Properties

Label 1520.2.bq.q.1471.3
Level $1520$
Weight $2$
Character 1520.1471
Analytic conductor $12.137$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1520,2,Mod(31,1520)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1520.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1520, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1520 = 2^{4} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1520.bq (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,-6,0,0,0,-4,0,0,0,18,0,0,0,18,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.1372611072\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 8x^{10} + 53x^{8} + 86x^{6} + 113x^{4} + 11x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1471.3
Root \(1.25214 - 2.16877i\) of defining polynomial
Character \(\chi\) \(=\) 1520.1471
Dual form 1520.2.bq.q.31.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.199658 + 0.345817i) q^{3} +(-0.500000 + 0.866025i) q^{5} +4.49947i q^{7} +(1.42027 + 2.45999i) q^{9} -1.01548i q^{11} +(5.20234 - 3.00357i) q^{13} +(-0.199658 - 0.345817i) q^{15} +(-0.351169 + 0.608243i) q^{17} +(3.21688 + 2.94137i) q^{19} +(-1.55599 - 0.898354i) q^{21} +(0.140227 - 0.0809603i) q^{23} +(-0.500000 - 0.866025i) q^{25} -2.33222 q^{27} +(-3.40716 + 1.96713i) q^{29} +0.0532027 q^{31} +(0.351169 + 0.202748i) q^{33} +(-3.89665 - 2.24973i) q^{35} -4.61593i q^{37} +2.39875i q^{39} +(6.40716 + 3.69918i) q^{41} +(2.21760 + 1.28033i) q^{43} -2.84055 q^{45} +(-9.93111 + 5.73373i) q^{47} -13.2452 q^{49} +(-0.140227 - 0.242881i) q^{51} +(0.351169 - 0.202748i) q^{53} +(0.879428 + 0.507738i) q^{55} +(-1.65945 + 0.525187i) q^{57} +(-7.19957 + 12.4700i) q^{59} +(-5.04289 - 8.73453i) q^{61} +(-11.0686 + 6.39048i) q^{63} +6.00714i q^{65} +(4.60925 + 7.98346i) q^{67} +0.0646574i q^{69} +(-6.14709 + 10.6471i) q^{71} +(6.69172 - 11.5904i) q^{73} +0.399316 q^{75} +4.56910 q^{77} +(4.66246 - 8.07561i) q^{79} +(-3.79517 + 6.57343i) q^{81} -13.7043i q^{83} +(-0.351169 - 0.608243i) q^{85} -1.57101i q^{87} +(-3.00000 + 1.73205i) q^{89} +(13.5145 + 23.4078i) q^{91} +(-0.0106223 + 0.0183984i) q^{93} +(-4.15574 + 1.31522i) q^{95} +(1.79517 + 1.03644i) q^{97} +(2.49806 - 1.44225i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{5} - 4 q^{9} + 18 q^{13} + 18 q^{17} + 24 q^{21} - 6 q^{25} + 24 q^{29} - 18 q^{33} + 12 q^{41} + 8 q^{45} - 28 q^{49} - 18 q^{53} - 62 q^{57} + 26 q^{61} + 16 q^{73} + 56 q^{77} - 66 q^{81}+ \cdots + 42 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1520\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(401\) \(1141\) \(1217\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.199658 + 0.345817i −0.115272 + 0.199658i −0.917889 0.396838i \(-0.870107\pi\)
0.802616 + 0.596496i \(0.203441\pi\)
\(4\) 0 0
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) 4.49947i 1.70064i 0.526266 + 0.850320i \(0.323591\pi\)
−0.526266 + 0.850320i \(0.676409\pi\)
\(8\) 0 0
\(9\) 1.42027 + 2.45999i 0.473425 + 0.819995i
\(10\) 0 0
\(11\) 1.01548i 0.306178i −0.988212 0.153089i \(-0.951078\pi\)
0.988212 0.153089i \(-0.0489221\pi\)
\(12\) 0 0
\(13\) 5.20234 3.00357i 1.44287 0.833041i 0.444829 0.895616i \(-0.353264\pi\)
0.998040 + 0.0625747i \(0.0199312\pi\)
\(14\) 0 0
\(15\) −0.199658 0.345817i −0.0515514 0.0892897i
\(16\) 0 0
\(17\) −0.351169 + 0.608243i −0.0851711 + 0.147521i −0.905464 0.424423i \(-0.860477\pi\)
0.820293 + 0.571943i \(0.193810\pi\)
\(18\) 0 0
\(19\) 3.21688 + 2.94137i 0.738004 + 0.674796i
\(20\) 0 0
\(21\) −1.55599 0.898354i −0.339546 0.196037i
\(22\) 0 0
\(23\) 0.140227 0.0809603i 0.0292394 0.0168814i −0.485309 0.874343i \(-0.661293\pi\)
0.514548 + 0.857461i \(0.327960\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) −2.33222 −0.448836
\(28\) 0 0
\(29\) −3.40716 + 1.96713i −0.632695 + 0.365286i −0.781795 0.623536i \(-0.785696\pi\)
0.149100 + 0.988822i \(0.452362\pi\)
\(30\) 0 0
\(31\) 0.0532027 0.00955548 0.00477774 0.999989i \(-0.498479\pi\)
0.00477774 + 0.999989i \(0.498479\pi\)
\(32\) 0 0
\(33\) 0.351169 + 0.202748i 0.0611307 + 0.0352939i
\(34\) 0 0
\(35\) −3.89665 2.24973i −0.658655 0.380275i
\(36\) 0 0
\(37\) 4.61593i 0.758854i −0.925222 0.379427i \(-0.876121\pi\)
0.925222 0.379427i \(-0.123879\pi\)
\(38\) 0 0
\(39\) 2.39875i 0.384107i
\(40\) 0 0
\(41\) 6.40716 + 3.69918i 1.00063 + 0.577715i 0.908435 0.418026i \(-0.137278\pi\)
0.0921960 + 0.995741i \(0.470611\pi\)
\(42\) 0 0
\(43\) 2.21760 + 1.28033i 0.338181 + 0.195249i 0.659467 0.751733i \(-0.270782\pi\)
−0.321286 + 0.946982i \(0.604115\pi\)
\(44\) 0 0
\(45\) −2.84055 −0.423444
\(46\) 0 0
\(47\) −9.93111 + 5.73373i −1.44860 + 0.836350i −0.998398 0.0565762i \(-0.981982\pi\)
−0.450203 + 0.892926i \(0.648648\pi\)
\(48\) 0 0
\(49\) −13.2452 −1.89217
\(50\) 0 0
\(51\) −0.140227 0.242881i −0.0196358 0.0340101i
\(52\) 0 0
\(53\) 0.351169 0.202748i 0.0482368 0.0278495i −0.475688 0.879614i \(-0.657801\pi\)
0.523924 + 0.851765i \(0.324467\pi\)
\(54\) 0 0
\(55\) 0.879428 + 0.507738i 0.118582 + 0.0684634i
\(56\) 0 0
\(57\) −1.65945 + 0.525187i −0.219800 + 0.0695628i
\(58\) 0 0
\(59\) −7.19957 + 12.4700i −0.937304 + 1.62346i −0.166832 + 0.985985i \(0.553354\pi\)
−0.770472 + 0.637473i \(0.779980\pi\)
\(60\) 0 0
\(61\) −5.04289 8.73453i −0.645675 1.11834i −0.984145 0.177365i \(-0.943243\pi\)
