Properties

Label 1520.2.bq.b.1471.1
Level $1520$
Weight $2$
Character 1520.1471
Analytic conductor $12.137$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1520,2,Mod(31,1520)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1520.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1520, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1520 = 2^{4} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1520.bq (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,0,-1,0,0,0,-1,0,0,0,0,0,-2,0,0,0,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.1372611072\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1471.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1520.1471
Dual form 1520.2.bq.b.31.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.73205i) q^{3} +(-0.500000 + 0.866025i) q^{5} +1.73205i q^{7} +(-0.500000 - 0.866025i) q^{9} -5.19615i q^{11} +(-1.00000 - 1.73205i) q^{15} +(-3.50000 + 2.59808i) q^{19} +(-3.00000 - 1.73205i) q^{21} +(-7.50000 + 4.33013i) q^{23} +(-0.500000 - 0.866025i) q^{25} -4.00000 q^{27} +(3.00000 - 1.73205i) q^{29} -4.00000 q^{31} +(9.00000 + 5.19615i) q^{33} +(-1.50000 - 0.866025i) q^{35} -1.73205i q^{37} +(-7.50000 - 4.33013i) q^{41} +1.00000 q^{45} +(-3.00000 + 1.73205i) q^{47} +4.00000 q^{49} +(4.50000 - 2.59808i) q^{53} +(4.50000 + 2.59808i) q^{55} +(-1.00000 - 8.66025i) q^{57} +(6.00000 - 10.3923i) q^{59} +(-5.00000 - 8.66025i) q^{61} +(1.50000 - 0.866025i) q^{63} +(2.00000 + 3.46410i) q^{67} -17.3205i q^{69} +(3.00000 - 5.19615i) q^{71} +(1.00000 - 1.73205i) q^{73} +2.00000 q^{75} +9.00000 q^{77} +(-2.00000 + 3.46410i) q^{79} +(5.50000 - 9.52628i) q^{81} -10.3923i q^{83} +6.92820i q^{87} +(-13.5000 + 7.79423i) q^{89} +(4.00000 - 6.92820i) q^{93} +(-0.500000 - 4.33013i) q^{95} +(-4.50000 + 2.59808i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - q^{5} - q^{9} - 2 q^{15} - 7 q^{19} - 6 q^{21} - 15 q^{23} - q^{25} - 8 q^{27} + 6 q^{29} - 8 q^{31} + 18 q^{33} - 3 q^{35} - 15 q^{41} + 2 q^{45} - 6 q^{47} + 8 q^{49} + 9 q^{53} + 9 q^{55}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1520\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(401\) \(1141\) \(1217\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 + 1.73205i −0.577350 + 1.00000i 0.418432 + 0.908248i \(0.362580\pi\)
−0.995782 + 0.0917517i \(0.970753\pi\)
\(4\) 0 0
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) 1.73205i 0.654654i 0.944911 + 0.327327i \(0.106148\pi\)
−0.944911 + 0.327327i \(0.893852\pi\)
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) 5.19615i 1.56670i −0.621582 0.783349i \(-0.713510\pi\)
0.621582 0.783349i \(-0.286490\pi\)
\(12\) 0 0
\(13\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(14\) 0 0
\(15\) −1.00000 1.73205i −0.258199 0.447214i
\(16\) 0 0
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) 0 0
\(19\) −3.50000 + 2.59808i −0.802955 + 0.596040i
\(20\) 0 0
\(21\) −3.00000 1.73205i −0.654654 0.377964i
\(22\) 0 0
\(23\) −7.50000 + 4.33013i −1.56386 + 0.902894i −0.566997 + 0.823720i \(0.691895\pi\)
−0.996861 + 0.0791743i \(0.974772\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) −4.00000 −0.769800
\(28\) 0 0
\(29\) 3.00000 1.73205i 0.557086 0.321634i −0.194889 0.980825i \(-0.562435\pi\)
0.751975 + 0.659192i \(0.229101\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 9.00000 + 5.19615i 1.56670 + 0.904534i
\(34\) 0 0
\(35\) −1.50000 0.866025i −0.253546 0.146385i
\(36\) 0 0
\(37\) 1.73205i 0.284747i −0.989813 0.142374i \(-0.954527\pi\)
0.989813 0.142374i \(-0.0454735\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −7.50000 4.33013i −1.17130 0.676252i −0.217317 0.976101i \(-0.569730\pi\)
−0.953987 + 0.299849i \(0.903064\pi\)
\(42\) 0 0
\(43\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) −3.00000 + 1.73205i −0.437595 + 0.252646i −0.702577 0.711608i \(-0.747967\pi\)
0.264982 + 0.964253i \(0.414634\pi\)
\(48\) 0 0
\(49\) 4.00000 0.571429
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.50000 2.59808i 0.618123 0.356873i −0.158015 0.987437i \(-0.550509\pi\)
0.776138 + 0.630563i \(0.217176\pi\)
\(54\) 0 0
\(55\) 4.50000 + 2.59808i 0.606780 + 0.350325i
\(56\) 0 0
\(57\) −1.00000 8.66025i −0.132453 1.14708i
\(58\) 0 0
\(59\) 6.00000 10.3923i 0.781133 1.35296i −0.150148 0.988663i \(-0.547975\pi\)
0.931282 0.364299i \(-0.118692\pi\)
\(60\) 0 0
\(61\) −5.00000 8.66025i −0.640184 1.10883i −0.985391 0.170305i \(-0.945525\pi\)
0.345207 0.938527i \(-0.387809\pi\)
\(62\) 0 0
\(63\) 1.50000 0.866025i 0.188982 0.109109i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.00000 + 3.46410i 0.244339 + 0.423207i 0.961946 0.273241i \(-0.0880957\pi\)
−0.717607 + 0.696449i \(0.754762\pi\)
\(68\) 0 0
\(69\) 17.3205i 2.08514i
\(70\) 0 0
\(71\) 3.00000 5.19615i 0.356034 0.616670i −0.631260 0.775571i \(-0.717462\pi\)
