509\) 7.77899 + 4.49120i 0.344798 + 0.199069i 0.662392 0.749158i \(-0.269542\pi\)
−0.317594 + 0.948227i \(0.602875\pi\)
\(510\) 0 0
\(511\) 18.5401 10.7041i 0.820167 0.473524i
\(512\) 0 0
\(513\) −2.80087 58.8620i −0.123661 2.59882i
\(514\) 0 0
\(515\) 2.65404 + 4.59693i 0.116951 + 0.202565i
\(516\) 0 0
\(517\) 0.931254 1.61298i 0.0409565 0.0709387i
\(518\) 0 0
\(519\) −52.0517 30.0521i −2.28482 1.31914i
\(520\) 0 0
\(521\) 37.3850i 1.63787i 0.573888 + 0.818934i \(0.305434\pi\)
−0.573888 + 0.818934i \(0.694566\pi\)
\(522\) 0 0
\(523\) −8.54165 + 14.7946i −0.373500 + 0.646921i −0.990101 0.140354i \(-0.955176\pi\)
0.616601 + 0.787276i \(0.288509\pi\)
\(524\) 0 0
\(525\) 7.58036i 0.330834i
\(526\) 0 0
\(527\) 4.40816 + 7.63516i 0.192022 + 0.332593i
\(528\) 0 0
\(529\) −7.26034 12.5753i −0.315667 0.546751i
\(530\) 0 0
\(531\) 67.3006 2.92060
\(532\) 0 0
\(533\) −11.1200 −0.481661
\(534\) 0 0
\(535\) 3.74200 + 6.48134i 0.161781 + 0.280213i
\(536\) 0 0
\(537\) −28.0966 48.6647i −1.21246 2.10004i
\(538\) 0 0
\(539\) 0.393354i 0.0169430i
\(540\) 0 0
\(541\) 17.6172 30.5140i 0.757425 1.31190i −0.186735 0.982410i \(-0.559791\pi\)
0.944160 0.329488i \(-0.106876\pi\)
\(542\) 0 0
\(543\) 47.1164i 2.02196i
\(544\) 0 0
\(545\) 2.21899 + 1.28113i 0.0950510 + 0.0548777i
\(546\) 0 0
\(547\) −13.0146 + 22.5419i −0.556462 + 0.963821i 0.441326 + 0.897347i \(0.354508\pi\)
−0.997788 + 0.0664738i \(0.978825\pi\)
\(548\) 0 0
\(549\) 52.7917 + 91.4380i 2.25310 + 3.90248i
\(550\) 0 0
\(551\) 13.5012 26.1854i 0.575172 1.11554i
\(552\) 0 0
\(553\) −12.3887 + 7.15262i −0.526821 + 0.304160i
\(554\) 0 0
\(555\) −27.8200 16.0619i −1.18089 0.681789i
\(556\) 0 0
\(557\) 0.487681 0.844688i 0.0206637 0.0357906i −0.855509 0.517789i \(-0.826755\pi\)
0.876172 + 0.481998i \(0.160089\pi\)
\(558\) 0 0
\(559\) 26.6010 1.12510
\(560\) 0 0
\(561\) −1.24363 0.718008i −0.0525059 0.0303143i
\(562\) 0 0
\(563\) −15.0115 −0.632660 −0.316330 0.948649i \(-0.602451\pi\)
−0.316330 + 0.948649i \(0.602451\pi\)
\(564\) 0 0
\(565\) 17.3287 10.0047i 0.729024 0.420902i
\(566\) 0 0
\(567\) 44.2421 25.5432i 1.85799 1.07271i
\(568\) 0 0
\(569\) 16.1089i 0.675321i −0.941268 0.337660i \(-0.890364\pi\)
0.941268 0.337660i \(-0.109636\pi\)
\(570\) 0 0
\(571\) 8.07105i 0.337763i −0.985636 0.168882i \(-0.945984\pi\)
0.985636 0.168882i \(-0.0540155\pi\)
\(572\) 0 0