0.338470 0.940977i \(-0.390091\pi\)
\(62\) 0 0
\(63\) −11.0686 + 6.39048i −1.39452 + 0.805124i
\(64\) 0 0
\(65\) 6.00714i 0.745094i
\(66\) 0 0
\(67\) 4.60925 + 7.98346i 0.563110 + 0.975335i 0.997223 + 0.0744766i \(0.0237286\pi\)
−0.434113 + 0.900859i \(0.642938\pi\)
\(68\) 0 0
\(69\) 0.0646574i 0.00778384i
\(70\) 0 0
\(71\) −6.14709 + 10.6471i −0.729525 + 1.26357i 0.227559 + 0.973764i \(0.426925\pi\)
−0.957084 + 0.289810i \(0.906408\pi\)
\(72\) 0 0
\(73\) 6.69172 11.5904i 0.783206 1.35655i −0.146859 0.989157i \(-0.546916\pi\)
0.930065 0.367395i \(-0.119750\pi\)
\(74\) 0 0
\(75\) 0.399316 0.0461090
\(76\) 0 0
\(77\) 4.56910 0.520698
\(78\) 0 0
\(79\) 4.66246 8.07561i 0.524567 0.908577i −0.475023 0.879973i \(-0.657560\pi\)
0.999591 0.0286042i \(-0.00910625\pi\)
\(80\) 0 0
\(81\) −3.79517 + 6.57343i −0.421686 + 0.730382i
\(82\) 0 0
\(83\) 13.7043i 1.50424i −0.659026 0.752120i \(-0.729031\pi\)
0.659026 0.752120i \(-0.270969\pi\)
\(84\) 0 0
\(85\) −0.351169 0.608243i −0.0380897 0.0659732i
\(86\) 0 0
\(87\) 1.57101i 0.168430i
\(88\) 0 0
\(89\) −3.00000 + 1.73205i −0.317999 + 0.183597i −0.650500 0.759506i \(-0.725441\pi\)
0.332501 + 0.943103i \(0.392107\pi\)
\(90\) 0 0
\(91\) 13.5145 + 23.4078i 1.41670 + 2.45380i
\(92\) 0 0
\(93\) −0.0106223 + 0.0183984i −0.00110148 + 0.00190783i
\(94\) 0 0
\(95\) −4.15574 + 1.31522i −0.426370 + 0.134939i
\(96\) 0 0
\(97\) 1.79517 + 1.03644i 0.182272 + 0.105235i 0.588360 0.808599i \(-0.299774\pi\)
−0.406088 + 0.913834i \(0.633107\pi\)
\(98\) 0 0
\(99\) 2.49806 1.44225i 0.251064 0.144952i
\(100\) 0 0
\(101\) 1.78207 + 3.08663i 0.177322 + 0.307131i 0.940962 0.338511i \(-0.109923\pi\)
−0.763640 + 0.645642i \(0.776590\pi\)
\(102\) 0 0
\(103\) −13.2544 −1.30599 −0.652997 0.757360i \(-0.726489\pi\)
−0.652997 + 0.757360i \(0.726489\pi\)
\(104\) 0 0
\(105\) 1.55599 0.898354i 0.151850 0.0876704i
\(106\) 0 0
\(107\) 11.6571 1.12694 0.563469 0.826137i \(-0.309466\pi\)
0.563469 + 0.826137i \(0.309466\pi\)
\(108\) 0 0
\(109\) 10.4607 + 6.03947i 1.00195 + 0.578477i 0.908825 0.417178i \(-0.136981\pi\)
0.0931258 + 0.995654i \(0.470314\pi\)
\(110\) 0 0
\(111\) 1.59627 + 0.921607i 0.151511 + 0.0874750i
\(112\) 0 0
\(113\) 4.17364i 0.392623i 0.980542 + 0.196311i \(0.0628964\pi\)
−0.980542 + 0.196311i \(0.937104\pi\)
\(114\) 0 0
\(115\) 0.161921i 0.0150992i
\(116\) 0 0
\(117\) 14.7775 + 8.53179i 1.36618 + 0.788764i
\(118\) 0 0
\(119\) −2.73677 1.58008i −0.250879 0.144845i
\(120\) 0 0
\(121\) 9.96881 0.906255
\(122\) 0 0
\(123\) −2.55848 + 1.47714i −0.230690 + 0.133189i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −2.55749 4.42970i −0.226940 0.393072i 0.729959 0.683490i \(-0.239539\pi\)
−0.956900 + 0.290418i \(0.906206\pi\)
\(128\) 0 0
\(129\) −0.885523 + 0.511257i −0.0779660 + 0.0450137i
\(130\) 0 0
\(131\) 9.93111 + 5.73373i 0.867685 + 0.500958i 0.866578 0.499041i \(-0.166314\pi\)
0.00110670 + 0.999999i \(0.499648\pi\)
\(132\) 0 0
\(133\) −13.2346 + 14.4743i −1.14759 + 1.25508i
\(134\) 0 0
\(135\) 1.16611 2.01976i 0.100363 0.173834i
\(136\) 0 0
\(137\) −9.05599 15.6854i −0.773706 1.34010i −0.935519 0.353276i \(-0.885068\pi\)
0.161813 0.986821i \(-0.448266\pi\)
\(138\) 0 0
\(139\) −0.340878 + 0.196806i −0.0289129 + 0.0166929i −0.514387 0.857558i \(-0.671980\pi\)
0.485474 + 0.874251i \(0.338647\pi\)
\(140\) 0 0
\(141\) 4.57913i 0.385633i
\(142\) 0 0
\(143\) −3.05006 5.28285i −0.255058 0.441774i
\(144\) 0 0
\(145\) 3.93425i 0.326722i
\(146\) 0 0
\(147\) 2.64451 4.58043i 0.218116 0.377787i
\(148\) 0 0
\(149\) 0.420274 0.727935i 0.0344301 0.0596348i −0.848297 0.529521i \(-0.822372\pi\)
0.882727 + 0.469886i \(0.155705\pi\)
\(150\) 0 0
\(151\) −5.79673 −0.471731 −0.235866 0.971786i \(-0.575793\pi\)
−0.235866 + 0.971786i \(0.575793\pi\)
\(152\) 0 0
\(153\) −1.99503 −0.161288
\(154\) 0 0
\(155\) −0.0266013 + 0.0460749i −0.00213667 + 0.00370082i
\(156\) 0 0
\(157\) −2.71545 + 4.70329i −0.216716 + 0.375364i −0.953802 0.300435i \(-0.902868\pi\)
0.737086 + 0.675799i \(0.236201\pi\)
\(158\) 0 0
\(159\) 0.161921i 0.0128411i
\(160\) 0 0
\(161\) 0.364279 + 0.630949i 0.0287092 + 0.0497257i
\(162\) 0 0
\(163\) 12.3210i 0.965056i −0.875881 0.482528i \(-0.839719\pi\)
0.875881 0.482528i \(-0.160281\pi\)
\(164\) 0 0
\(165\) −0.351169 + 0.202748i −0.0273385 + 0.0157839i
\(166\) 0 0
\(167\) 1.16512 + 2.01804i 0.0901595 + 0.156161i 0.907578 0.419883i \(-0.137929\pi\)
−0.817419 + 0.576044i \(0.804596\pi\)
\(168\) 0 0
\(169\) 11.5429 19.9929i 0.887914 1.53791i
\(170\) 0 0
\(171\) −2.66687 + 12.0910i −0.203941 + 0.924625i
\(172\) 0 0
\(173\) 9.29517 + 5.36657i 0.706699 + 0.408013i 0.809838 0.586654i \(-0.199555\pi\)
−0.103139 + 0.994667i \(0.532889\pi\)
\(174\) 0 0
\(175\) 3.89665 2.24973i 0.294559 0.170064i
\(176\) 0 0
\(177\) −2.87490 4.97947i −0.216091 0.374280i
\(178\) 0 0
\(179\) −12.2180 −0.913220 −0.456610 0.889667i \(-0.650936\pi\)
−0.456610 + 0.889667i \(0.650936\pi\)
\(180\) 0 0
\(181\) −19.7240 + 11.3876i −1.46607 + 0.846437i −0.999280 0.0379304i \(-0.987923\pi\)
−0.466792 + 0.884367i \(0.654590\pi\)
\(182\) 0 0
\(183\) 4.02741 0.297714
\(184\) 0 0
\(185\) 3.99751 + 2.30797i 0.293903 + 0.169685i
\(186\) 0 0
\(187\) 0.617657 + 0.356604i 0.0451675 + 0.0260775i
\(188\) 0 0
\(189\) 10.4938i 0.763309i