0.987294 + 0.158901i \(0.0507952\pi\)
\(72\) 0 0
\(73\) 1.00000 1.73205i 0.117041 0.202721i −0.801553 0.597924i \(-0.795992\pi\)
0.918594 + 0.395203i \(0.129326\pi\)
\(74\) 0 0
\(75\) 2.00000 0.230940
\(76\) 0 0
\(77\) 9.00000 1.02565
\(78\) 0 0
\(79\) −2.00000 + 3.46410i −0.225018 + 0.389742i −0.956325 0.292306i \(-0.905577\pi\)
0.731307 + 0.682048i \(0.238911\pi\)
\(80\) 0 0
\(81\) 5.50000 9.52628i 0.611111 1.05848i
\(82\) 0 0
\(83\) 10.3923i 1.14070i −0.821401 0.570352i \(-0.806807\pi\)
0.821401 0.570352i \(-0.193193\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 6.92820i 0.742781i
\(88\) 0 0
\(89\) −13.5000 + 7.79423i −1.43100 + 0.826187i −0.997197 0.0748225i \(-0.976161\pi\)
−0.433800 + 0.901009i \(0.642828\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 4.00000 6.92820i 0.414781 0.718421i
\(94\) 0 0
\(95\) −0.500000 4.33013i −0.0512989 0.444262i
\(96\) 0 0
\(97\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(98\) 0 0
\(99\) −4.50000 + 2.59808i −0.452267 + 0.261116i
\(100\) 0 0
\(101\) 3.00000 + 5.19615i 0.298511 + 0.517036i 0.975796 0.218685i \(-0.0701767\pi\)
−0.677284 + 0.735721i \(0.736843\pi\)
\(102\) 0 0
\(103\) 1.00000 0.0985329 0.0492665 0.998786i \(-0.484312\pi\)
0.0492665 + 0.998786i \(0.484312\pi\)
\(104\) 0 0
\(105\) 3.00000 1.73205i 0.292770 0.169031i
\(106\) 0 0
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) 6.00000 + 3.46410i 0.574696 + 0.331801i 0.759023 0.651064i \(-0.225677\pi\)
−0.184327 + 0.982865i \(0.559010\pi\)
\(110\) 0 0
\(111\) 3.00000 + 1.73205i 0.284747 + 0.164399i
\(112\) 0 0
\(113\) 13.8564i 1.30350i 0.758433 + 0.651751i \(0.225965\pi\)
−0.758433 + 0.651751i \(0.774035\pi\)
\(114\) 0 0
\(115\) 8.66025i 0.807573i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −16.0000 −1.45455
\(122\) 0 0
\(123\) 15.0000 8.66025i 1.35250 0.780869i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 6.50000 + 11.2583i 0.576782 + 0.999015i 0.995846 + 0.0910585i \(0.0290250\pi\)
−0.419064 + 0.907957i \(0.637642\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −16.5000 9.52628i −1.44161 0.832315i −0.443654 0.896198i \(-0.646318\pi\)
−0.997957 + 0.0638831i \(0.979652\pi\)
\(132\) 0 0
\(133\) −4.50000 6.06218i −0.390199 0.525657i
\(134\) 0 0
\(135\) 2.00000 3.46410i 0.172133 0.298142i
\(136\) 0 0
\(137\) −9.00000 15.5885i −0.768922 1.33181i −0.938148 0.346235i \(-0.887460\pi\)
0.169226 0.985577i \(-0.445873\pi\)
\(138\) 0 0
\(139\) −9.00000 + 5.19615i −0.763370 + 0.440732i −0.830504 0.557012i \(-0.811948\pi\)
0.0671344 + 0.997744i \(0.478614\pi\)
\(140\) 0 0
\(141\) 6.92820i 0.583460i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 3.46410i 0.287678i
\(146\) 0 0
\(147\) −4.00000 + 6.92820i −0.329914 + 0.571429i
\(148\) 0 0
\(149\) 9.00000 15.5885i 0.737309 1.27706i −0.216394 0.976306i \(-0.569430\pi\)
0.953703 0.300750i \(-0.0972370\pi\)
\(150\) 0 0
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.00000 3.46410i 0.160644 0.278243i
\(156\) 0 0
\(157\) −0.500000 + 0.866025i −0.0399043 + 0.0691164i −0.885288 0.465044i \(-0.846039\pi\)
0.845383 + 0.534160i \(0.179372\pi\)
\(158\) 0 0
\(159\) 10.3923i 0.824163i
\(160\) 0 0
\(161\) −7.50000 12.9904i −0.591083 1.02379i
\(162\) 0 0
\(163\) 10.3923i 0.813988i −0.913431 0.406994i \(-0.866577\pi\)
0.913431 0.406994i \(-0.133423\pi\)
\(164\) 0 0
\(165\) −9.00000 + 5.19615i −0.700649 + 0.404520i
\(166\) 0 0
\(167\) 4.50000 + 7.79423i 0.348220 + 0.603136i 0.985933 0.167139i \(-0.0534527\pi\)
−0.637713 + 0.770274i \(0.720119\pi\)
\(168\) 0 0
\(169\) −6.50000 + 11.2583i −0.500000 + 0.866025i
\(170\) 0 0
\(171\) 4.00000 + 1.73205i 0.305888 + 0.132453i
\(172\) 0 0
\(173\) 16.5000 + 9.52628i 1.25447 + 0.724270i 0.971994 0.235004i \(-0.0755104\pi\)
0.282477 + 0.959274i \(0.408844\pi\)
\(174\) 0 0
\(175\) 1.50000 0.866025i 0.113389 0.0654654i
\(176\) 0 0
\(177\) 12.0000 + 20.7846i 0.901975 + 1.56227i
\(178\) 0 0
\(179\) 21.0000 1.56961 0.784807 0.619740i \(-0.212762\pi\)
0.784807 + 0.619740i \(0.212762\pi\)
\(180\) 0 0
\(181\) −12.0000 + 6.92820i −0.891953 + 0.514969i −0.874581 0.484880i \(-0.838863\pi\)
−0.0173722 + 0.999849i \(0.505530\pi\)
\(182\) 0 0
\(183\) 20.0000 1.47844
\(184\) 0 0
\(185\) 1.50000 + 0.866025i 0.110282 + 0.0636715i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 6.92820i 0.503953i
\(190\) 0 0
\(191\) 3.46410i 0.250654i −0.992116 0.125327i \(-0.960002\pi\)
0.992116 0.125327i \(-0.0399979\pi\)
\(192\) 0 0
\(193\) −12.0000 6.92820i −0.863779 0.498703i 0.00149702 0.999999i \(-0.499523\pi\)
−0.865276 + 0.501296i \(0.832857\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.00000 0.641223 0.320612 0.947211i \(-0.396112\pi\)
0.320612 + 0.947211i \(0.396112\pi\)
\(198\) 0 0
\(199\) −21.0000 + 12.1244i −1.48865 + 0.859473i −0.999916 0.0129598i \(-0.995875\pi\)