\(573\) 27.6820 15.9822i 1.15643 0.667667i
\(574\) 0 0
\(575\) 2.52180 1.45596i 0.105166 0.0607179i
\(576\) 0 0
\(577\) −27.4451 −1.14256 −0.571278 0.820757i \(-0.693552\pi\)
−0.571278 + 0.820757i \(0.693552\pi\)
\(578\) 0 0
\(579\) −16.2214 9.36543i −0.674138 0.389214i
\(580\) 0 0
\(581\) −16.9809 −0.704486
\(582\) 0 0
\(583\) −0.129624 + 0.224516i −0.00536850 + 0.00929851i
\(584\) 0 0
\(585\) 21.1248 + 12.1964i 0.873402 + 0.504259i
\(586\) 0 0
\(587\) 21.9830 12.6919i 0.907335 0.523850i 0.0277619 0.999615i \(-0.491162\pi\)
0.879573 + 0.475765i \(0.157829\pi\)
\(588\) 0 0
\(589\) −1.15817 24.3396i −0.0477215 1.00290i
\(590\) 0 0
\(591\) −26.6480 46.1557i −1.09615 1.89859i
\(592\) 0 0
\(593\) −16.4960 + 28.5720i −0.677411 + 1.17331i 0.298347 + 0.954458i \(0.403565\pi\)
−0.975758 + 0.218853i \(0.929769\pi\)
\(594\) 0 0
\(595\) 3.23742 + 1.86912i 0.132721 + 0.0766266i
\(596\) 0 0
\(597\) 60.8122i 2.48888i
\(598\) 0 0
\(599\) −22.4255 + 38.8422i −0.916283 + 1.58705i −0.111271 + 0.993790i \(0.535492\pi\)
−0.805012 + 0.593259i \(0.797841\pi\)
\(600\) 0 0
\(601\) 6.41143i 0.261528i 0.991414 + 0.130764i \(0.0417430\pi\)
−0.991414 + 0.130764i \(0.958257\pi\)
\(602\) 0 0
\(603\) −18.5933 32.2046i −0.757178 1.31147i
\(604\) 0 0
\(605\) −5.45947 9.45607i −0.221959 0.384444i
\(606\) 0 0
\(607\) −6.32967 −0.256913 −0.128457 0.991715i \(-0.541002\pi\)
−0.128457 + 0.991715i \(0.541002\pi\)
\(608\) 0 0
\(609\) 51.2345 2.07613
\(610\) 0 0
\(611\) 11.0391 + 19.1203i 0.446594 + 0.773523i
\(612\) 0 0
\(613\) 8.84102 + 15.3131i 0.357085 + 0.618490i 0.987473 0.157791i \(-0.0504372\pi\)
−0.630387 + 0.776281i \(0.717104\pi\)
\(614\) 0 0
\(615\) 10.5367i 0.424880i
\(616\) 0 0
\(617\) 15.0366 26.0441i 0.605349 1.04850i −0.386647 0.922228i \(-0.626367\pi\)
0.991996 0.126268i \(-0.0403000\pi\)
\(618\) 0 0
\(619\) 28.6730i 1.15246i 0.817286 + 0.576232i \(0.195478\pi\)
−0.817286 + 0.576232i \(0.804522\pi\)
\(620\) 0 0
\(621\) −34.0926 19.6834i −1.36809 0.789867i
\(622\) 0 0
\(623\) 4.10553 7.11098i 0.164484 0.284895i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 2.14560 + 3.33901i 0.0856872 + 0.133347i
\(628\) 0 0
\(629\) −13.7194 + 7.92091i −0.547029 + 0.315827i
\(630\) 0 0
\(631\) 24.7249 + 14.2749i 0.984282 + 0.568276i 0.903560 0.428461i \(-0.140944\pi\)
0.0807220 + 0.996737i \(0.474277\pi\)
\(632\) 0 0
