Properties

Label 152.6.a.c.1.5
Level $152$
Weight $6$
Character 152.1
Self dual yes
Analytic conductor $24.378$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [152,6,Mod(1,152)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("152.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(152, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 152.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.3783406116\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 1012x^{4} + 2938x^{3} + 184643x^{2} - 1214504x + 729856 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(11.3428\) of defining polynomial
Character \(\chi\) \(=\) 152.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+10.3428 q^{3} -9.61696 q^{5} +11.2548 q^{7} -136.027 q^{9} -268.762 q^{11} +306.020 q^{13} -99.4658 q^{15} -2226.33 q^{17} -361.000 q^{19} +116.406 q^{21} +2982.97 q^{23} -3032.51 q^{25} -3920.19 q^{27} +4066.96 q^{29} -7466.54 q^{31} -2779.74 q^{33} -108.237 q^{35} -11964.4 q^{37} +3165.09 q^{39} +14361.0 q^{41} +10897.4 q^{43} +1308.17 q^{45} -21817.4 q^{47} -16680.3 q^{49} -23026.4 q^{51} -12723.3 q^{53} +2584.67 q^{55} -3733.73 q^{57} -21285.7 q^{59} +2651.42 q^{61} -1530.96 q^{63} -2942.98 q^{65} -32724.6 q^{67} +30852.1 q^{69} -71179.1 q^{71} +73779.2 q^{73} -31364.5 q^{75} -3024.87 q^{77} -48764.6 q^{79} -7490.85 q^{81} +81985.2 q^{83} +21410.5 q^{85} +42063.5 q^{87} +59375.2 q^{89} +3444.20 q^{91} -77224.6 q^{93} +3471.72 q^{95} +106151. q^{97} +36559.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} - 25 q^{5} - 161 q^{7} + 572 q^{9} - 205 q^{11} - 382 q^{13} - 950 q^{15} - 65 q^{17} - 2166 q^{19} - 6006 q^{21} - 5584 q^{23} - 3111 q^{25} - 6874 q^{27} - 9972 q^{29} - 7140 q^{31} - 3774 q^{33}+ \cdots + 49107 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 10.3428 0.663488 0.331744 0.943369i \(-0.392363\pi\)
0.331744 + 0.943369i \(0.392363\pi\)
\(4\) 0 0
\(5\) −9.61696 −0.172033 −0.0860167 0.996294i \(-0.527414\pi\)
−0.0860167 + 0.996294i \(0.527414\pi\)
\(6\) 0 0
\(7\) 11.2548 0.0868148 0.0434074 0.999057i \(-0.486179\pi\)
0.0434074 + 0.999057i \(0.486179\pi\)
\(8\) 0 0
\(9\) −136.027 −0.559784
\(10\) 0 0
\(11\) −268.762 −0.669709 −0.334854 0.942270i \(-0.608687\pi\)
−0.334854 + 0.942270i \(0.608687\pi\)
\(12\) 0 0
\(13\) 306.020 0.502217 0.251108 0.967959i \(-0.419205\pi\)
0.251108 + 0.967959i \(0.419205\pi\)
\(14\) 0 0
\(15\) −99.4658 −0.114142
\(16\) 0 0
\(17\) −2226.33 −1.86839 −0.934195 0.356762i \(-0.883881\pi\)
−0.934195 + 0.356762i \(0.883881\pi\)
\(18\) 0 0