−0.488735 + 0.872433i \(0.662541\pi\)
\(200\) 0 0
\(201\) −8.00000 −0.564276
\(202\) 0 0
\(203\) 3.00000 + 5.19615i 0.210559 + 0.364698i
\(204\) 0 0
\(205\) 7.50000 4.33013i 0.523823 0.302429i
\(206\) 0 0
\(207\) 7.50000 + 4.33013i 0.521286 + 0.300965i
\(208\) 0 0
\(209\) 13.5000 + 18.1865i 0.933815 + 1.25799i
\(210\) 0 0
\(211\) 3.50000 6.06218i 0.240950 0.417338i −0.720035 0.693938i \(-0.755874\pi\)
0.960985 + 0.276600i \(0.0892077\pi\)
\(212\) 0 0
\(213\) 6.00000 + 10.3923i 0.411113 + 0.712069i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 6.92820i 0.470317i
\(218\) 0 0
\(219\) 2.00000 + 3.46410i 0.135147 + 0.234082i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 8.50000 14.7224i 0.569202 0.985887i −0.427443 0.904042i \(-0.640586\pi\)
0.996645 0.0818447i \(-0.0260811\pi\)
\(224\) 0 0
\(225\) −0.500000 + 0.866025i −0.0333333 + 0.0577350i
\(226\) 0 0
\(227\) −24.0000 −1.59294 −0.796468 0.604681i \(-0.793301\pi\)
−0.796468 + 0.604681i \(0.793301\pi\)
\(228\) 0 0
\(229\) −22.0000 −1.45380 −0.726900 0.686743i \(-0.759040\pi\)
−0.726900 + 0.686743i \(0.759040\pi\)
\(230\) 0 0
\(231\) −9.00000 + 15.5885i −0.592157 + 1.02565i
\(232\) 0 0
\(233\) 3.00000 5.19615i 0.196537 0.340411i −0.750867 0.660454i \(-0.770364\pi\)
0.947403 + 0.320043i \(0.103697\pi\)
\(234\) 0 0
\(235\) 3.46410i 0.225973i
\(236\) 0 0
\(237\) −4.00000 6.92820i −0.259828 0.450035i
\(238\) 0 0
\(239\) 6.92820i 0.448148i 0.974572 + 0.224074i \(0.0719358\pi\)
−0.974572 + 0.224074i \(0.928064\pi\)
\(240\) 0 0
\(241\) −12.0000 + 6.92820i −0.772988 + 0.446285i −0.833939 0.551856i \(-0.813920\pi\)
0.0609515 + 0.998141i \(0.480586\pi\)
\(242\) 0 0
\(243\) 5.00000 + 8.66025i 0.320750 + 0.555556i
\(244\) 0 0
\(245\) −2.00000 + 3.46410i −0.127775 + 0.221313i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 18.0000 + 10.3923i 1.14070 + 0.658586i
\(250\) 0 0
\(251\) −9.00000 + 5.19615i −0.568075 + 0.327978i −0.756380 0.654132i \(-0.773034\pi\)
0.188305 + 0.982111i \(0.439701\pi\)
\(252\) 0 0
\(253\) 22.5000 + 38.9711i 1.41456 + 2.45009i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.00000 3.46410i 0.374270 0.216085i −0.301052 0.953608i \(-0.597338\pi\)
0.675322 + 0.737523i \(0.264005\pi\)
\(258\) 0 0
\(259\) 3.00000 0.186411
\(260\) 0 0
\(261\) −3.00000 1.73205i −0.185695 0.107211i
\(262\) 0 0
\(263\) 7.50000 + 4.33013i 0.462470 + 0.267007i 0.713082 0.701080i \(-0.247299\pi\)
−0.250612 + 0.968088i \(0.580632\pi\)
\(264\) 0 0
\(265\) 5.19615i 0.319197i
\(266\) 0 0
\(267\) 31.1769i 1.90800i
\(268\) 0 0
\(269\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(270\) 0 0
\(271\) 6.00000 + 3.46410i 0.364474 + 0.210429i 0.671042 0.741420i \(-0.265847\pi\)
−0.306568 + 0.951849i \(0.599181\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.50000 + 2.59808i −0.271360 + 0.156670i
\(276\) 0 0
\(277\) −22.0000 −1.32185 −0.660926 0.750451i \(-0.729836\pi\)
−0.660926 + 0.750451i \(0.729836\pi\)
\(278\) 0 0
\(279\) 2.00000 + 3.46410i 0.119737 + 0.207390i
\(280\) 0 0
\(281\) −1.50000 + 0.866025i −0.0894825 + 0.0516627i −0.544074 0.839038i \(-0.683119\pi\)
0.454591 + 0.890700i \(0.349785\pi\)
\(282\) 0 0
\(283\) −24.0000 13.8564i −1.42665 0.823678i −0.429797 0.902926i \(-0.641415\pi\)
−0.996855 + 0.0792477i \(0.974748\pi\)
\(284\) 0 0
\(285\) 8.00000 + 3.46410i 0.473879 + 0.205196i
\(286\) 0 0
\(287\) 7.50000 12.9904i 0.442711 0.766798i
\(288\) 0 0
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 25.9808i 1.51781i 0.651200 + 0.758906i \(0.274266\pi\)
−0.651200 + 0.758906i \(0.725734\pi\)
\(294\) 0 0
\(295\) 6.00000 + 10.3923i 0.349334 + 0.605063i
\(296\) 0 0
\(297\) 20.7846i 1.20605i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −12.0000 −0.689382
\(304\) 0 0
\(305\) 10.0000 0.572598
\(306\) 0 0
\(307\) −8.00000 + 13.8564i −0.456584 + 0.790827i −0.998778 0.0494267i \(-0.984261\pi\)
0.542194 + 0.840254i \(0.317594\pi\)
\(308\) 0 0
\(309\) −1.00000 + 1.73205i −0.0568880 + 0.0985329i
\(310\) 0 0
\(311\) 13.8564i 0.785725i 0.919597 + 0.392862i \(0.128515\pi\)
−0.919597 + 0.392862i \(0.871485\pi\)
\(312\) 0 0
\(313\) 4.00000 + 6.92820i 0.226093 + 0.391605i 0.956647 0.291250i \(-0.0940712\pi\)
−0.730554 + 0.682855i \(0.760738\pi\)
\(314\) 0 0
\(315\) 1.73205i 0.0975900i
\(316\) 0 0
\(317\) −28.5000 + 16.4545i −1.60072 + 0.924176i −0.609376 + 0.792881i \(0.708580\pi\)
−0.991343 + 0.131294i \(0.958087\pi\)
\(318\) 0 0
\(319\) −9.00000 15.5885i −0.503903 0.872786i
\(320\) 0 0
\(321\) 12.0000 20.7846i 0.669775 1.16008i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −12.0000 + 6.92820i −0.663602 + 0.383131i
\(328\) 0 0
\(329\) −3.00000 5.19615i −0.165395 0.286473i
\(330\) 0 0
\(331\) 1.00000 0.0549650 0.0274825 0.999622i \(-0.491251\pi\)
0.0274825 + 0.999622i \(0.491251\pi\)
\(332\) 0 0