\(633\) −9.80445 + 16.9818i −0.389692 + 0.674966i
\(634\) 0 0
\(635\) 11.8058 0.468498
\(636\) 0 0
\(637\) 4.03812 + 2.33141i 0.159996 + 0.0923739i
\(638\) 0 0
\(639\) 88.1539 3.48731
\(640\) 0 0
\(641\) −41.9086 + 24.1959i −1.65529 + 0.955681i −0.680443 + 0.732801i \(0.738212\pi\)
−0.974846 + 0.222880i \(0.928454\pi\)
\(642\) 0 0
\(643\) −20.3510 + 11.7497i −0.802566 + 0.463362i −0.844368 0.535764i \(-0.820024\pi\)
0.0418014 + 0.999126i \(0.486690\pi\)
\(644\) 0 0
\(645\) 25.2056i 0.992470i
\(646\) 0 0
\(647\) 45.2320i 1.77825i −0.457662 0.889126i \(-0.651313\pi\)
0.457662 0.889126i \(-0.348687\pi\)
\(648\) 0 0
\(649\) −2.29609 + 1.32565i −0.0901294 + 0.0520362i
\(650\) 0 0
\(651\) 36.6985 21.1879i 1.43833 0.830418i
\(652\) 0 0
\(653\) −30.4618 −1.19206 −0.596032 0.802961i \(-0.703257\pi\)
−0.596032 + 0.802961i \(0.703257\pi\)
\(654\) 0 0
\(655\) 5.66514 + 3.27077i 0.221355 + 0.127800i
\(656\) 0 0
\(657\) 65.2758 2.54665
\(658\) 0 0
\(659\) −20.9829 + 36.3434i −0.817377 + 1.41574i 0.0902312 + 0.995921i \(0.471239\pi\)
−0.907608 + 0.419818i \(0.862094\pi\)
\(660\) 0 0
\(661\) 22.2762 + 12.8612i 0.866445 + 0.500242i 0.866165 0.499758i \(-0.166578\pi\)
0.000279760 1.00000i \(0.499911\pi\)
\(662\) 0 0
\(663\) 14.7419 8.51127i 0.572530 0.330550i
\(664\) 0 0
\(665\) −5.58546 8.69214i −0.216595 0.337067i
\(666\) 0 0
\(667\) −9.84064 17.0445i −0.381031 0.659965i
\(668\) 0 0
\(669\) −6.43879 + 11.1523i −0.248938 + 0.431173i
\(670\) 0 0
\(671\) −3.60218 2.07972i −0.139061 0.0802867i
\(672\) 0 0
\(673\) 24.7605i 0.954445i 0.878782 + 0.477223i \(0.158357\pi\)
−0.878782 + 0.477223i \(0.841643\pi\)
\(674\) 0 0
\(675\) −6.75957 + 11.7079i −0.260176 + 0.450638i
\(676\) 0 0
\(677\) 6.18702i 0.237786i 0.992907 + 0.118893i \(0.0379346\pi\)
−0.992907 + 0.118893i \(0.962065\pi\)
\(678\) 0 0
\(679\) 12.0104 + 20.8025i 0.460915 + 0.798328i
\(680\) 0 0
\(681\) 46.1367 + 79.9111i 1.76796 + 3.06220i
\(682\) 0 0
\(683\) 17.2866 0.661454 0.330727 0.943726i \(-0.392706\pi\)
0.330727 + 0.943726i \(0.392706\pi\)
\(684\) 0 0
\(685\) 1.87043 0.0714656
\(686\) 0 0
\(687\) −28.3793 49.1543i −1.08274 1.87536i
\(688\) 0 0
\(689\) −1.53657 2.66142i −0.0585386 0.101392i
\(690\) 0 0
\(691\) 27.1514i 1.03289i 0.856321 + 0.516443i \(0.172744\pi\)
−0.856321 + 0.516443i \(0.827256\pi\)
\(692\) 0 0
\(693\) −2.43879 + 4.22411i −0.0926421 + 0.160461i