\(190\) 0 0
\(191\) 7.29183i 0.527618i 0.964575 + 0.263809i \(0.0849789\pi\)
−0.964575 + 0.263809i \(0.915021\pi\)
\(192\) 0 0
\(193\) −16.8678 9.73865i −1.21417 0.701003i −0.250508 0.968115i \(-0.580598\pi\)
−0.963666 + 0.267111i \(0.913931\pi\)
\(194\) 0 0
\(195\) −2.07737 1.19937i −0.148764 0.0858889i
\(196\) 0 0
\(197\) −18.7619 −1.33673 −0.668365 0.743834i \(-0.733005\pi\)
−0.668365 + 0.743834i \(0.733005\pi\)
\(198\) 0 0
\(199\) −7.61502 + 4.39653i −0.539814 + 0.311662i −0.745004 0.667060i \(-0.767552\pi\)
0.205189 + 0.978722i \(0.434219\pi\)
\(200\) 0 0
\(201\) −3.68109 −0.259644
\(202\) 0 0
\(203\) −8.85103 15.3304i −0.621220 1.07599i
\(204\) 0 0
\(205\) −6.40716 + 3.69918i −0.447496 + 0.258362i
\(206\) 0 0
\(207\) 0.398323 + 0.229972i 0.0276853 + 0.0159841i
\(208\) 0 0
\(209\) 2.98689 3.26667i 0.206608 0.225960i
\(210\) 0 0
\(211\) 6.36811 11.0299i 0.438399 0.759329i −0.559167 0.829055i \(-0.688879\pi\)
0.997566 + 0.0697258i \(0.0222124\pi\)
\(212\) 0 0
\(213\) −2.45463 4.25154i −0.168188 0.291311i
\(214\) 0 0
\(215\) −2.21760 + 1.28033i −0.151239 + 0.0873180i
\(216\) 0 0
\(217\) 0.239384i 0.0162504i
\(218\) 0 0
\(219\) 2.67211 + 4.62822i 0.180564 + 0.312746i
\(220\) 0 0
\(221\) 4.21905i 0.283804i
\(222\) 0 0
\(223\) 6.23411 10.7978i 0.417467 0.723074i −0.578217 0.815883i \(-0.696251\pi\)
0.995684 + 0.0928091i \(0.0295846\pi\)
\(224\) 0 0
\(225\) 1.42027 2.45999i 0.0946849 0.163999i
\(226\) 0 0
\(227\) 21.0497 1.39712 0.698559 0.715553i \(-0.253825\pi\)
0.698559 + 0.715553i \(0.253825\pi\)
\(228\) 0 0
\(229\) 16.1332 1.06611 0.533057 0.846079i \(-0.321043\pi\)
0.533057 + 0.846079i \(0.321043\pi\)
\(230\) 0 0
\(231\) −0.912257 + 1.58008i −0.0600221 + 0.103961i
\(232\) 0 0
\(233\) −9.09888 + 15.7597i −0.596088 + 1.03245i 0.397305 + 0.917687i \(0.369946\pi\)
−0.993392 + 0.114767i \(0.963388\pi\)
\(234\) 0 0
\(235\) 11.4675i 0.748054i
\(236\) 0 0
\(237\) 1.86179 + 3.22472i 0.120936 + 0.209468i
\(238\) 0 0
\(239\) 10.6139i 0.686556i −0.939234 0.343278i \(-0.888463\pi\)
0.939234 0.343278i \(-0.111537\pi\)
\(240\) 0 0
\(241\) 4.59532 2.65311i 0.296011 0.170902i −0.344639 0.938735i \(-0.611999\pi\)
0.640649 + 0.767834i \(0.278665\pi\)
\(242\) 0 0
\(243\) −5.01380 8.68416i −0.321636 0.557089i
\(244\) 0 0
\(245\) 6.62261 11.4707i 0.423103 0.732836i
\(246\) 0 0
\(247\) 25.5699 + 5.63986i 1.62698 + 0.358856i
\(248\) 0 0
\(249\) 4.73918 + 2.73617i 0.300333 + 0.173398i
\(250\) 0 0
\(251\) 21.8187 12.5971i 1.37719 0.795119i 0.385367 0.922763i \(-0.374075\pi\)
0.991820 + 0.127644i \(0.0407416\pi\)
\(252\) 0 0
\(253\) −0.0822133 0.142398i −0.00516871 0.00895246i
\(254\) 0 0
\(255\) 0.280455 0.0175628
\(256\) 0 0
\(257\) −6.61448 + 3.81887i −0.412600 + 0.238215i −0.691906 0.721987i \(-0.743229\pi\)
0.279306 + 0.960202i \(0.409895\pi\)
\(258\) 0 0
\(259\) 20.7692 1.29054
\(260\) 0 0
\(261\) −9.67821 5.58772i −0.599066 0.345871i
\(262\) 0 0
\(263\) −21.0602 12.1591i −1.29863 0.749762i −0.318459 0.947937i \(-0.603165\pi\)
−0.980167 + 0.198175i \(0.936499\pi\)
\(264\) 0 0
\(265\) 0.405495i 0.0249094i
\(266\) 0 0
\(267\) 1.38327i 0.0846547i
\(268\) 0 0
\(269\) 11.9047 + 6.87317i 0.725841 + 0.419064i 0.816899 0.576781i \(-0.195691\pi\)
−0.0910577 + 0.995846i \(0.529025\pi\)
\(270\) 0 0
\(271\) 17.3261 + 10.0032i 1.05249 + 0.607653i 0.923344 0.383974i \(-0.125445\pi\)
0.129141 + 0.991626i \(0.458778\pi\)
\(272\) 0 0
\(273\) −10.7931 −0.653227
\(274\) 0 0
\(275\) −0.879428 + 0.507738i −0.0530315 + 0.0306178i
\(276\) 0 0
\(277\) 15.6811 0.942186 0.471093 0.882084i \(-0.343860\pi\)
0.471093 + 0.882084i \(0.343860\pi\)
\(278\) 0 0
\(279\) 0.0755623 + 0.130878i 0.00452380 + 0.00783545i
\(280\) 0 0
\(281\) 16.0776 9.28243i 0.959111 0.553743i 0.0632119 0.998000i \(-0.479866\pi\)
0.895899 + 0.444257i \(0.146532\pi\)
\(282\) 0 0
\(283\) −13.3086 7.68372i −0.791114 0.456750i 0.0492407 0.998787i \(-0.484320\pi\)
−0.840354 + 0.542037i \(0.817653\pi\)
\(284\) 0 0
\(285\) 0.374901 1.69972i 0.0222072 0.100683i
\(286\) 0 0
\(287\) −16.6443 + 28.8288i −0.982484 + 1.70171i
\(288\) 0 0
\(289\) 8.25336 + 14.2952i 0.485492 + 0.840896i
\(290\) 0 0
\(291\) −0.716841 + 0.413868i −0.0420220 + 0.0242614i
\(292\) 0 0
\(293\) 0.515564i 0.0301196i 0.999887 + 0.0150598i \(0.00479386\pi\)
−0.999887 + 0.0150598i \(0.995206\pi\)
\(294\) 0 0
\(295\) −7.19957 12.4700i −0.419175 0.726033i
\(296\) 0 0
\(297\) 2.36832i 0.137424i
\(298\) 0 0
\(299\) 0.486340 0.842366i 0.0281258 0.0487153i
\(300\) 0 0
\(301\) −5.76082 + 9.97803i −0.332048 + 0.575124i
\(302\) 0 0
\(303\) −1.42321 −0.0817614
\(304\) 0 0
\(305\) 10.0858 0.577510
\(306\) 0 0
\(307\) 10.7350 18.5935i 0.612677 1.06119i −0.378110 0.925761i \(-0.623426\pi\)
0.990787 0.135428i \(-0.0432408\pi\)
\(308\) 0 0
\(309\) 2.64634 4.58360i 0.150545 0.260752i
\(310\) 0 0
\(311\) 26.2354i 1.48767i −0.668361 0.743837i \(-0.733004\pi\)
0.668361 0.743837i \(-0.266996\pi\)
\(312\) 0 0
\(313\) 12.8037 + 22.1767i 0.723708 + 1.25350i 0.959503 + 0.281697i \(0.0908972\pi\)
−0.235795 + 0.971803i \(0.575769\pi\)
\(314\) 0 0
\(315\) 12.7810i 0.720125i
\(316\) 0 0
\(317\) 14.2750 8.24168i 0.801764 0.462899i −0.0423236 0.999104i \(-0.513476\pi\)
0.844088 + 0.536205i \(0.180143\pi\)
\(318\) 0 0
\(319\) 1.99757 + 3.45989i 0.111843 + 0.193717i