\(19\) −361.000 −0.229416
\(20\) 0 0
\(21\) 116.406 0.0576005
\(22\) 0 0
\(23\) 2982.97 1.17579 0.587894 0.808938i \(-0.299957\pi\)
0.587894 + 0.808938i \(0.299957\pi\)
\(24\) 0 0
\(25\) −3032.51 −0.970405
\(26\) 0 0
\(27\) −3920.19 −1.03490
\(28\) 0 0
\(29\) 4066.96 0.897996 0.448998 0.893533i \(-0.351781\pi\)
0.448998 + 0.893533i \(0.351781\pi\)
\(30\) 0 0
\(31\) −7466.54 −1.39545 −0.697727 0.716364i \(-0.745805\pi\)
−0.697727 + 0.716364i \(0.745805\pi\)
\(32\) 0 0
\(33\) −2779.74 −0.444344
\(34\) 0 0
\(35\) −108.237 −0.0149350
\(36\) 0 0
\(37\) −11964.4 −1.43676 −0.718381 0.695649i \(-0.755117\pi\)
−0.718381 + 0.695649i \(0.755117\pi\)
\(38\) 0 0
\(39\) 3165.09 0.333215
\(40\) 0 0
\(41\) 14361.0 1.33421 0.667106 0.744963i \(-0.267533\pi\)
0.667106 + 0.744963i \(0.267533\pi\)
\(42\) 0 0
\(43\) 10897.4 0.898774 0.449387 0.893337i \(-0.351642\pi\)
0.449387 + 0.893337i \(0.351642\pi\)
\(44\) 0 0
\(45\) 1308.17 0.0963015
\(46\) 0 0
\(47\) −21817.4 −1.44065 −0.720326 0.693636i \(-0.756008\pi\)
−0.720326 + 0.693636i \(0.756008\pi\)
\(48\) 0 0
\(49\) −16680.3 −0.992463
\(50\) 0 0
\(51\) −23026.4 −1.23965
\(52\) 0 0
\(53\) −12723.3 −0.622172 −0.311086 0.950382i \(-0.600693\pi\)
−0.311086 + 0.950382i \(0.600693\pi\)
\(54\) 0 0
\(55\) 2584.67 0.115212
\(56\) 0 0
\(57\) −3733.73 −0.152215
\(58\) 0 0
\(59\) −21285.7 −0.796082 −0.398041 0.917368i \(-0.630310\pi\)
−0.398041 + 0.917368i \(0.630310\pi\)
\(60\) 0 0
\(61\) 2651.42 0.0912333 0.0456166 0.998959i \(-0.485475\pi\)
0.0456166 + 0.998959i \(0.485475\pi\)
\(62\) 0 0
\(63\) −1530.96 −0.0485975
\(64\) 0 0
\(65\) −2942.98 −0.0863981
\(66\) 0 0
\(67\) −32724.6 −0.890611 −0.445305 0.895379i \(-0.646905\pi\)
−0.445305 + 0.895379i \(0.646905\pi\)
\(68\) 0 0
\(69\) 30852.1 0.780121
\(70\) 0 0
\(71\) −71179.1 −1.67574 −0.837870 0.545869i \(-0.816199\pi\)
−0.837870 + 0.545869i \(0.816199\pi\)
\(72\) 0 0
\(73\) 73779.2 1.62042 0.810209 0.586141i \(-0.199354\pi\)
0.810209 + 0.586141i \(0.199354\pi\)
\(74\) 0 0
\(75\) −31364.5 −0.643852
\(76\) 0 0
\(77\) −3024.87 −0.0581406
\(78\) 0 0
\(79\) −48764.6 −0.879097 −0.439548 0.898219i \(-0.644861\pi\)
−0.439548 + 0.898219i \(0.644861\pi\)
\(80\) 0 0
\(81\) −7490.85 −0.126858
\(82\) 0 0
\(83\) 81985.2 1.30629 0.653146 0.757232i \(-0.273449\pi\)
0.653146 + 0.757232i \(0.273449\pi\)
\(84\) 0 0
\(85\) 21410.5 0.321425
\(86\) 0 0
\(87\) 42063.5 0.595810
\(88\) 0 0
\(89\) 59375.2 0.794566 0.397283 0.917696i \(-0.369953\pi\)
0.397283 + 0.917696i \(0.369953\pi\)
\(90\) 0 0
\(91\) 3444.20 0.0435998