\(694\) 0 0
\(695\) 18.4183i 0.698646i
\(696\) 0 0
\(697\) −4.50000 2.59808i −0.170450 0.0984092i
\(698\) 0 0
\(699\) 36.3590 62.9757i 1.37523 2.38196i
\(700\) 0 0
\(701\) 20.4829 + 35.4774i 0.773628 + 1.33996i 0.935562 + 0.353162i \(0.114894\pi\)
−0.161934 + 0.986802i \(0.551773\pi\)
\(702\) 0 0
\(703\) 43.7352 2.08108i 1.64950 0.0784895i
\(704\) 0 0
\(705\) −18.1172 + 10.4600i −0.682335 + 0.393946i
\(706\) 0 0
\(707\) 18.6250 + 10.7532i 0.700466 + 0.404414i
\(708\) 0 0
\(709\) 11.6578 20.1919i 0.437817 0.758322i −0.559704 0.828693i \(-0.689085\pi\)
0.997521 + 0.0703713i \(0.0224184\pi\)
\(710\) 0 0
\(711\) −43.6180 −1.63580
\(712\) 0 0
\(713\) −14.0974 8.13913i −0.527951 0.304813i
\(714\) 0 0
\(715\) −0.960950 −0.0359375
\(716\) 0 0
\(717\) −25.3935 + 14.6609i −0.948337 + 0.547523i
\(718\) 0 0
\(719\) 12.7833 7.38042i 0.476735 0.275243i −0.242320 0.970196i \(-0.577908\pi\)
0.719055 + 0.694953i \(0.244575\pi\)
\(720\) 0 0
\(721\) 12.5819i 0.468574i
\(722\) 0 0
\(723\) 33.8043i 1.25719i
\(724\) 0 0
\(725\) −5.85333 + 3.37942i −0.217387 + 0.125509i
\(726\) 0 0
\(727\) −13.6055 + 7.85515i −0.504601 + 0.291331i −0.730611 0.682794i \(-0.760765\pi\)
0.226011 + 0.974125i \(0.427432\pi\)
\(728\) 0 0
\(729\) 26.0636 0.965318
\(730\) 0 0
\(731\) 10.7648 + 6.21506i 0.398151 + 0.229872i
\(732\) 0 0
\(733\) −10.8529 −0.400863 −0.200431 0.979708i \(-0.564234\pi\)
−0.200431 + 0.979708i \(0.564234\pi\)
\(734\) 0 0
\(735\) −2.20911 + 3.82629i −0.0814843 + 0.141135i
\(736\) 0 0
\(737\) 1.26869 + 0.732480i 0.0467329 + 0.0269813i
\(738\) 0 0
\(739\) 4.18805 2.41797i 0.154060 0.0889466i −0.420988 0.907066i \(-0.638317\pi\)
0.575048 + 0.818120i \(0.304983\pi\)
\(740\) 0 0
\(741\) −46.9948 + 2.23619i −1.72640 + 0.0821484i
\(742\) 0 0
\(743\) 13.0895 + 22.6717i 0.480207 + 0.831743i 0.999742 0.0227062i \(-0.00722823\pi\)
−0.519535 + 0.854449i \(0.673895\pi\)
\(744\) 0 0
\(745\) −4.61367 + 7.99111i −0.169032 + 0.292772i
\(746\) 0 0
\(747\) −44.8395 25.8881i −1.64059 0.947197i
\(748\) 0 0
\(749\) 17.7395i 0.648189i
\(750\) 0 0
\(751\) 7.27683 12.6038i 0.265535 0.459920i −0.702169 0.712011i \(-0.747785\pi\)
0.967704 + 0.252090i \(0.0811180\pi\)
\(752\) 0 0
\(753\) 73.2326i 2.66874i
\(754\) 0 0
\(755\) −10.0478 17.4033i −0.365678 0.633372i
\(756\) 0 0
\(757\) 6.34580 + 10.9912i 0.230642 + 0.399483i 0.957997 0.286778i \(-0.0925841\pi\)