\(333\) −1.50000 + 0.866025i −0.0821995 + 0.0474579i
\(334\) 0 0
\(335\) −4.00000 −0.218543
\(336\) 0 0
\(337\) −15.0000 8.66025i −0.817102 0.471754i 0.0323140 0.999478i \(-0.489712\pi\)
−0.849416 + 0.527724i \(0.823046\pi\)
\(338\) 0 0
\(339\) −24.0000 13.8564i −1.30350 0.752577i
\(340\) 0 0
\(341\) 20.7846i 1.12555i
\(342\) 0 0
\(343\) 19.0526i 1.02874i
\(344\) 0 0
\(345\) 15.0000 + 8.66025i 0.807573 + 0.466252i
\(346\) 0 0
\(347\) 27.0000 + 15.5885i 1.44944 + 0.836832i 0.998448 0.0556976i \(-0.0177383\pi\)
0.450988 + 0.892530i \(0.351072\pi\)
\(348\) 0 0
\(349\) −28.0000 −1.49881 −0.749403 0.662114i \(-0.769659\pi\)
−0.749403 + 0.662114i \(0.769659\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 18.0000 0.958043 0.479022 0.877803i \(-0.340992\pi\)
0.479022 + 0.877803i \(0.340992\pi\)
\(354\) 0 0
\(355\) 3.00000 + 5.19615i 0.159223 + 0.275783i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9.00000 + 5.19615i 0.475002 + 0.274242i 0.718331 0.695701i \(-0.244906\pi\)
−0.243329 + 0.969944i \(0.578240\pi\)
\(360\) 0 0
\(361\) 5.50000 18.1865i 0.289474 0.957186i
\(362\) 0 0
\(363\) 16.0000 27.7128i 0.839782 1.45455i
\(364\) 0 0
\(365\) 1.00000 + 1.73205i 0.0523424 + 0.0906597i
\(366\) 0 0
\(367\) 9.00000 5.19615i 0.469796 0.271237i −0.246358 0.969179i \(-0.579234\pi\)
0.716154 + 0.697942i \(0.245901\pi\)
\(368\) 0 0
\(369\) 8.66025i 0.450835i
\(370\) 0 0
\(371\) 4.50000 + 7.79423i 0.233628 + 0.404656i
\(372\) 0 0
\(373\) 36.3731i 1.88333i 0.336557 + 0.941663i \(0.390737\pi\)
−0.336557 + 0.941663i \(0.609263\pi\)
\(374\) 0 0
\(375\) −1.00000 + 1.73205i −0.0516398 + 0.0894427i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 0 0
\(381\) −26.0000 −1.33202
\(382\) 0 0
\(383\) 6.00000 10.3923i 0.306586 0.531022i −0.671027 0.741433i \(-0.734147\pi\)
0.977613 + 0.210411i \(0.0674801\pi\)
\(384\) 0 0
\(385\) −4.50000 + 7.79423i −0.229341 + 0.397231i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −9.00000 15.5885i −0.456318 0.790366i 0.542445 0.840091i \(-0.317499\pi\)
−0.998763 + 0.0497253i \(0.984165\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 33.0000 19.0526i 1.66463 0.961074i
\(394\) 0 0
\(395\) −2.00000 3.46410i −0.100631 0.174298i
\(396\) 0 0
\(397\) −5.50000 + 9.52628i −0.276037 + 0.478110i −0.970396 0.241518i \(-0.922355\pi\)
0.694359 + 0.719629i \(0.255688\pi\)
\(398\) 0 0
\(399\) 15.0000 1.73205i 0.750939 0.0867110i
\(400\) 0 0
\(401\) −6.00000 3.46410i −0.299626 0.172989i 0.342649 0.939463i \(-0.388676\pi\)
−0.642275 + 0.766475i \(0.722009\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 5.50000 + 9.52628i 0.273297 + 0.473365i
\(406\) 0 0
\(407\) −9.00000 −0.446113
\(408\) 0 0
\(409\) −16.5000 + 9.52628i −0.815872 + 0.471044i −0.848991 0.528407i \(-0.822789\pi\)
0.0331186 + 0.999451i \(0.489456\pi\)
\(410\) 0 0
\(411\) 36.0000 1.77575
\(412\) 0 0
\(413\) 18.0000 + 10.3923i 0.885722 + 0.511372i
\(414\) 0 0
\(415\) 9.00000 + 5.19615i 0.441793 + 0.255069i
\(416\) 0 0
\(417\) 20.7846i 1.01783i
\(418\) 0 0
\(419\) 1.73205i 0.0846162i 0.999105 + 0.0423081i \(0.0134711\pi\)
−0.999105 + 0.0423081i \(0.986529\pi\)
\(420\) 0 0
\(421\) −6.00000 3.46410i −0.292422 0.168830i 0.346612 0.938009i \(-0.387332\pi\)
−0.639034 + 0.769179i \(0.720666\pi\)
\(422\) 0 0
\(423\) 3.00000 + 1.73205i 0.145865 + 0.0842152i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 15.0000 8.66025i 0.725901 0.419099i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 9.00000 + 15.5885i 0.433515 + 0.750870i 0.997173 0.0751385i \(-0.0239399\pi\)
−0.563658 + 0.826008i \(0.690607\pi\)
\(432\) 0 0
\(433\) −27.0000 + 15.5885i −1.29754 + 0.749133i −0.979978 0.199105i \(-0.936197\pi\)
−0.317559 + 0.948239i \(0.602863\pi\)
\(434\) 0 0
\(435\) −6.00000 3.46410i −0.287678 0.166091i
\(436\) 0 0
\(437\) 15.0000 34.6410i 0.717547 1.65710i
\(438\) 0 0
\(439\) 19.0000 32.9090i 0.906821 1.57066i 0.0883659 0.996088i \(-0.471836\pi\)
0.818455 0.574571i \(-0.194831\pi\)
\(440\) 0 0
\(441\) −2.00000 3.46410i −0.0952381 0.164957i
\(442\) 0 0
\(443\) 12.0000 6.92820i 0.570137 0.329169i −0.187067 0.982347i \(-0.559898\pi\)
0.757204 + 0.653178i \(0.226565\pi\)
\(444\) 0 0
\(445\) 15.5885i 0.738964i
\(446\) 0 0
\(447\) 18.0000 + 31.1769i 0.851371 + 1.47462i
\(448\) 0 0
\(449\) 19.0526i 0.899146i −0.893244 0.449573i \(-0.851576\pi\)
0.893244 0.449573i \(-0.148424\pi\)
\(450\) 0 0
\(451\) −22.5000 + 38.9711i −1.05948 + 1.83508i
\(452\) 0 0
\(453\) 2.00000 3.46410i 0.0939682 0.162758i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −26.0000 −1.21623 −0.608114 0.793849i \(-0.708074\pi\)
−0.608114 + 0.793849i \(0.708074\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(462\) 0 0
\(463\) 19.0526i 0.885448i 0.896658 + 0.442724i \(0.145988\pi\)
−0.896658 + 0.442724i \(0.854012\pi\)
\(464\) 0 0