\(92\) 0 0
\(93\) −77224.6 −0.925866
\(94\) 0 0
\(95\) 3471.72 0.0394672
\(96\) 0 0
\(97\) 106151. 1.14550 0.572751 0.819730i \(-0.305876\pi\)
0.572751 + 0.819730i \(0.305876\pi\)
\(98\) 0 0
\(99\) 36559.0 0.374892
\(100\) 0 0
\(101\) 153867. 1.50087 0.750435 0.660944i \(-0.229844\pi\)
0.750435 + 0.660944i \(0.229844\pi\)
\(102\) 0 0
\(103\) −57044.2 −0.529808 −0.264904 0.964275i \(-0.585340\pi\)
−0.264904 + 0.964275i \(0.585340\pi\)
\(104\) 0 0
\(105\) −1119.47 −0.00990921
\(106\) 0 0
\(107\) 72467.5 0.611904 0.305952 0.952047i \(-0.401025\pi\)
0.305952 + 0.952047i \(0.401025\pi\)
\(108\) 0 0
\(109\) 188088. 1.51633 0.758166 0.652062i \(-0.226096\pi\)
0.758166 + 0.652062i \(0.226096\pi\)
\(110\) 0 0
\(111\) −123744. −0.953275
\(112\) 0 0
\(113\) 80426.7 0.592521 0.296261 0.955107i \(-0.404260\pi\)
0.296261 + 0.955107i \(0.404260\pi\)
\(114\) 0 0
\(115\) −28687.1 −0.202275
\(116\) 0 0
\(117\) −41627.1 −0.281133
\(118\) 0 0
\(119\) −25057.0 −0.162204
\(120\) 0 0
\(121\) −88818.1 −0.551490
\(122\) 0 0
\(123\) 148532. 0.885233
\(124\) 0 0
\(125\) 59216.5 0.338975
\(126\) 0 0
\(127\) 123385. 0.678820 0.339410 0.940639i \(-0.389773\pi\)
0.339410 + 0.940639i \(0.389773\pi\)
\(128\) 0 0
\(129\) 112709. 0.596326
\(130\) 0 0
\(131\) 165155. 0.840841 0.420420 0.907329i \(-0.361883\pi\)
0.420420 + 0.907329i \(0.361883\pi\)
\(132\) 0 0
\(133\) −4062.99 −0.0199167
\(134\) 0 0
\(135\) 37700.3 0.178037
\(136\) 0 0
\(137\) 125821. 0.572733 0.286367 0.958120i \(-0.407553\pi\)
0.286367 + 0.958120i \(0.407553\pi\)
\(138\) 0 0
\(139\) −291448. −1.27945 −0.639726 0.768603i \(-0.720952\pi\)
−0.639726 + 0.768603i \(0.720952\pi\)
\(140\) 0 0
\(141\) −225652. −0.955855
\(142\) 0 0
\(143\) −82246.5 −0.336339
\(144\) 0 0
\(145\) −39111.7 −0.154485
\(146\) 0 0
\(147\) −172521. −0.658487
\(148\) 0 0
\(149\) −272325. −1.00490 −0.502448 0.864607i \(-0.667567\pi\)
−0.502448 + 0.864607i \(0.667567\pi\)
\(150\) 0 0
\(151\) 276941. 0.988428 0.494214 0.869340i \(-0.335456\pi\)
0.494214 + 0.869340i \(0.335456\pi\)
\(152\) 0 0
\(153\) 302842. 1.04589
\(154\) 0 0
\(155\) 71805.4 0.240065
\(156\) 0 0
\(157\) 40951.6 0.132594 0.0662968 0.997800i \(-0.478882\pi\)
0.0662968 + 0.997800i \(0.478882\pi\)
\(158\) 0 0
\(159\) −131594. −0.412803
\(160\) 0 0
\(161\) 33572.8 0.102076
\(162\) 0 0
\(163\) 9129.77 0.0269148 0.0134574 0.999909i \(-0.495716\pi\)
0.0134574 + 0.999909i \(0.495716\pi\)
\(164\) 0 0
\(165\) 26732.6 0.0764419
\(166\) 0 0
\(167\) −132505. −0.367656 −0.183828 0.982958i \(-0.558849\pi\)