\(320\) 0 0
\(321\) −2.32744 + 4.03124i −0.129905 + 0.225002i
\(322\) 0 0
\(323\) −2.91874 + 0.923729i −0.162403 + 0.0513977i
\(324\) 0 0
\(325\) −5.20234 3.00357i −0.288574 0.166608i
\(326\) 0 0
\(327\) −4.17711 + 2.41166i −0.230995 + 0.133365i
\(328\) 0 0
\(329\) −25.7987 44.6847i −1.42233 2.46355i
\(330\) 0 0
\(331\) 9.85555 0.541710 0.270855 0.962620i \(-0.412694\pi\)
0.270855 + 0.962620i \(0.412694\pi\)
\(332\) 0 0
\(333\) 11.3551 6.55588i 0.622257 0.359260i
\(334\) 0 0
\(335\) −9.21851 −0.503661
\(336\) 0 0
\(337\) 3.89298 + 2.24762i 0.212064 + 0.122435i 0.602270 0.798292i \(-0.294263\pi\)
−0.390206 + 0.920728i \(0.627596\pi\)
\(338\) 0 0
\(339\) −1.44332 0.833299i −0.0783902 0.0452586i
\(340\) 0 0
\(341\) 0.0540260i 0.00292567i
\(342\) 0 0
\(343\) 28.1002i 1.51727i
\(344\) 0 0
\(345\) −0.0559950 0.0323287i −0.00301467 0.00174052i
\(346\) 0 0
\(347\) −9.37387 5.41201i −0.503216 0.290532i 0.226825 0.973936i \(-0.427166\pi\)
−0.730041 + 0.683404i \(0.760499\pi\)
\(348\) 0 0
\(349\) 11.3884 0.609607 0.304804 0.952415i \(-0.401409\pi\)
0.304804 + 0.952415i \(0.401409\pi\)
\(350\) 0 0
\(351\) −12.1330 + 7.00499i −0.647612 + 0.373899i
\(352\) 0 0
\(353\) 19.8306 1.05548 0.527738 0.849407i \(-0.323040\pi\)
0.527738 + 0.849407i \(0.323040\pi\)
\(354\) 0 0
\(355\) −6.14709 10.6471i −0.326253 0.565088i
\(356\) 0 0
\(357\) 1.09284 0.630949i 0.0578390 0.0333934i
\(358\) 0 0
\(359\) 1.67905 + 0.969401i 0.0886170 + 0.0511630i 0.543654 0.839310i \(-0.317041\pi\)
−0.455037 + 0.890473i \(0.650374\pi\)
\(360\) 0 0
\(361\) 1.69669 + 18.9241i 0.0892995 + 0.996005i
\(362\) 0 0
\(363\) −1.99035 + 3.44739i −0.104466 + 0.180941i
\(364\) 0 0
\(365\) 6.69172 + 11.5904i 0.350260 + 0.606669i
\(366\) 0 0
\(367\) −20.0822 + 11.5945i −1.04828 + 0.605227i −0.922169 0.386788i \(-0.873585\pi\)
−0.126116 + 0.992015i \(0.540251\pi\)
\(368\) 0 0
\(369\) 21.0154i 1.09402i
\(370\) 0 0
\(371\) 0.912257 + 1.58008i 0.0473620 + 0.0820335i
\(372\) 0 0
\(373\) 4.21044i 0.218008i 0.994041 + 0.109004i \(0.0347661\pi\)
−0.994041 + 0.109004i \(0.965234\pi\)
\(374\) 0 0
\(375\) −0.199658 + 0.345817i −0.0103103 + 0.0178579i
\(376\) 0 0
\(377\) −11.8168 + 20.4673i −0.608597 + 1.05412i
\(378\) 0 0
\(379\) 26.2835 1.35009 0.675047 0.737775i \(-0.264123\pi\)
0.675047 + 0.737775i \(0.264123\pi\)
\(380\) 0 0
\(381\) 2.04249 0.104640
\(382\) 0 0
\(383\) 17.8699 30.9515i 0.913108 1.58155i 0.103461 0.994634i \(-0.467008\pi\)
0.809648 0.586916i \(-0.199658\pi\)
\(384\) 0 0
\(385\) −2.28455 + 3.95696i −0.116432 + 0.201665i
\(386\) 0 0
\(387\) 7.27369i 0.369743i
\(388\) 0 0
\(389\) −8.74771 15.1515i −0.443527 0.768211i 0.554422 0.832236i \(-0.312939\pi\)
−0.997948 + 0.0640253i \(0.979606\pi\)
\(390\) 0 0
\(391\) 0.113723i 0.00575123i
\(392\) 0 0
\(393\) −3.96565 + 2.28957i −0.200040 + 0.115493i
\(394\) 0 0
\(395\) 4.66246 + 8.07561i 0.234594 + 0.406328i
\(396\) 0 0
\(397\) −0.592836 + 1.02682i −0.0297536 + 0.0515347i −0.880519 0.474011i \(-0.842806\pi\)
0.850765 + 0.525546i \(0.176139\pi\)
\(398\) 0 0
\(399\) −2.36306 7.46666i −0.118301 0.373800i
\(400\) 0 0
\(401\) 21.7583 + 12.5622i 1.08656 + 0.627325i 0.932658 0.360761i \(-0.117483\pi\)
0.153901 + 0.988086i \(0.450816\pi\)
\(402\) 0 0
\(403\) 0.276778 0.159798i 0.0137873 0.00796011i
\(404\) 0 0
\(405\) −3.79517 6.57343i −0.188584 0.326637i
\(406\) 0 0
\(407\) −4.68737 −0.232344
\(408\) 0 0
\(409\) −13.0368 + 7.52682i −0.644630 + 0.372177i −0.786396 0.617723i \(-0.788055\pi\)
0.141766 + 0.989900i \(0.454722\pi\)
\(410\) 0 0
\(411\) 7.23240 0.356748
\(412\) 0 0
\(413\) −56.1085 32.3942i −2.76092 1.59402i
\(414\) 0 0
\(415\) 11.8683 + 6.85214i 0.582590 + 0.336358i
\(416\) 0 0
\(417\) 0.157176i 0.00769692i
\(418\) 0 0
\(419\) 18.4139i 0.899576i −0.893135 0.449788i \(-0.851499\pi\)
0.893135 0.449788i \(-0.148501\pi\)
\(420\) 0 0
\(421\) −14.1949 8.19542i −0.691816 0.399420i 0.112476 0.993654i \(-0.464122\pi\)
−0.804292 + 0.594234i \(0.797455\pi\)
\(422\) 0 0
\(423\) −28.2098 16.2869i −1.37161 0.791897i
\(424\) 0 0
\(425\) 0.702339 0.0340684
\(426\) 0 0
\(427\) 39.3008 22.6903i 1.90190 1.09806i
\(428\) 0 0
\(429\) 2.43587 0.117605
\(430\) 0 0
\(431\) 11.0634 + 19.1624i 0.532905 + 0.923019i 0.999262 + 0.0384218i \(0.0122331\pi\)
−0.466357 + 0.884597i \(0.654434\pi\)
\(432\) 0 0
\(433\) 23.8972 13.7971i 1.14843 0.663045i 0.199924 0.979812i \(-0.435931\pi\)
0.948503 + 0.316767i \(0.102597\pi\)
\(434\) 0 0
\(435\) 1.36053 + 0.785505i 0.0652326 + 0.0376621i
\(436\) 0 0
\(437\) 0.689230 + 0.152021i 0.0329703 + 0.00727213i
\(438\) 0 0
\(439\) 13.4009 23.2110i 0.639588 1.10780i −0.345935 0.938258i \(-0.612438\pi\)
0.985523 0.169540i \(-0.0542283\pi\)
\(440\) 0 0
\(441\) −18.8118 32.5831i −0.895802 1.55157i
\(442\) 0 0
\(443\) 26.6395 15.3803i 1.26568 0.730742i 0.291515 0.956566i \(-0.405841\pi\)
0.974168 + 0.225824i \(0.0725074\pi\)
\(444\) 0 0
\(445\) 3.46410i 0.164214i
\(446\) 0 0
\(447\) 0.167822 + 0.290676i 0.00793770 + 0.0137485i
\(448\) 0 0
\(449\) 31.4723i 1.48527i 0.669695 + 0.742636i \(0.266425\pi\)
−0.669695 + 0.742636i \(0.733575\pi\)
\(450\) 0 0
\(451\) 3.75643 6.50632i 0.176883 0.306371i
\(452\) 0 0
\(453\) 1.15736 2.00461i 0.0543776 0.0941848i
\(454\) 0 0
\(455\) −27.0290 −1.26714
\(456\) 0 0