\(465\) 4.00000 + 6.92820i 0.185496 + 0.321288i
\(466\) 0 0
\(467\) 38.1051i 1.76329i −0.471909 0.881647i \(-0.656435\pi\)
0.471909 0.881647i \(-0.343565\pi\)
\(468\) 0 0
\(469\) −6.00000 + 3.46410i −0.277054 + 0.159957i
\(470\) 0 0
\(471\) −1.00000 1.73205i −0.0460776 0.0798087i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 4.00000 + 1.73205i 0.183533 + 0.0794719i
\(476\) 0 0
\(477\) −4.50000 2.59808i −0.206041 0.118958i
\(478\) 0 0
\(479\) 12.0000 6.92820i 0.548294 0.316558i −0.200140 0.979767i \(-0.564140\pi\)
0.748434 + 0.663210i \(0.230806\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 30.0000 1.36505
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 29.0000 1.31412 0.657058 0.753840i \(-0.271801\pi\)
0.657058 + 0.753840i \(0.271801\pi\)
\(488\) 0 0
\(489\) 18.0000 + 10.3923i 0.813988 + 0.469956i
\(490\) 0 0
\(491\) −28.5000 16.4545i −1.28619 0.742580i −0.308215 0.951317i \(-0.599732\pi\)
−0.977972 + 0.208736i \(0.933065\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 5.19615i 0.233550i
\(496\) 0 0
\(497\) 9.00000 + 5.19615i 0.403705 + 0.233079i
\(498\) 0 0
\(499\) 13.5000 + 7.79423i 0.604343 + 0.348918i 0.770748 0.637140i \(-0.219883\pi\)
−0.166405 + 0.986057i \(0.553216\pi\)
\(500\) 0 0
\(501\) −18.0000 −0.804181
\(502\) 0 0
\(503\) −10.5000 + 6.06218i −0.468172 + 0.270299i −0.715474 0.698639i \(-0.753789\pi\)
0.247302 + 0.968938i \(0.420456\pi\)
\(504\) 0 0
\(505\) −6.00000 −0.266996
\(506\) 0 0
\(507\) −13.0000 22.5167i −0.577350 1.00000i
\(508\) 0 0
\(509\) −3.00000 + 1.73205i −0.132973 + 0.0767718i −0.565011 0.825084i \(-0.691128\pi\)
0.432038 + 0.901855i \(0.357795\pi\)
\(510\) 0 0
\(511\) 3.00000 + 1.73205i 0.132712 + 0.0766214i
\(512\) 0 0
\(513\) 14.0000 10.3923i 0.618115 0.458831i
\(514\) 0 0
\(515\) −0.500000 + 0.866025i −0.0220326 + 0.0381616i
\(516\) 0 0
\(517\) 9.00000 + 15.5885i 0.395820 + 0.685580i
\(518\) 0 0
\(519\) −33.0000 + 19.0526i −1.44854 + 0.836315i
\(520\) 0 0
\(521\) 13.8564i 0.607060i −0.952822 0.303530i \(-0.901835\pi\)
0.952822 0.303530i \(-0.0981653\pi\)
\(522\) 0 0
\(523\) 17.0000 + 29.4449i 0.743358 + 1.28753i 0.950958 + 0.309320i \(0.100101\pi\)
−0.207600 + 0.978214i \(0.566565\pi\)
\(524\) 0 0
\(525\) 3.46410i 0.151186i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 26.0000 45.0333i 1.13043 1.95797i
\(530\) 0 0
\(531\) −12.0000 −0.520756
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 6.00000 10.3923i 0.259403 0.449299i
\(536\) 0 0
\(537\) −21.0000 + 36.3731i −0.906217 + 1.56961i
\(538\) 0 0
\(539\) 20.7846i 0.895257i
\(540\) 0 0
\(541\) 4.00000 + 6.92820i 0.171973 + 0.297867i 0.939110 0.343617i \(-0.111652\pi\)
−0.767136 + 0.641484i \(0.778319\pi\)
\(542\) 0 0
\(543\) 27.7128i 1.18927i
\(544\) 0 0
\(545\) −6.00000 + 3.46410i −0.257012 + 0.148386i
\(546\) 0 0
\(547\) −5.00000 8.66025i −0.213785 0.370286i 0.739111 0.673583i \(-0.235246\pi\)
−0.952896 + 0.303298i \(0.901912\pi\)
\(548\) 0 0
\(549\) −5.00000 + 8.66025i −0.213395 + 0.369611i
\(550\) 0 0
\(551\) −6.00000 + 13.8564i −0.255609 + 0.590303i
\(552\) 0 0
\(553\) −6.00000 3.46410i −0.255146 0.147309i
\(554\) 0 0
\(555\) −3.00000 + 1.73205i −0.127343 + 0.0735215i
\(556\) 0 0
\(557\) 1.50000 + 2.59808i 0.0635570 + 0.110084i 0.896053 0.443947i \(-0.146422\pi\)
−0.832496 + 0.554031i \(0.813089\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −6.00000 −0.252870 −0.126435 0.991975i \(-0.540353\pi\)
−0.126435 + 0.991975i \(0.540353\pi\)
\(564\) 0 0
\(565\) −12.0000 6.92820i −0.504844 0.291472i
\(566\) 0 0
\(567\) 16.5000 + 9.52628i 0.692935 + 0.400066i
\(568\) 0 0
\(569\) 15.5885i 0.653502i 0.945110 + 0.326751i \(0.105954\pi\)
−0.945110 + 0.326751i \(0.894046\pi\)
\(570\) 0 0
\(571\) 3.46410i 0.144968i 0.997370 + 0.0724841i \(0.0230926\pi\)
−0.997370 + 0.0724841i \(0.976907\pi\)
\(572\) 0 0
\(573\) 6.00000 + 3.46410i 0.250654 + 0.144715i
\(574\) 0 0
\(575\) 7.50000 + 4.33013i 0.312772 + 0.180579i
\(576\) 0 0
\(577\) 4.00000 0.166522 0.0832611 0.996528i \(-0.473466\pi\)
0.0832611 + 0.996528i \(0.473466\pi\)
\(578\) 0 0
\(579\) 24.0000 13.8564i 0.997406 0.575853i
\(580\) 0 0
\(581\) 18.0000 0.746766
\(582\) 0 0
\(583\) −13.5000 23.3827i −0.559113 0.968412i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −30.0000 17.3205i −1.23823 0.714894i −0.269500 0.963000i \(-0.586858\pi\)
−0.968733 + 0.248107i \(0.920192\pi\)
\(588\) 0 0
\(589\) 14.0000 10.3923i 0.576860 0.428207i
\(590\) 0 0
\(591\) −9.00000 + 15.5885i −0.370211 + 0.641223i
\(592\) 0 0
\(593\) −3.00000 5.19615i −0.123195 0.213380i 0.797831 0.602881i \(-0.205981\pi\)
−0.921026 + 0.389501i \(0.872647\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 48.4974i 1.98487i
\(598\) 0 0
\(599\) 3.00000 + 5.19615i 0.122577 + 0.212309i 0.920783 0.390075i \(-0.127551\pi\)
−0.798206 + 0.602384i \(0.794218\pi\)