−0.727355 + 0.686261i \(0.759251\pi\)
\(758\) 0 0
\(759\) 2.65143 0.0962407
\(760\) 0 0
\(761\) 30.6971 1.11277 0.556385 0.830925i \(-0.312188\pi\)
0.556385 + 0.830925i \(0.312188\pi\)
\(762\) 0 0
\(763\) −3.03671 5.25973i −0.109936 0.190415i
\(764\) 0 0
\(765\) 5.69913 + 9.87118i 0.206052 + 0.356893i
\(766\) 0 0
\(767\) 31.4285i 1.13482i
\(768\) 0 0
\(769\) −13.4388 + 23.2767i −0.484615 + 0.839378i −0.999844 0.0176746i \(-0.994374\pi\)
0.515229 + 0.857053i \(0.327707\pi\)
\(770\) 0 0
\(771\) 52.9124i 1.90559i
\(772\) 0 0
\(773\) 17.5155 + 10.1126i 0.629989 + 0.363724i 0.780748 0.624846i \(-0.214838\pi\)
−0.150759 + 0.988571i \(0.548172\pi\)
\(774\) 0 0
\(775\) −2.79510 + 4.84126i −0.100403 + 0.173903i
\(776\) 0 0
\(777\) 38.0719 + 65.9425i 1.36582 + 2.36567i
\(778\) 0 0
\(779\) 7.76377 + 12.0820i 0.278166 + 0.432884i
\(780\) 0 0
\(781\) −3.00754 + 1.73640i −0.107618 + 0.0621334i
\(782\) 0 0
\(783\) 79.1320 + 45.6869i 2.82795 + 1.63272i
\(784\) 0 0
\(785\) −4.66256 + 8.07579i −0.166414 + 0.288237i
\(786\) 0 0
\(787\) 7.46636 0.266147 0.133074 0.991106i \(-0.457515\pi\)
0.133074 + 0.991106i \(0.457515\pi\)
\(788\) 0 0
\(789\) −5.55246 3.20572i −0.197673 0.114127i
\(790\) 0 0
\(791\) −47.4290 −1.68638
\(792\) 0 0
\(793\) 42.7003 24.6530i 1.51633 0.875455i
\(794\) 0 0
\(795\) 2.52180 1.45596i 0.0894392 0.0516377i
\(796\) 0 0
\(797\) 27.6151i 0.978176i 0.872234 + 0.489088i \(0.162670\pi\)
−0.872234 + 0.489088i \(0.837330\pi\)
\(798\) 0 0
\(799\) 10.3167i 0.364978i
\(800\) 0 0
\(801\) 21.6820 12.5181i 0.766097 0.442306i
\(802\) 0 0
\(803\) −2.22701 + 1.28577i −0.0785895 + 0.0453737i
\(804\) 0 0
\(805\) −6.90222 −0.243271
\(806\) 0 0
\(807\) −23.4920 13.5631i −0.826958 0.477444i
\(808\) 0 0
\(809\) −26.0318 −0.915229 −0.457614 0.889151i \(-0.651296\pi\)
−0.457614 + 0.889151i \(0.651296\pi\)
\(810\) 0 0
\(811\) −5.44914 + 9.43819i −0.191345 + 0.331420i −0.945696 0.325052i \(-0.894618\pi\)
0.754351 + 0.656471i \(0.227952\pi\)
\(812\) 0 0
\(813\) 89.5338 + 51.6923i 3.14009 + 1.81293i
\(814\) 0 0
\(815\) −3.38991 + 1.95717i −0.118743 + 0.0685566i
\(816\) 0 0
\(817\) −18.5723 28.9024i −0.649763 1.01117i
\(818\) 0 0
\(819\) −28.9095 50.0727i −1.01018 1.74968i
\(820\) 0 0
\(821\) 10.9877 19.0312i 0.383473 0.664194i −0.608083 0.793873i \(-0.708061\pi\)
0.991556 + 0.129679i \(0.0413947\pi\)