\(457\) 15.2977 0.715594 0.357797 0.933799i \(-0.383528\pi\)
0.357797 + 0.933799i \(0.383528\pi\)
\(458\) 0 0
\(459\) 0.819005 1.41856i 0.0382279 0.0662126i
\(460\) 0 0
\(461\) 12.3809 21.4444i 0.576638 0.998767i −0.419223 0.907883i \(-0.637698\pi\)
0.995862 0.0908835i \(-0.0289691\pi\)
\(462\) 0 0
\(463\) 7.77759i 0.361455i 0.983533 + 0.180728i \(0.0578452\pi\)
−0.983533 + 0.180728i \(0.942155\pi\)
\(464\) 0 0
\(465\) −0.0106223 0.0183984i −0.000492599 0.000853206i
\(466\) 0 0
\(467\) 13.8662i 0.641651i 0.947138 + 0.320826i \(0.103960\pi\)
−0.947138 + 0.320826i \(0.896040\pi\)
\(468\) 0 0
\(469\) −35.9213 + 20.7392i −1.65869 + 0.957647i
\(470\) 0 0
\(471\) −1.08432 1.87810i −0.0499629 0.0865382i
\(472\) 0 0
\(473\) 1.30015 2.25192i 0.0597809 0.103544i
\(474\) 0 0
\(475\) 0.938859 4.25659i 0.0430778 0.195306i
\(476\) 0 0
\(477\) 0.997513 + 0.575915i 0.0456730 + 0.0263693i
\(478\) 0 0
\(479\) −15.8641 + 9.15914i −0.724849 + 0.418492i −0.816535 0.577296i \(-0.804108\pi\)
0.0916858 + 0.995788i \(0.470774\pi\)
\(480\) 0 0
\(481\) −13.8643 24.0136i −0.632157 1.09493i
\(482\) 0 0
\(483\) −0.290924 −0.0132375
\(484\) 0 0
\(485\) −1.79517 + 1.03644i −0.0815147 + 0.0470625i
\(486\) 0 0
\(487\) −6.42131 −0.290977 −0.145489 0.989360i \(-0.546475\pi\)
−0.145489 + 0.989360i \(0.546475\pi\)
\(488\) 0 0
\(489\) 4.26082 + 2.45999i 0.192681 + 0.111244i
\(490\) 0 0
\(491\) 36.7870 + 21.2390i 1.66017 + 0.958502i 0.972630 + 0.232360i \(0.0746448\pi\)
0.687545 + 0.726142i \(0.258689\pi\)
\(492\) 0 0
\(493\) 2.76318i 0.124447i
\(494\) 0 0
\(495\) 2.88451i 0.129649i
\(496\) 0 0
\(497\) −47.9061 27.6586i −2.14888 1.24066i
\(498\) 0 0
\(499\) 12.9677 + 7.48691i 0.580515 + 0.335160i 0.761338 0.648355i \(-0.224543\pi\)
−0.180823 + 0.983516i \(0.557876\pi\)
\(500\) 0 0
\(501\) −0.930499 −0.0415716
\(502\) 0 0
\(503\) −4.39714 + 2.53869i −0.196059 + 0.113195i −0.594816 0.803862i \(-0.702775\pi\)
0.398757 + 0.917057i \(0.369442\pi\)
\(504\) 0 0
\(505\) −3.56413 −0.158602
\(506\) 0 0
\(507\) 4.60925 + 7.98346i 0.204704 + 0.354558i
\(508\) 0 0
\(509\) −32.6822 + 18.8691i −1.44861 + 0.836356i −0.998399 0.0565651i \(-0.981985\pi\)
−0.450213 + 0.892921i \(0.648652\pi\)
\(510\) 0 0
\(511\) 52.1506 + 30.1092i 2.30701 + 1.33195i
\(512\) 0 0
\(513\) −7.50249 6.85993i −0.331243 0.302873i
\(514\) 0 0
\(515\) 6.62720 11.4786i 0.292029 0.505810i
\(516\) 0 0
\(517\) 5.82246 + 10.0848i 0.256072 + 0.443529i
\(518\) 0 0
\(519\) −3.71171 + 2.14296i −0.162926 + 0.0940653i
\(520\) 0 0
\(521\) 25.6224i 1.12254i 0.827634 + 0.561268i \(0.189686\pi\)
−0.827634 + 0.561268i \(0.810314\pi\)
\(522\) 0 0
\(523\) −1.33195 2.30700i −0.0582420 0.100878i 0.835434 0.549590i \(-0.185216\pi\)
−0.893676 + 0.448712i \(0.851883\pi\)
\(524\) 0 0
\(525\) 1.79671i 0.0784148i
\(526\) 0 0
\(527\) −0.0186831 + 0.0323602i −0.000813851 + 0.00140963i
\(528\) 0 0
\(529\) −11.4869 + 19.8959i −0.499430 + 0.865038i
\(530\) 0 0
\(531\) −40.9014 −1.77497
\(532\) 0 0
\(533\) 44.4430 1.92504
\(534\) 0 0
\(535\) −5.82857 + 10.0954i −0.251991 + 0.436461i
\(536\) 0 0
\(537\) 2.43943 4.22521i 0.105269 0.182331i
\(538\) 0 0
\(539\) 13.4502i 0.579342i
\(540\) 0 0
\(541\) −4.46565 7.73473i −0.191993 0.332542i 0.753918 0.656969i \(-0.228162\pi\)
−0.945911 + 0.324427i \(0.894828\pi\)
\(542\) 0 0
\(543\) 9.09453i 0.390284i
\(544\) 0 0
\(545\) −10.4607 + 6.03947i −0.448086 + 0.258703i
\(546\) 0 0
\(547\) −6.23312 10.7961i −0.266509 0.461607i 0.701449 0.712720i \(-0.252537\pi\)
−0.967958 + 0.251113i \(0.919203\pi\)
\(548\) 0 0
\(549\) 14.3246 24.8109i 0.611357 1.05890i
\(550\) 0 0
\(551\) −16.7465 3.69371i −0.713425 0.157357i
\(552\) 0 0
\(553\) 36.3360 + 20.9786i 1.54516 + 0.892100i
\(554\) 0 0
\(555\) −1.59627 + 0.921607i −0.0677579 + 0.0391200i
\(556\) 0 0
\(557\) −5.35366 9.27280i −0.226842 0.392901i 0.730029 0.683416i \(-0.239507\pi\)
−0.956870 + 0.290515i \(0.906173\pi\)
\(558\) 0 0
\(559\) 15.3823 0.650602
\(560\) 0 0
\(561\) −0.246640 + 0.142398i −0.0104131 + 0.00601203i
\(562\) 0 0
\(563\) −34.8327 −1.46802 −0.734012 0.679136i \(-0.762355\pi\)
−0.734012 + 0.679136i \(0.762355\pi\)
\(564\) 0 0
\(565\) −3.61448 2.08682i −0.152062 0.0877931i
\(566\) 0 0
\(567\) −29.5770 17.0763i −1.24212 0.717136i
\(568\) 0 0
\(569\) 10.8711i 0.455739i −0.973692 0.227870i \(-0.926824\pi\)
0.973692 0.227870i \(-0.0731760\pi\)
\(570\) 0 0
\(571\) 37.8605i 1.58441i 0.610252 + 0.792207i \(0.291068\pi\)
−0.610252 + 0.792207i \(0.708932\pi\)
\(572\) 0 0
\(573\) −2.52164 1.45587i −0.105343 0.0608199i
\(574\) 0 0
\(575\) −0.140227 0.0809603i −0.00584789 0.00337628i
\(576\) 0 0
\(577\) 32.0121 1.33268 0.666340 0.745648i \(-0.267860\pi\)
0.666340 + 0.745648i \(0.267860\pi\)
\(578\) 0 0
\(579\) 6.73559 3.88879i 0.279922 0.161613i
\(580\) 0 0
\(581\) 61.6620 2.55817
\(582\) 0 0
\(583\) −0.205886 0.356604i −0.00852691 0.0147690i
\(584\) 0 0
\(585\) −14.7775 + 8.53179i −0.610974 + 0.352746i
\(586\) 0 0
\(587\) −38.7278 22.3595i −1.59847 0.922876i −0.991783 0.127935i \(-0.959165\pi\)
−0.606686 0.794941i \(-0.707502\pi\)
\(588\) 0 0
\(589\) 0.171147 + 0.156489i 0.00705198 + 0.00644800i
\(590\) 0 0
\(591\) 3.74596 6.48819i 0.154088 0.266888i
\(592\) 0 0
\(593\) −13.2665 22.9782i −0.544789 0.943602i −0.998620 0.0525141i \(-0.983277\pi\)
0.453832 0.891087i \(-0.350057\pi\)