\(600\) 0 0
\(601\) 25.9808i 1.05978i 0.848067 + 0.529889i \(0.177766\pi\)
−0.848067 + 0.529889i \(0.822234\pi\)
\(602\) 0 0
\(603\) 2.00000 3.46410i 0.0814463 0.141069i
\(604\) 0 0
\(605\) 8.00000 13.8564i 0.325246 0.563343i
\(606\) 0 0
\(607\) −13.0000 −0.527654 −0.263827 0.964570i \(-0.584985\pi\)
−0.263827 + 0.964570i \(0.584985\pi\)
\(608\) 0 0
\(609\) −12.0000 −0.486265
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −0.500000 + 0.866025i −0.0201948 + 0.0349784i −0.875946 0.482409i \(-0.839762\pi\)
0.855751 + 0.517387i \(0.173095\pi\)
\(614\) 0 0
\(615\) 17.3205i 0.698430i
\(616\) 0 0
\(617\) −21.0000 36.3731i −0.845428 1.46432i −0.885249 0.465118i \(-0.846012\pi\)
0.0398207 0.999207i \(-0.487321\pi\)
\(618\) 0 0
\(619\) 8.66025i 0.348085i −0.984738 0.174042i \(-0.944317\pi\)
0.984738 0.174042i \(-0.0556830\pi\)
\(620\) 0 0
\(621\) 30.0000 17.3205i 1.20386 0.695048i
\(622\) 0 0
\(623\) −13.5000 23.3827i −0.540866 0.936808i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) −45.0000 + 5.19615i −1.79713 + 0.207514i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −36.0000 + 20.7846i −1.43314 + 0.827422i −0.997359 0.0726317i \(-0.976860\pi\)
−0.435779 + 0.900054i \(0.643527\pi\)
\(632\) 0 0
\(633\) 7.00000 + 12.1244i 0.278225 + 0.481900i
\(634\) 0 0
\(635\) −13.0000 −0.515889
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −6.00000 −0.237356
\(640\) 0 0
\(641\) 30.0000 + 17.3205i 1.18493 + 0.684119i 0.957150 0.289594i \(-0.0935202\pi\)
0.227779 + 0.973713i \(0.426854\pi\)
\(642\) 0 0
\(643\) −3.00000 1.73205i −0.118308 0.0683054i 0.439678 0.898155i \(-0.355093\pi\)
−0.557986 + 0.829850i \(0.688426\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 25.9808i 1.02141i −0.859756 0.510705i \(-0.829385\pi\)
0.859756 0.510705i \(-0.170615\pi\)
\(648\) 0 0
\(649\) −54.0000 31.1769i −2.11969 1.22380i
\(650\) 0 0
\(651\) 12.0000 + 6.92820i 0.470317 + 0.271538i
\(652\) 0 0
\(653\) −45.0000 −1.76099 −0.880493 0.474059i \(-0.842788\pi\)
−0.880493 + 0.474059i \(0.842788\pi\)
\(654\) 0 0
\(655\) 16.5000 9.52628i 0.644708 0.372223i
\(656\) 0 0
\(657\) −2.00000 −0.0780274
\(658\) 0 0
\(659\) 10.5000 + 18.1865i 0.409022 + 0.708447i 0.994780 0.102039i \(-0.0325366\pi\)
−0.585758 + 0.810486i \(0.699203\pi\)
\(660\) 0 0
\(661\) 21.0000 12.1244i 0.816805 0.471583i −0.0325082 0.999471i \(-0.510350\pi\)
0.849314 + 0.527889i \(0.177016\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 7.50000 0.866025i 0.290838 0.0335830i
\(666\) 0 0
\(667\) −15.0000 + 25.9808i −0.580802 + 1.00598i
\(668\) 0 0
\(669\) 17.0000 + 29.4449i 0.657258 + 1.13840i
\(670\) 0 0
\(671\) −45.0000 + 25.9808i −1.73721 + 1.00298i
\(672\) 0 0
\(673\) 10.3923i 0.400594i −0.979735 0.200297i \(-0.935809\pi\)
0.979735 0.200297i \(-0.0641907\pi\)
\(674\) 0 0
\(675\) 2.00000 + 3.46410i 0.0769800 + 0.133333i
\(676\) 0 0
\(677\) 8.66025i 0.332841i 0.986055 + 0.166420i \(0.0532208\pi\)
−0.986055 + 0.166420i \(0.946779\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 24.0000 41.5692i 0.919682 1.59294i
\(682\) 0 0
\(683\) 6.00000 0.229584 0.114792 0.993390i \(-0.463380\pi\)
0.114792 + 0.993390i \(0.463380\pi\)
\(684\) 0 0
\(685\) 18.0000 0.687745
\(686\) 0 0
\(687\) 22.0000 38.1051i 0.839352 1.45380i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 25.9808i 0.988355i 0.869361 + 0.494177i \(0.164531\pi\)
−0.869361 + 0.494177i \(0.835469\pi\)
\(692\) 0 0
\(693\) −4.50000 7.79423i −0.170941 0.296078i
\(694\) 0 0
\(695\) 10.3923i 0.394203i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 6.00000 + 10.3923i 0.226941 + 0.393073i
\(700\) 0 0
\(701\) −6.00000 + 10.3923i −0.226617 + 0.392512i −0.956803 0.290736i \(-0.906100\pi\)
0.730186 + 0.683248i \(0.239433\pi\)
\(702\) 0 0
\(703\) 4.50000 + 6.06218i 0.169721 + 0.228639i
\(704\) 0 0
\(705\) 6.00000 + 3.46410i 0.225973 + 0.130466i
\(706\) 0 0
\(707\) −9.00000 + 5.19615i −0.338480 + 0.195421i
\(708\) 0 0
\(709\) −5.00000 8.66025i −0.187779 0.325243i 0.756730 0.653727i \(-0.226796\pi\)
−0.944509 + 0.328484i \(0.893462\pi\)
\(710\) 0 0
\(711\) 4.00000 0.150012
\(712\) 0 0
\(713\) 30.0000 17.3205i 1.12351 0.648658i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −12.0000 6.92820i −0.448148 0.258738i
\(718\) 0 0
\(719\) −21.0000 12.1244i −0.783168 0.452162i 0.0543839 0.998520i \(-0.482681\pi\)
−0.837552 + 0.546358i \(0.816014\pi\)
\(720\) 0 0
\(721\) 1.73205i 0.0645049i
\(722\) 0 0
\(723\) 27.7128i 1.03065i
\(724\) 0 0
\(725\) −3.00000 1.73205i −0.111417 0.0643268i
\(726\) 0 0
\(727\) 3.00000 + 1.73205i 0.111264 + 0.0642382i 0.554599 0.832118i \(-0.312872\pi\)
−0.443335 + 0.896356i \(0.646205\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 49.0000 1.80986 0.904928 0.425564i \(-0.139924\pi\)
0.904928 + 0.425564i \(0.139924\pi\)
\(734\) 0 0