\(822\) 0 0
\(823\) 25.9680 + 14.9926i 0.905186 + 0.522609i 0.878879 0.477044i \(-0.158292\pi\)
0.0263069 + 0.999654i \(0.491625\pi\)
\(824\) 0 0
\(825\) 0.910540i 0.0317009i
\(826\) 0 0
\(827\) 17.2282 29.8401i 0.599083 1.03764i −0.393873 0.919165i \(-0.628865\pi\)
0.992957 0.118478i \(-0.0378016\pi\)
\(828\) 0 0
\(829\) 10.2606i 0.356365i 0.983997 + 0.178183i \(0.0570218\pi\)
−0.983997 + 0.178183i \(0.942978\pi\)
\(830\) 0 0
\(831\) 7.12309 + 12.3376i 0.247097 + 0.427985i
\(832\) 0 0
\(833\) 1.08942 + 1.88693i 0.0377462 + 0.0653784i
\(834\) 0 0
\(835\) −16.5367 −0.572276
\(836\) 0 0
\(837\) 75.5747 2.61224
\(838\) 0 0
\(839\) 10.5207 + 18.2224i 0.363215 + 0.629107i 0.988488 0.151299i \(-0.0483456\pi\)
−0.625273 + 0.780406i \(0.715012\pi\)
\(840\) 0 0
\(841\) 8.34102 + 14.4471i 0.287621 + 0.498175i
\(842\) 0 0
\(843\) 82.1521i 2.82947i
\(844\) 0 0
\(845\) −0.804446 + 1.39334i −0.0276738 + 0.0479324i
\(846\) 0 0
\(847\) 25.8814i 0.889297i
\(848\) 0 0
\(849\) −13.2067 7.62487i −0.453252 0.261685i
\(850\) 0 0
\(851\) 14.6250 25.3312i 0.501338 0.868344i
\(852\) 0 0
\(853\) 0.767876 + 1.33000i 0.0262916 + 0.0455384i 0.878872 0.477058i \(-0.158297\pi\)
−0.852580 + 0.522596i \(0.824963\pi\)
\(854\) 0 0
\(855\) −1.49735 31.4677i −0.0512082 1.07617i
\(856\) 0 0
\(857\) −29.7794 + 17.1932i −1.01725 + 0.587307i −0.913305 0.407276i \(-0.866479\pi\)
−0.103941 + 0.994583i \(0.533145\pi\)
\(858\) 0 0
\(859\) −29.7661 17.1855i −1.01561 0.586361i −0.102779 0.994704i \(-0.532773\pi\)
−0.912829 + 0.408343i \(0.866107\pi\)
\(860\) 0 0
\(861\) −12.4877 + 21.6293i −0.425579 + 0.737125i
\(862\) 0 0
\(863\) −49.1652 −1.67360 −0.836801 0.547507i \(-0.815577\pi\)
−0.836801 + 0.547507i \(0.815577\pi\)
\(864\) 0 0
\(865\) −16.2762 9.39709i −0.553408 0.319511i
\(866\) 0 0
\(867\) −46.4121 −1.57624
\(868\) 0 0
\(869\) 1.48811 0.859161i 0.0504807 0.0291450i
\(870\) 0 0
\(871\) −15.0391 + 8.68283i −0.509580 + 0.294206i
\(872\) 0 0
\(873\) 73.2413i 2.47884i
\(874\) 0 0
\(875\) 2.37033i 0.0801317i
\(876\) 0 0
\(877\) −4.13711 + 2.38856i −0.139700 + 0.0806559i −0.568221 0.822876i \(-0.692368\pi\)
0.428521 + 0.903532i \(0.359035\pi\)
\(878\) 0 0
\(879\) −12.3624 + 7.13746i −0.416975 + 0.240741i
\(880\) 0 0
\(881\) −22.7965 −0.768034 −0.384017 0.923326i \(-0.625460\pi\)
−0.384017 + 0.923326i \(0.625460\pi\)
\(882\) 0 0