\(594\) 0 0
\(595\) 2.73677 1.58008i 0.112197 0.0647768i
\(596\) 0 0
\(597\) 3.51121i 0.143704i
\(598\) 0 0
\(599\) −5.13267 8.89004i −0.209715 0.363237i 0.741910 0.670500i \(-0.233920\pi\)
−0.951625 + 0.307263i \(0.900587\pi\)
\(600\) 0 0
\(601\) 9.71063i 0.396105i 0.980191 + 0.198052i \(0.0634616\pi\)
−0.980191 + 0.198052i \(0.936538\pi\)
\(602\) 0 0
\(603\) −13.0928 + 22.6774i −0.533180 + 0.923495i
\(604\) 0 0
\(605\) −4.98440 + 8.63324i −0.202645 + 0.350991i
\(606\) 0 0
\(607\) 43.7354 1.77517 0.887583 0.460648i \(-0.152383\pi\)
0.887583 + 0.460648i \(0.152383\pi\)
\(608\) 0 0
\(609\) 7.06871 0.286438
\(610\) 0 0
\(611\) −34.4433 + 59.6576i −1.39343 + 2.41349i
\(612\) 0 0
\(613\) −6.26082 + 10.8441i −0.252872 + 0.437987i −0.964315 0.264756i \(-0.914709\pi\)
0.711443 + 0.702744i \(0.248042\pi\)
\(614\) 0 0
\(615\) 2.95428i 0.119128i
\(616\) 0 0
\(617\) 12.2821 + 21.2732i 0.494457 + 0.856425i 0.999980 0.00638834i \(-0.00203349\pi\)
−0.505522 + 0.862814i \(0.668700\pi\)
\(618\) 0 0
\(619\) 42.2721i 1.69906i 0.527541 + 0.849530i \(0.323114\pi\)
−0.527541 + 0.849530i \(0.676886\pi\)
\(620\) 0 0
\(621\) −0.327041 + 0.188817i −0.0131237 + 0.00757698i
\(622\) 0 0
\(623\) −7.79331 13.4984i −0.312232 0.540802i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 0.533315 + 1.68513i 0.0212986 + 0.0672978i
\(628\) 0 0
\(629\) 2.80761 + 1.62097i 0.111947 + 0.0646324i
\(630\) 0 0
\(631\) 0.356582 0.205873i 0.0141953 0.00819567i −0.492886 0.870094i \(-0.664058\pi\)
0.507081 + 0.861898i \(0.330725\pi\)
\(632\) 0 0
\(633\) 2.54289 + 4.40441i 0.101071 + 0.175059i
\(634\) 0 0
\(635\) 5.11498 0.202982
\(636\) 0 0
\(637\) −68.9061 + 39.7830i −2.73016 + 1.57626i
\(638\) 0 0
\(639\) −34.9222 −1.38150
\(640\) 0 0
\(641\) 14.7942 + 8.54141i 0.584334 + 0.337365i 0.762854 0.646571i \(-0.223798\pi\)
−0.178520 + 0.983936i \(0.557131\pi\)
\(642\) 0 0
\(643\) 20.0442 + 11.5725i 0.790465 + 0.456375i 0.840126 0.542391i \(-0.182481\pi\)
−0.0496609 + 0.998766i \(0.515814\pi\)
\(644\) 0 0
\(645\) 1.02251i 0.0402615i
\(646\) 0 0
\(647\) 12.4795i 0.490619i 0.969445 + 0.245310i \(0.0788897\pi\)
−0.969445 + 0.245310i \(0.921110\pi\)
\(648\) 0 0
\(649\) 12.6630 + 7.31099i 0.497067 + 0.286982i
\(650\) 0 0
\(651\) −0.0827831 0.0477948i −0.00324452 0.00187323i
\(652\) 0 0
\(653\) 23.7718 0.930264 0.465132 0.885241i \(-0.346007\pi\)
0.465132 + 0.885241i \(0.346007\pi\)
\(654\) 0 0
\(655\) −9.93111 + 5.73373i −0.388040 + 0.224035i
\(656\) 0 0
\(657\) 38.0163 1.48316
\(658\) 0 0
\(659\) −6.18515 10.7130i −0.240939 0.417319i 0.720043 0.693930i \(-0.244122\pi\)
−0.960982 + 0.276611i \(0.910789\pi\)
\(660\) 0 0
\(661\) 15.2952 8.83067i 0.594913 0.343473i −0.172125 0.985075i \(-0.555063\pi\)
0.767038 + 0.641602i \(0.221730\pi\)
\(662\) 0 0
\(663\) −1.45902 0.842366i −0.0566637 0.0327148i
\(664\) 0 0
\(665\) −5.91779 18.6986i −0.229482 0.725102i
\(666\) 0 0
\(667\) −0.318519 + 0.551690i −0.0123331 + 0.0213615i
\(668\) 0 0
\(669\) 2.48938 + 4.31173i 0.0962449 + 0.166701i
\(670\) 0 0
\(671\) −8.86971 + 5.12093i −0.342411 + 0.197691i
\(672\) 0 0
\(673\) 13.7377i 0.529550i −0.964310 0.264775i \(-0.914702\pi\)
0.964310 0.264775i \(-0.0852977\pi\)
\(674\) 0 0
\(675\) 1.16611 + 2.01976i 0.0448836 + 0.0777407i
\(676\) 0 0
\(677\) 18.1962i 0.699335i −0.936874 0.349668i \(-0.886295\pi\)
0.936874 0.349668i \(-0.113705\pi\)
\(678\) 0 0
\(679\) −4.66345 + 8.07733i −0.178967 + 0.309980i
\(680\) 0 0
\(681\) −4.20274 + 7.27935i −0.161049 + 0.278945i
\(682\) 0 0
\(683\) −15.2122 −0.582079 −0.291040 0.956711i \(-0.594001\pi\)
−0.291040 + 0.956711i \(0.594001\pi\)
\(684\) 0 0
\(685\) 18.1120 0.692024
\(686\) 0 0
\(687\) −3.22113 + 5.57915i −0.122894 + 0.212858i
\(688\) 0 0
\(689\) 1.21793 2.10952i 0.0463996 0.0803665i
\(690\) 0 0
\(691\) 39.0603i 1.48592i −0.669333 0.742962i \(-0.733420\pi\)
0.669333 0.742962i \(-0.266580\pi\)
\(692\) 0 0
\(693\) 6.48938 + 11.2399i 0.246511 + 0.426970i
\(694\) 0 0
\(695\) 0.393612i 0.0149306i
\(696\) 0 0
\(697\) −4.50000 + 2.59808i −0.170450 + 0.0984092i
\(698\) 0 0
\(699\) −3.63332 6.29310i −0.137425 0.238027i
\(700\) 0 0
\(701\) −5.01915 + 8.69343i −0.189571 + 0.328346i −0.945107 0.326760i \(-0.894043\pi\)
0.755536 + 0.655107i \(0.227376\pi\)
\(702\) 0 0
\(703\) 13.5772 14.8489i 0.512072 0.560037i
\(704\) 0 0
\(705\) 3.96565 + 2.28957i 0.149355 + 0.0862301i
\(706\) 0 0
\(707\) −13.8882 + 8.01835i −0.522319 + 0.301561i
\(708\) 0 0
\(709\) −9.95005 17.2340i −0.373682 0.647236i 0.616447 0.787397i \(-0.288572\pi\)
−0.990129 + 0.140160i \(0.955238\pi\)
\(710\) 0 0
\(711\) 26.4879 0.993372
\(712\) 0 0
\(713\) 0.00746047 0.00430731i 0.000279397 0.000161310i
\(714\) 0 0
\(715\) 6.10011 0.228131
\(716\) 0 0
\(717\) 3.67047 + 2.11915i 0.137076 + 0.0791410i
\(718\) 0 0
\(719\) 14.9653 + 8.64021i 0.558111 + 0.322226i 0.752387 0.658721i \(-0.228902\pi\)
−0.194276 + 0.980947i \(0.562236\pi\)
\(720\) 0 0
\(721\) 59.6378i 2.22103i
\(722\) 0 0
\(723\) 2.11886i 0.0788011i
\(724\) 0 0
\(725\) 3.40716 + 1.96713i 0.126539 + 0.0730573i
\(726\) 0 0
\(727\) 19.1230 + 11.0407i 0.709233 + 0.409476i 0.810777 0.585355i \(-0.199045\pi\)
−0.101544 + 0.994831i \(0.532378\pi\)
\(728\) 0 0
\(729\) −18.7669 −0.695069
\(730\) 0 0
\(731\) −1.55751 + 0.899228i −0.0576065 + 0.0332591i