\(735\) −4.00000 6.92820i −0.147542 0.255551i
\(736\) 0 0
\(737\) 18.0000 10.3923i 0.663039 0.382805i
\(738\) 0 0
\(739\) −16.5000 9.52628i −0.606962 0.350430i 0.164813 0.986325i \(-0.447298\pi\)
−0.771776 + 0.635895i \(0.780631\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 13.5000 23.3827i 0.495267 0.857828i −0.504718 0.863284i \(-0.668404\pi\)
0.999985 + 0.00545664i \(0.00173691\pi\)
\(744\) 0 0
\(745\) 9.00000 + 15.5885i 0.329734 + 0.571117i
\(746\) 0 0
\(747\) −9.00000 + 5.19615i −0.329293 + 0.190117i
\(748\) 0 0
\(749\) 20.7846i 0.759453i
\(750\) 0 0
\(751\) 19.0000 + 32.9090i 0.693320 + 1.20087i 0.970744 + 0.240118i \(0.0771860\pi\)
−0.277424 + 0.960748i \(0.589481\pi\)
\(752\) 0 0
\(753\) 20.7846i 0.757433i
\(754\) 0 0
\(755\) 1.00000 1.73205i 0.0363937 0.0630358i
\(756\) 0 0
\(757\) −17.5000 + 30.3109i −0.636048 + 1.10167i 0.350244 + 0.936659i \(0.386099\pi\)
−0.986292 + 0.165009i \(0.947235\pi\)
\(758\) 0 0
\(759\) −90.0000 −3.26679
\(760\) 0 0
\(761\) −9.00000 −0.326250 −0.163125 0.986605i \(-0.552157\pi\)
−0.163125 + 0.986605i \(0.552157\pi\)
\(762\) 0 0
\(763\) −6.00000 + 10.3923i −0.217215 + 0.376227i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −5.00000 8.66025i −0.180305 0.312297i 0.761680 0.647954i \(-0.224375\pi\)
−0.941984 + 0.335657i \(0.891042\pi\)
\(770\) 0 0
\(771\) 13.8564i 0.499026i
\(772\) 0 0
\(773\) −10.5000 + 6.06218i −0.377659 + 0.218041i −0.676799 0.736168i \(-0.736633\pi\)
0.299140 + 0.954209i \(0.403300\pi\)
\(774\) 0 0
\(775\) 2.00000 + 3.46410i 0.0718421 + 0.124434i
\(776\) 0 0
\(777\) −3.00000 + 5.19615i −0.107624 + 0.186411i
\(778\) 0 0
\(779\) 37.5000 4.33013i 1.34358 0.155143i
\(780\) 0 0
\(781\) −27.0000 15.5885i −0.966136 0.557799i
\(782\) 0 0
\(783\) −12.0000 + 6.92820i −0.428845 + 0.247594i
\(784\) 0 0
\(785\) −0.500000 0.866025i −0.0178458 0.0309098i
\(786\) 0 0
\(787\) 2.00000 0.0712923 0.0356462 0.999364i \(-0.488651\pi\)
0.0356462 + 0.999364i \(0.488651\pi\)
\(788\) 0 0
\(789\) −15.0000 + 8.66025i −0.534014 + 0.308313i
\(790\) 0 0
\(791\) −24.0000 −0.853342
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −9.00000 5.19615i −0.319197 0.184289i
\(796\) 0 0
\(797\) 22.5167i 0.797581i −0.917042 0.398791i \(-0.869430\pi\)
0.917042 0.398791i \(-0.130570\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 13.5000 + 7.79423i 0.476999 + 0.275396i
\(802\) 0 0
\(803\) −9.00000 5.19615i −0.317603 0.183368i
\(804\) 0 0
\(805\) 15.0000 0.528681
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) −0.500000 0.866025i −0.0175574 0.0304103i 0.857113 0.515128i \(-0.172256\pi\)
−0.874671 + 0.484718i \(0.838922\pi\)
\(812\) 0 0
\(813\) −12.0000 + 6.92820i −0.420858 + 0.242983i
\(814\) 0 0
\(815\) 9.00000 + 5.19615i 0.315256 + 0.182013i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −12.0000 20.7846i −0.418803 0.725388i 0.577016 0.816733i \(-0.304217\pi\)
−0.995819 + 0.0913446i \(0.970884\pi\)
\(822\) 0 0
\(823\) −46.5000 + 26.8468i −1.62089 + 0.935820i −0.634205 + 0.773165i \(0.718673\pi\)
−0.986683 + 0.162655i \(0.947994\pi\)
\(824\) 0 0
\(825\) 10.3923i 0.361814i
\(826\) 0 0
\(827\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(828\) 0 0
\(829\) 10.3923i 0.360940i −0.983581 0.180470i \(-0.942238\pi\)
0.983581 0.180470i \(-0.0577618\pi\)
\(830\) 0 0
\(831\) 22.0000 38.1051i 0.763172 1.32185i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −9.00000 −0.311458
\(836\) 0 0
\(837\) 16.0000 0.553041
\(838\) 0 0
\(839\) −12.0000 + 20.7846i −0.414286 + 0.717564i −0.995353 0.0962912i \(-0.969302\pi\)
0.581067 + 0.813856i \(0.302635\pi\)
\(840\) 0 0
\(841\) −8.50000 + 14.7224i −0.293103 + 0.507670i
\(842\) 0 0
\(843\) 3.46410i 0.119310i
\(844\) 0 0
\(845\) −6.50000 11.2583i −0.223607 0.387298i
\(846\) 0 0
\(847\) 27.7128i 0.952224i
\(848\) 0 0
\(849\) 48.0000 27.7128i 1.64736 0.951101i
\(850\) 0 0
\(851\) 7.50000 + 12.9904i 0.257097 + 0.445305i
\(852\) 0 0
\(853\) 5.00000 8.66025i 0.171197 0.296521i −0.767642 0.640879i \(-0.778570\pi\)
0.938839 + 0.344358i \(0.111903\pi\)
\(854\) 0 0
\(855\) −3.50000 + 2.59808i −0.119697 + 0.0888523i
\(856\) 0 0
\(857\) 30.0000 + 17.3205i 1.02478 + 0.591657i 0.915485 0.402352i \(-0.131807\pi\)
0.109295 + 0.994009i \(0.465141\pi\)
\(858\) 0 0
\(859\) 28.5000 16.4545i 0.972407 0.561420i 0.0724381 0.997373i \(-0.476922\pi\)
0.899969 + 0.435953i \(0.143589\pi\)
\(860\) 0 0
\(861\) 15.0000 + 25.9808i 0.511199 + 0.885422i
\(862\) 0 0
\(863\) 21.0000 0.714848 0.357424 0.933942i \(-0.383655\pi\)
0.357424 + 0.933942i \(0.383655\pi\)
\(864\) 0 0
\(865\) −16.5000 + 9.52628i −0.561017 + 0.323903i
\(866\) 0 0
\(867\) −34.0000 −1.15470
\(868\) 0 0
\(869\) 18.0000 + 10.3923i 0.610608 + 0.352535i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.73205i 0.0585540i
\(876\) 0 0