−0.183828 + 0.982958i \(0.558849\pi\)
\(168\) 0 0
\(169\) −277645. −0.747778
\(170\) 0 0
\(171\) 49105.9 0.128423
\(172\) 0 0
\(173\) −532802. −1.35348 −0.676738 0.736224i \(-0.736607\pi\)
−0.676738 + 0.736224i \(0.736607\pi\)
\(174\) 0 0
\(175\) −34130.4 −0.0842454
\(176\) 0 0
\(177\) −220153. −0.528191
\(178\) 0 0
\(179\) 57633.0 0.134443 0.0672216 0.997738i \(-0.478587\pi\)
0.0672216 + 0.997738i \(0.478587\pi\)
\(180\) 0 0
\(181\) 22465.0 0.0509695 0.0254848 0.999675i \(-0.491887\pi\)
0.0254848 + 0.999675i \(0.491887\pi\)
\(182\) 0 0
\(183\) 27422.9 0.0605322
\(184\) 0 0
\(185\) 115061. 0.247171
\(186\) 0 0
\(187\) 598353. 1.25128
\(188\) 0 0
\(189\) −44121.0 −0.0898444
\(190\) 0 0
\(191\) −66820.2 −0.132533 −0.0662665 0.997802i \(-0.521109\pi\)
−0.0662665 + 0.997802i \(0.521109\pi\)
\(192\) 0 0
\(193\) −515238. −0.995668 −0.497834 0.867272i \(-0.665871\pi\)
−0.497834 + 0.867272i \(0.665871\pi\)
\(194\) 0 0
\(195\) −30438.5 −0.0573241
\(196\) 0 0
\(197\) 924019. 1.69635 0.848175 0.529716i \(-0.177702\pi\)
0.848175 + 0.529716i \(0.177702\pi\)
\(198\) 0 0
\(199\) −801572. −1.43486 −0.717430 0.696630i \(-0.754682\pi\)
−0.717430 + 0.696630i \(0.754682\pi\)
\(200\) 0 0
\(201\) −338463. −0.590909
\(202\) 0 0
\(203\) 45772.9 0.0779593
\(204\) 0 0
\(205\) −138109. −0.229529
\(206\) 0 0
\(207\) −405766. −0.658187
\(208\) 0 0
\(209\) 97023.0 0.153642
\(210\) 0 0
\(211\) −805969. −1.24627 −0.623135 0.782114i \(-0.714141\pi\)
−0.623135 + 0.782114i \(0.714141\pi\)
\(212\) 0 0
\(213\) −736188. −1.11183
\(214\) 0 0
\(215\) −104800. −0.154619
\(216\) 0 0
\(217\) −84034.6 −0.121146
\(218\) 0 0
\(219\) 763080. 1.07513
\(220\) 0 0
\(221\) −681302. −0.938337
\(222\) 0 0
\(223\) 1.06583e6 1.43524 0.717622 0.696433i \(-0.245231\pi\)
0.717622 + 0.696433i \(0.245231\pi\)
\(224\) 0 0
\(225\) 412505. 0.543217
\(226\) 0 0
\(227\) −1.37166e6 −1.76677 −0.883386 0.468647i \(-0.844742\pi\)
−0.883386 + 0.468647i \(0.844742\pi\)
\(228\) 0 0
\(229\) −1.19996e6 −1.51210 −0.756049 0.654515i \(-0.772873\pi\)
−0.756049 + 0.654515i \(0.772873\pi\)
\(230\) 0 0
\(231\) −31285.5 −0.0385756
\(232\) 0 0
\(233\) 769601. 0.928701 0.464350 0.885652i \(-0.346288\pi\)
0.464350 + 0.885652i \(0.346288\pi\)
\(234\) 0 0
\(235\) 209817. 0.247840
\(236\) 0 0
\(237\) −504360. −0.583270
\(238\) 0 0
\(239\) 1.60410e6 1.81651 0.908253 0.418421i \(-0.137416\pi\)
0.908253 + 0.418421i \(0.137416\pi\)
\(240\) 0 0
\(241\) −900329. −0.998525 −0.499262 0.866451i \(-0.666396\pi\)
−0.499262 + 0.866451i \(0.666396\pi\)
\(242\) 0 0
\(243\) 875129. 0.950729