\(883\) −28.7846 16.6188i −0.968677 0.559266i −0.0698446 0.997558i \(-0.522250\pi\)
−0.898833 + 0.438292i \(0.855584\pi\)
\(884\) 0 0
\(885\) 29.7798 1.00104
\(886\) 0 0
\(887\) −1.47821 + 2.56033i −0.0496334 + 0.0859676i −0.889775 0.456400i \(-0.849139\pi\)
0.840141 + 0.542368i \(0.182472\pi\)
\(888\) 0 0
\(889\) −24.2345 13.9918i −0.812799 0.469270i
\(890\) 0 0
\(891\) −5.31429 + 3.06821i −0.178035 + 0.102789i
\(892\) 0 0
\(893\) 13.0672 25.3435i 0.437276 0.848088i
\(894\) 0 0
\(895\) −8.78561 15.2171i −0.293671 0.508652i
\(896\) 0 0
\(897\) −15.7150 + 27.2192i −0.524709 + 0.908823i
\(898\) 0 0
\(899\) 32.7213 + 18.8917i 1.09132 + 0.630072i
\(900\) 0 0
\(901\) 1.43602i 0.0478406i
\(902\) 0 0
\(903\) 29.8728 51.7412i 0.994104 1.72184i
\(904\) 0 0
\(905\) 14.7330i 0.489741i
\(906\) 0 0
\(907\) −25.3731 43.9476i −0.842501 1.45926i −0.887773 0.460281i \(-0.847749\pi\)
0.0452721 0.998975i \(-0.485585\pi\)
\(908\) 0 0
\(909\) 32.7873 + 56.7894i 1.08749 + 1.88358i
\(910\) 0 0
\(911\) −51.4152 −1.70346 −0.851730 0.523980i \(-0.824447\pi\)
−0.851730 + 0.523980i \(0.824447\pi\)
\(912\) 0 0
\(913\) 2.03972 0.0675047
\(914\) 0 0
\(915\) 23.3598 + 40.4603i 0.772250 + 1.33758i
\(916\) 0 0
\(917\) −7.75280 13.4282i −0.256020 0.443440i
\(918\) 0 0
\(919\) 21.2071i 0.699558i −0.936832 0.349779i \(-0.886257\pi\)
0.936832 0.349779i \(-0.113743\pi\)
\(920\) 0 0
\(921\) 45.6979 79.1511i 1.50580 2.60812i
\(922\) 0 0
\(923\) 41.1667i 1.35502i
\(924\) 0 0
\(925\) −8.69913 5.02244i −0.286026 0.165137i
\(926\) 0 0
\(927\) 19.1817 33.2236i 0.630009 1.09121i
\(928\) 0 0
\(929\) −21.8032 37.7643i −0.715341 1.23901i −0.962828 0.270116i \(-0.912938\pi\)
0.247487 0.968891i \(-0.420395\pi\)
\(930\) 0 0
\(931\) −0.286227 6.01522i −0.00938070 0.197141i
\(932\) 0 0
\(933\) −19.8486 + 11.4596i −0.649812 + 0.375169i
\(934\) 0 0
\(935\) −0.388873 0.224516i −0.0127175 0.00734246i
\(936\) 0 0
\(937\) −14.5330 + 25.1719i −0.474772 + 0.822330i −0.999583 0.0288896i \(-0.990803\pi\)
0.524810 + 0.851219i \(0.324136\pi\)
\(938\) 0 0
\(939\) 93.6730 3.05690
\(940\) 0 0
\(941\) 25.3641 + 14.6439i 0.826845 + 0.477379i 0.852771 0.522285i \(-0.174920\pi\)
−0.0259264 + 0.999664i \(0.508254\pi\)
\(942\) 0 0
\(943\) 9.59407 0.312426
\(944\) 0 0
\(945\) 27.7516 16.0224i 0.902759 0.521208i
\(946\) 0 0
\(947\) 28.6181 16.5227i 0.929965 0.536915i 0.0431643 0.999068i \(-0.486256\pi\)