\(877\) 10.5000 + 6.06218i 0.354560 + 0.204705i 0.666692 0.745334i \(-0.267710\pi\)
−0.312132 + 0.950039i \(0.601043\pi\)
\(878\) 0 0
\(879\) −45.0000 25.9808i −1.51781 0.876309i
\(880\) 0 0
\(881\) −33.0000 −1.11180 −0.555899 0.831250i \(-0.687626\pi\)
−0.555899 + 0.831250i \(0.687626\pi\)
\(882\) 0 0
\(883\) −42.0000 + 24.2487i −1.41341 + 0.816034i −0.995708 0.0925489i \(-0.970499\pi\)
−0.417704 + 0.908583i \(0.637165\pi\)
\(884\) 0 0
\(885\) −24.0000 −0.806751
\(886\) 0 0
\(887\) 24.0000 + 41.5692i 0.805841 + 1.39576i 0.915722 + 0.401813i \(0.131620\pi\)
−0.109881 + 0.993945i \(0.535047\pi\)
\(888\) 0 0
\(889\) −19.5000 + 11.2583i −0.654009 + 0.377592i
\(890\) 0 0
\(891\) −49.5000 28.5788i −1.65831 0.957427i
\(892\) 0 0
\(893\) 6.00000 13.8564i 0.200782 0.463687i
\(894\) 0 0
\(895\) −10.5000 + 18.1865i −0.350976 + 0.607909i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −12.0000 + 6.92820i −0.400222 + 0.231069i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 13.8564i 0.460603i
\(906\) 0 0
\(907\) −7.00000 + 12.1244i −0.232431 + 0.402583i −0.958523 0.285015i \(-0.908001\pi\)
0.726092 + 0.687598i \(0.241335\pi\)
\(908\) 0 0
\(909\) 3.00000 5.19615i 0.0995037 0.172345i
\(910\) 0 0
\(911\) 18.0000 0.596367 0.298183 0.954509i \(-0.403619\pi\)
0.298183 + 0.954509i \(0.403619\pi\)
\(912\) 0 0
\(913\) −54.0000 −1.78714
\(914\) 0 0
\(915\) −10.0000 + 17.3205i −0.330590 + 0.572598i
\(916\) 0 0
\(917\) 16.5000 28.5788i 0.544878 0.943756i
\(918\) 0 0
\(919\) 24.2487i 0.799891i −0.916539 0.399946i \(-0.869029\pi\)
0.916539 0.399946i \(-0.130971\pi\)
\(920\) 0 0
\(921\) −16.0000 27.7128i −0.527218 0.913168i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −1.50000 + 0.866025i −0.0493197 + 0.0284747i
\(926\) 0 0
\(927\) −0.500000 0.866025i −0.0164222 0.0284440i
\(928\) 0 0
\(929\) −25.5000 + 44.1673i −0.836628 + 1.44908i 0.0560703 + 0.998427i \(0.482143\pi\)
−0.892698 + 0.450655i \(0.851190\pi\)
\(930\) 0 0
\(931\) −14.0000 + 10.3923i −0.458831 + 0.340594i
\(932\) 0 0
\(933\) −24.0000 13.8564i −0.785725 0.453638i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 8.00000 + 13.8564i 0.261349 + 0.452669i 0.966601 0.256288i \(-0.0824995\pi\)
−0.705252 + 0.708957i \(0.749166\pi\)
\(938\) 0 0
\(939\) −16.0000 −0.522140
\(940\) 0 0
\(941\) 42.0000 24.2487i 1.36916 0.790485i 0.378340 0.925667i \(-0.376495\pi\)
0.990821 + 0.135181i \(0.0431617\pi\)
\(942\) 0 0
\(943\) 75.0000 2.44234
\(944\) 0 0
\(945\) 6.00000 + 3.46410i 0.195180 + 0.112687i
\(946\) 0 0
\(947\) 6.00000 + 3.46410i 0.194974 + 0.112568i 0.594309 0.804237i \(-0.297426\pi\)
−0.399335 + 0.916805i \(0.630759\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 65.8179i 2.13429i
\(952\) 0 0
\(953\) 30.0000 + 17.3205i 0.971795 + 0.561066i 0.899783 0.436337i \(-0.143725\pi\)
0.0720122 + 0.997404i \(0.477058\pi\)
\(954\) 0 0
\(955\) 3.00000 + 1.73205i 0.0970777 + 0.0560478i
\(956\) 0 0
\(957\) 36.0000 1.16371
\(958\) 0 0
\(959\) 27.0000 15.5885i 0.871875 0.503378i
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 6.00000 + 10.3923i 0.193347 + 0.334887i
\(964\) 0 0
\(965\) 12.0000 6.92820i 0.386294 0.223027i
\(966\) 0 0
\(967\) 27.0000 + 15.5885i 0.868261 + 0.501291i 0.866770 0.498708i \(-0.166192\pi\)
0.00149135 + 0.999999i \(0.499525\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 24.0000 41.5692i 0.770197 1.33402i −0.167258 0.985913i \(-0.553491\pi\)
0.937455 0.348107i \(-0.113175\pi\)
\(972\) 0 0
\(973\) −9.00000 15.5885i −0.288527 0.499743i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 58.8897i 1.88405i −0.335544 0.942025i \(-0.608920\pi\)
0.335544 0.942025i \(-0.391080\pi\)
\(978\) 0 0
\(979\) 40.5000 + 70.1481i 1.29439 + 2.24194i
\(980\) 0 0
\(981\) 6.92820i 0.221201i
\(982\) 0 0
\(983\) −19.5000 + 33.7750i −0.621953 + 1.07725i 0.367168 + 0.930155i \(0.380327\pi\)
−0.989122 + 0.147100i \(0.953006\pi\)
\(984\) 0 0
\(985\) −4.50000 + 7.79423i −0.143382 + 0.248345i
\(986\) 0 0
\(987\) 12.0000 0.381964
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 26.0000 45.0333i 0.825917 1.43053i −0.0752991 0.997161i \(-0.523991\pi\)
0.901216 0.433370i \(-0.142676\pi\)
\(992\) 0 0
\(993\) −1.00000 + 1.73205i −0.0317340 + 0.0549650i
\(994\) 0 0
\(995\) 24.2487i 0.768736i
\(996\) 0 0
\(997\) −0.500000 0.866025i −0.0158352 0.0274273i 0.857999 0.513651i \(-0.171707\pi\)
−0.873834 + 0.486224i \(0.838374\pi\)
\(998\) 0 0
\(999\) 6.92820i 0.219199i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1520.2.bq.b.1471.1 yes 2
4.3 odd 2 1520.2.bq.h.1471.1 yes 2
19.12 odd 6 1520.2.bq.h.31.1 yes 2
76.31 even 6 inner 1520.2.bq.b.31.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1520.2.bq.b.31.1 2 76.31 even 6 inner
1520.2.bq.b.1471.1 yes 2 1.1 even 1 trivial
1520.2.bq.h.31.1 yes 2 19.12 odd 6
1520.2.bq.h.1471.1 yes 2 4.3 odd 2