\(732\) 0 0
\(733\) 18.6861 0.690186 0.345093 0.938569i \(-0.387847\pi\)
0.345093 + 0.938569i \(0.387847\pi\)
\(734\) 0 0
\(735\) 2.64451 + 4.58043i 0.0975443 + 0.168952i
\(736\) 0 0
\(737\) 8.10702 4.68059i 0.298626 0.172412i
\(738\) 0 0
\(739\) −39.2433 22.6571i −1.44359 0.833457i −0.445502 0.895281i \(-0.646975\pi\)
−0.998087 + 0.0618244i \(0.980308\pi\)
\(740\) 0 0
\(741\) −7.05560 + 7.71649i −0.259194 + 0.283472i
\(742\) 0 0
\(743\) −3.75119 + 6.49726i −0.137618 + 0.238361i −0.926594 0.376062i \(-0.877278\pi\)
0.788977 + 0.614423i \(0.210611\pi\)
\(744\) 0 0
\(745\) 0.420274 + 0.727935i 0.0153976 + 0.0266695i
\(746\) 0 0
\(747\) 33.7123 19.4638i 1.23347 0.712144i
\(748\) 0 0
\(749\) 52.4509i 1.91652i
\(750\) 0 0
\(751\) −8.44025 14.6189i −0.307989 0.533453i 0.669933 0.742421i \(-0.266323\pi\)
−0.977922 + 0.208969i \(0.932989\pi\)
\(752\) 0 0
\(753\) 10.0604i 0.366621i
\(754\) 0 0
\(755\) 2.89837 5.02012i 0.105482 0.182701i
\(756\) 0 0
\(757\) 10.9047 18.8875i 0.396337 0.686476i −0.596934 0.802291i \(-0.703614\pi\)
0.993271 + 0.115814i \(0.0369478\pi\)
\(758\) 0 0
\(759\) 0.0656581 0.00238324
\(760\) 0 0
\(761\) −27.1453 −0.984017 −0.492009 0.870590i \(-0.663737\pi\)
−0.492009 + 0.870590i \(0.663737\pi\)
\(762\) 0 0
\(763\) −27.1744 + 47.0675i −0.983780 + 1.70396i
\(764\) 0 0
\(765\) 0.997513 1.72774i 0.0360652 0.0624667i
\(766\) 0 0
\(767\) 86.4977i 3.12325i
\(768\) 0 0
\(769\) −4.51062 7.81263i −0.162657 0.281731i 0.773164 0.634207i \(-0.218673\pi\)
−0.935821 + 0.352476i \(0.885340\pi\)
\(770\) 0 0
\(771\) 3.04987i 0.109838i
\(772\) 0 0
\(773\) −13.9706 + 8.06594i −0.502488 + 0.290112i −0.729741 0.683724i \(-0.760359\pi\)
0.227252 + 0.973836i \(0.427026\pi\)
\(774\) 0 0
\(775\) −0.0266013 0.0460749i −0.000955548 0.00165506i
\(776\) 0 0
\(777\) −4.14674 + 7.18236i −0.148763 + 0.257666i
\(778\) 0 0
\(779\) 9.73046 + 30.7457i 0.348630 + 1.10158i
\(780\) 0 0
\(781\) 10.8118 + 6.24222i 0.386878 + 0.223364i
\(782\) 0 0
\(783\) 7.94626 4.58778i 0.283976 0.163954i
\(784\) 0 0
\(785\) −2.71545 4.70329i −0.0969185 0.167868i
\(786\) 0 0
\(787\) 15.0789 0.537505 0.268753 0.963209i \(-0.413389\pi\)
0.268753 + 0.963209i \(0.413389\pi\)
\(788\) 0 0
\(789\) 8.40965 4.85531i 0.299392 0.172854i
\(790\) 0 0
\(791\) −18.7792 −0.667710
\(792\) 0 0
\(793\) −52.4696 30.2933i −1.86325 1.07575i
\(794\) 0 0
\(795\) −0.140227 0.0809603i −0.00497335 0.00287137i
\(796\) 0 0
\(797\) 46.2044i 1.63664i −0.574760 0.818322i \(-0.694905\pi\)
0.574760 0.818322i \(-0.305095\pi\)
\(798\) 0 0
\(799\) 8.05404i 0.284931i
\(800\) 0 0
\(801\) −8.52164 4.91997i −0.301097 0.173839i
\(802\) 0 0
\(803\) −11.7698 6.79528i −0.415346 0.239800i
\(804\) 0 0
\(805\) −0.728557 −0.0256783
\(806\) 0 0
\(807\) −4.75372 + 2.74456i −0.167339 + 0.0966132i
\(808\) 0 0
\(809\) −3.61657 −0.127152 −0.0635759 0.997977i \(-0.520250\pi\)
−0.0635759 + 0.997977i \(0.520250\pi\)
\(810\) 0 0
\(811\) −6.65380 11.5247i −0.233647 0.404688i 0.725232 0.688505i \(-0.241733\pi\)
−0.958878 + 0.283817i \(0.908399\pi\)
\(812\) 0 0
\(813\) −6.91858 + 3.99444i −0.242645 + 0.140091i
\(814\) 0 0
\(815\) 10.6703 + 6.16051i 0.373765 + 0.215793i
\(816\) 0 0
\(817\) 3.36784 + 10.6415i 0.117826 + 0.372298i
\(818\) 0 0
\(819\) −38.3885 + 66.4909i −1.34140 + 2.32338i
\(820\) 0 0
\(821\) 5.14634 + 8.91373i 0.179609 + 0.311091i 0.941747 0.336323i \(-0.109184\pi\)
−0.762138 + 0.647415i \(0.775850\pi\)
\(822\) 0 0
\(823\) −18.9447 + 10.9377i −0.660372 + 0.381266i −0.792419 0.609978i \(-0.791178\pi\)
0.132047 + 0.991243i \(0.457845\pi\)
\(824\) 0 0
\(825\) 0.405495i 0.0141175i
\(826\) 0 0
\(827\) 10.7225 + 18.5719i 0.372858 + 0.645810i 0.990004 0.141039i \(-0.0450444\pi\)
−0.617146 + 0.786849i \(0.711711\pi\)
\(828\) 0 0
\(829\) 7.34231i 0.255009i 0.991838 + 0.127505i \(0.0406967\pi\)
−0.991838 + 0.127505i \(0.959303\pi\)
\(830\) 0 0
\(831\) −3.13085 + 5.42280i −0.108608 + 0.188115i
\(832\) 0 0
\(833\) 4.65132 8.05632i 0.161159 0.279135i
\(834\) 0 0
\(835\) −2.33024 −0.0806411
\(836\) 0 0
\(837\) −0.124080 −0.00428885
\(838\) 0 0
\(839\) 15.5173 26.8767i 0.535716 0.927888i −0.463412 0.886143i \(-0.653375\pi\)
0.999128 0.0417447i \(-0.0132916\pi\)
\(840\) 0 0
\(841\) −6.76082 + 11.7101i −0.233132 + 0.403796i
\(842\) 0 0
\(843\) 7.41324i 0.255325i
\(844\) 0 0
\(845\) 11.5429 + 19.9929i 0.397087 + 0.687775i
\(846\) 0 0
\(847\) 44.8543i 1.54121i
\(848\) 0 0
\(849\) 5.31433 3.06823i 0.182387 0.105301i
\(850\) 0 0
\(851\) −0.373707 0.647280i −0.0128105 0.0221885i
\(852\) 0 0
\(853\) −8.82495 + 15.2853i −0.302161 + 0.523357i −0.976625 0.214950i \(-0.931041\pi\)
0.674465 + 0.738307i \(0.264375\pi\)
\(854\) 0 0
\(855\) −9.13771 8.35510i −0.312503 0.285738i
\(856\) 0 0
\(857\) 14.5291 + 8.38838i 0.496305 + 0.286542i 0.727186 0.686440i \(-0.240828\pi\)
−0.230882 + 0.972982i \(0.574161\pi\)
\(858\) 0 0
\(859\) −34.6649 + 20.0138i −1.18275 + 0.682862i −0.956650 0.291242i \(-0.905932\pi\)
−0.226102 + 0.974104i \(0.572598\pi\)
\(860\) 0 0
\(861\) −6.64634 11.5118i −0.226507 0.392321i
\(862\) 0 0
\(863\) 2.28100 0.0776463 0.0388232 0.999246i \(-0.487639\pi\)
0.0388232 + 0.999246i \(0.487639\pi\)
\(864\) 0 0
\(865\) −9.29517 + 5.36657i −0.316045 + 0.182469i
\(866\) 0 0
\(867\) −6.59139 −0.223855
\(868\) 0 0