0.886800 + 0.462153i \(0.152923\pi\)
\(948\) 0 0
\(949\) 30.4829i 0.989518i
\(950\) 0 0
\(951\) 62.5023i 2.02678i
\(952\) 0 0
\(953\) −42.6275 + 24.6110i −1.38084 + 0.797229i −0.992259 0.124185i \(-0.960368\pi\)
−0.388583 + 0.921414i \(0.627035\pi\)
\(954\) 0 0
\(955\) 8.65599 4.99754i 0.280101 0.161716i
\(956\) 0 0
\(957\) −6.15420 −0.198937
\(958\) 0 0
\(959\) −3.83956 2.21677i −0.123986 0.0715832i
\(960\) 0 0
\(961\) 0.250348 0.00807573
\(962\) 0 0
\(963\) 27.0447 46.8429i 0.871505 1.50949i
\(964\) 0 0
\(965\) −5.07232 2.92851i −0.163284 0.0942720i
\(966\) 0 0
\(967\) 18.2983 10.5645i 0.588433 0.339732i −0.176045 0.984382i \(-0.556330\pi\)
0.764478 + 0.644650i \(0.222997\pi\)
\(968\) 0 0
\(969\) −19.5401 10.0749i −0.627720 0.323653i
\(970\) 0 0
\(971\) −8.46906 14.6689i −0.271785 0.470746i 0.697534 0.716552i \(-0.254281\pi\)
−0.969319 + 0.245806i \(0.920947\pi\)
\(972\) 0 0
\(973\) −21.8287 + 37.8084i −0.699796 + 1.21208i
\(974\) 0 0
\(975\) 9.34749 + 5.39678i 0.299359 + 0.172835i
\(976\) 0 0
\(977\) 4.78497i 0.153085i −0.997066 0.0765424i \(-0.975612\pi\)
0.997066 0.0765424i \(-0.0243881\pi\)
\(978\) 0 0
\(979\) −0.493149 + 0.854160i −0.0157611 + 0.0272991i
\(980\) 0 0
\(981\) 18.5184i 0.591246i
\(982\) 0 0
\(983\) 4.92666 + 8.53322i 0.157136 + 0.272167i 0.933835 0.357705i \(-0.116441\pi\)
−0.776699 + 0.629872i \(0.783107\pi\)
\(984\) 0 0
\(985\) −8.33266 14.4326i −0.265501 0.459861i
\(986\) 0 0
\(987\) 49.5872 1.57838
\(988\) 0 0
\(989\) −22.9507 −0.729791
\(990\) 0 0
\(991\) 28.3907 + 49.1742i 0.901861 + 1.56207i 0.825077 + 0.565021i \(0.191132\pi\)
0.0767839 + 0.997048i \(0.475535\pi\)
\(992\) 0 0
\(993\) −23.2432 40.2585i −0.737602 1.27756i
\(994\) 0 0
\(995\) 19.0156i 0.602834i
\(996\) 0 0
\(997\) 17.3609 30.0699i 0.549824 0.952324i −0.448462 0.893802i \(-0.648028\pi\)
0.998286 0.0585217i \(-0.0186387\pi\)
\(998\) 0 0
\(999\) 135.798i 4.29647i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1520.2.bq.q.31.1 12
4.3 odd 2 inner 1520.2.bq.q.31.6 yes 12
19.8 odd 6 inner 1520.2.bq.q.1471.6 yes 12
76.27 even 6 inner 1520.2.bq.q.1471.1 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1520.2.bq.q.31.1 12 1.1 even 1 trivial
1520.2.bq.q.31.6 yes 12 4.3 odd 2 inner
1520.2.bq.q.1471.1 yes 12 76.27 even 6 inner
1520.2.bq.q.1471.6 yes 12 19.8 odd 6 inner