\(869\) −8.20059 4.73461i −0.278186 0.160611i
\(870\) 0 0
\(871\) 47.9578 + 27.6885i 1.62499 + 0.938187i
\(872\) 0 0
\(873\) 5.88814i 0.199283i
\(874\) 0 0
\(875\) 4.49947i 0.152110i
\(876\) 0 0
\(877\) 25.9238 + 14.9671i 0.875386 + 0.505404i 0.869134 0.494576i \(-0.164677\pi\)
0.00625142 + 0.999980i \(0.498010\pi\)
\(878\) 0 0
\(879\) −0.178291 0.102936i −0.00601361 0.00347196i
\(880\) 0 0
\(881\) −3.99005 −0.134428 −0.0672141 0.997739i \(-0.521411\pi\)
−0.0672141 + 0.997739i \(0.521411\pi\)
\(882\) 0 0
\(883\) 30.9949 17.8949i 1.04306 0.602213i 0.122364 0.992485i \(-0.460953\pi\)
0.920699 + 0.390273i \(0.127619\pi\)
\(884\) 0 0
\(885\) 5.74980 0.193277
\(886\) 0 0
\(887\) 13.3743 + 23.1649i 0.449063 + 0.777801i 0.998325 0.0578496i \(-0.0184244\pi\)
−0.549262 + 0.835650i \(0.685091\pi\)
\(888\) 0 0
\(889\) 19.9313 11.5073i 0.668474 0.385944i
\(890\) 0 0
\(891\) 6.67517 + 3.85391i 0.223627 + 0.129111i
\(892\) 0 0
\(893\) −48.8122 10.7663i −1.63344 0.360281i
\(894\) 0 0
\(895\) 6.10902 10.5811i 0.204202 0.353688i
\(896\) 0 0
\(897\) 0.194203 + 0.336370i 0.00648426 + 0.0112311i
\(898\) 0 0
\(899\) −0.181270 + 0.104656i −0.00604570 + 0.00349049i
\(900\) 0 0
\(901\) 0.284795i 0.00948790i
\(902\) 0 0
\(903\) −2.30039 3.98438i −0.0765520 0.132592i
\(904\) 0 0
\(905\) 22.7753i 0.757076i
\(906\) 0 0
\(907\) 8.24781 14.2856i 0.273864 0.474347i −0.695984 0.718058i \(-0.745031\pi\)
0.969848 + 0.243711i \(0.0783648\pi\)
\(908\) 0 0
\(909\) −5.06204 + 8.76771i −0.167897 + 0.290807i
\(910\) 0 0
\(911\) −46.6599 −1.54591 −0.772957 0.634459i \(-0.781223\pi\)
−0.772957 + 0.634459i \(0.781223\pi\)
\(912\) 0 0
\(913\) −13.9164 −0.460565
\(914\) 0 0
\(915\) −2.01370 + 3.48784i −0.0665710 + 0.115304i
\(916\) 0 0
\(917\) −25.7987 + 44.6847i −0.851949 + 1.47562i
\(918\) 0 0
\(919\) 42.1283i 1.38969i 0.719162 + 0.694843i \(0.244526\pi\)
−0.719162 + 0.694843i \(0.755474\pi\)
\(920\) 0 0
\(921\) 4.28664 + 7.42468i 0.141250 + 0.244652i
\(922\) 0 0
\(923\) 73.8529i 2.43090i
\(924\) 0 0
\(925\) −3.99751 + 2.30797i −0.131437 + 0.0758854i
\(926\) 0 0
\(927\) −18.8249 32.6056i −0.618290 1.07091i
\(928\) 0 0
\(929\) 27.2538 47.2049i 0.894167 1.54874i 0.0593343 0.998238i \(-0.481102\pi\)
0.834832 0.550504i \(-0.185564\pi\)
\(930\) 0 0
\(931\) −42.6084 38.9591i −1.39643 1.27683i
\(932\) 0 0
\(933\) 9.07266 + 5.23810i 0.297026 + 0.171488i
\(934\) 0 0
\(935\) −0.617657 + 0.356604i −0.0201995 + 0.0116622i
\(936\) 0 0
\(937\) −28.8274 49.9306i −0.941751 1.63116i −0.762129 0.647426i \(-0.775846\pi\)
−0.179623 0.983736i \(-0.557488\pi\)
\(938\) 0 0
\(939\) −10.2254 −0.333695
\(940\) 0 0
\(941\) −35.0433 + 20.2322i −1.14238 + 0.659552i −0.947018 0.321179i \(-0.895921\pi\)
−0.195360 + 0.980732i \(0.562587\pi\)
\(942\) 0 0
\(943\) 1.19795 0.0390105
\(944\) 0 0
\(945\) 9.08786 + 5.24688i 0.295628 + 0.170681i
\(946\) 0 0
\(947\) −26.9767 15.5750i −0.876627 0.506121i −0.00708189 0.999975i \(-0.502254\pi\)
−0.869545 + 0.493854i \(0.835588\pi\)
\(948\) 0 0
\(949\) 80.3962i 2.60977i
\(950\) 0 0
\(951\) 6.58206i 0.213438i
\(952\) 0 0
\(953\) 26.7548 + 15.4469i 0.866674 + 0.500374i 0.866242 0.499625i \(-0.166529\pi\)
0.000432383 1.00000i \(0.499862\pi\)
\(954\) 0 0
\(955\) −6.31491 3.64591i −0.204346 0.117979i
\(956\) 0 0
\(957\) −1.59532 −0.0515695
\(958\) 0 0
\(959\) 70.5762 40.7472i 2.27902 1.31579i
\(960\) 0 0
\(961\) −30.9972 −0.999909
\(962\) 0 0
\(963\) 16.5563 + 28.6764i 0.533520 + 0.924084i
\(964\) 0 0
\(965\) 16.8678 9.73865i 0.542995 0.313498i
\(966\) 0 0
\(967\) −16.1475 9.32278i −0.519270 0.299800i 0.217366 0.976090i \(-0.430253\pi\)
−0.736636 + 0.676290i \(0.763587\pi\)
\(968\) 0 0
\(969\) 0.263307 1.19378i 0.00845865 0.0383498i
\(970\) 0 0
\(971\) 23.2725 40.3092i 0.746851 1.29358i −0.202474 0.979288i \(-0.564898\pi\)
0.949325 0.314296i \(-0.101769\pi\)
\(972\) 0 0
\(973\) −0.885523 1.53377i −0.0283886 0.0491704i
\(974\) 0 0
\(975\) 2.07737 1.19937i 0.0665292 0.0384107i
\(976\) 0 0
\(977\) 54.1376i 1.73201i 0.500032 + 0.866007i \(0.333322\pi\)
−0.500032 + 0.866007i \(0.666678\pi\)
\(978\) 0 0
\(979\) 1.75886 + 3.04643i 0.0562133 + 0.0973643i
\(980\) 0 0
\(981\) 34.3108i 1.09546i
\(982\) 0 0
\(983\) 0.804859 1.39406i 0.0256710 0.0444635i −0.852904 0.522067i \(-0.825161\pi\)
0.878576 + 0.477603i \(0.158494\pi\)
\(984\) 0 0
\(985\) 9.38095 16.2483i 0.298902 0.517713i
\(986\) 0 0
\(987\) 20.6037 0.655822
\(988\) 0 0
\(989\) 0.414625 0.0131843
\(990\) 0 0
\(991\) −3.58536 + 6.21002i −0.113893 + 0.197268i −0.917337 0.398113i \(-0.869665\pi\)
0.803444 + 0.595380i \(0.202999\pi\)
\(992\) 0 0
\(993\) −1.96774 + 3.40822i −0.0624442 + 0.108157i
\(994\) 0 0
\(995\) 8.79307i 0.278759i
\(996\) 0 0
\(997\) −5.71901 9.90561i −0.181123 0.313714i 0.761140 0.648587i \(-0.224640\pi\)
−0.942263 + 0.334873i \(0.891306\pi\)
\(998\) 0 0
\(999\) 10.7654i 0.340601i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1520.2.bq.q.1471.3 yes 12
4.3 odd 2 inner 1520.2.bq.q.1471.4 yes 12
19.12 odd 6 inner 1520.2.bq.q.31.4 yes 12
76.31 even 6 inner 1520.2.bq.q.31.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1520.2.bq.q.31.3 12 76.31 even 6 inner
1520.2.bq.q.31.4 yes 12 19.12 odd 6 inner
1520.2.bq.q.1471.3 yes 12 1.1 even 1 trivial
1520.2.bq.q.1471.4 yes 12 4.3 odd 2 inner