\(244\) 0 0
\(245\) 160414. 0.170737
\(246\) 0 0
\(247\) −110473. −0.115216
\(248\) 0 0
\(249\) 847953. 0.866709
\(250\) 0 0
\(251\) −274625. −0.275141 −0.137571 0.990492i \(-0.543929\pi\)
−0.137571 + 0.990492i \(0.543929\pi\)
\(252\) 0 0
\(253\) −801708. −0.787435
\(254\) 0 0
\(255\) 221444. 0.213262
\(256\) 0 0
\(257\) −863177. −0.815205 −0.407603 0.913159i \(-0.633635\pi\)
−0.407603 + 0.913159i \(0.633635\pi\)
\(258\) 0 0
\(259\) −134657. −0.124732
\(260\) 0 0
\(261\) −553218. −0.502684
\(262\) 0 0
\(263\) −749008. −0.667725 −0.333862 0.942622i \(-0.608352\pi\)
−0.333862 + 0.942622i \(0.608352\pi\)
\(264\) 0 0
\(265\) 122359. 0.107034
\(266\) 0 0
\(267\) 614103. 0.527185
\(268\) 0 0
\(269\) −138260. −0.116497 −0.0582486 0.998302i \(-0.518552\pi\)
−0.0582486 + 0.998302i \(0.518552\pi\)
\(270\) 0 0
\(271\) 210916. 0.174456 0.0872282 0.996188i \(-0.472199\pi\)
0.0872282 + 0.996188i \(0.472199\pi\)
\(272\) 0 0
\(273\) 35622.5 0.0289280
\(274\) 0 0
\(275\) 815024. 0.649888
\(276\) 0 0
\(277\) −552166. −0.432384 −0.216192 0.976351i \(-0.569364\pi\)
−0.216192 + 0.976351i \(0.569364\pi\)
\(278\) 0 0
\(279\) 1.01565e6 0.781152
\(280\) 0 0
\(281\) 1.47154e6 1.11175 0.555875 0.831266i \(-0.312383\pi\)
0.555875 + 0.831266i \(0.312383\pi\)
\(282\) 0 0
\(283\) −297044. −0.220472 −0.110236 0.993905i \(-0.535161\pi\)
−0.110236 + 0.993905i \(0.535161\pi\)
\(284\) 0 0
\(285\) 35907.2 0.0261860
\(286\) 0 0
\(287\) 161630. 0.115829
\(288\) 0 0
\(289\) 3.53670e6 2.49088
\(290\) 0 0
\(291\) 1.09790e6 0.760026
\(292\) 0 0
\(293\) −787646. −0.535997 −0.267998 0.963419i \(-0.586362\pi\)
−0.267998 + 0.963419i \(0.586362\pi\)
\(294\) 0 0
\(295\) 204704. 0.136953
\(296\) 0 0
\(297\) 1.05360e6 0.693080
\(298\) 0 0
\(299\) 912848. 0.590501
\(300\) 0 0
\(301\) 122648. 0.0780269
\(302\) 0 0
\(303\) 1.59141e6 0.995809
\(304\) 0 0
\(305\) −25498.5 −0.0156952
\(306\) 0 0
\(307\) −1.17593e6 −0.712093 −0.356046 0.934468i \(-0.615875\pi\)
−0.356046 + 0.934468i \(0.615875\pi\)
\(308\) 0 0
\(309\) −589994. −0.351521
\(310\) 0 0
\(311\) 2.40819e6 1.41186 0.705928 0.708284i \(-0.250530\pi\)
0.705928 + 0.708284i \(0.250530\pi\)
\(312\) 0 0
\(313\) −431998. −0.249242 −0.124621 0.992204i \(-0.539771\pi\)
−0.124621 + 0.992204i \(0.539771\pi\)
\(314\) 0 0
\(315\) 14723.2 0.00836039
\(316\) 0 0
\(317\) 390232. 0.218109 0.109055 0.994036i \(-0.465218\pi\)
0.109055 + 0.994036i \(0.465218\pi\)
\(318\) 0 0
\(319\) −1.09304e6 −0.601396
\(320\) 0 0
\(321\) 749513. 0.405991
\(322\) 0 0
\(323\) 803706. 0.428638
\(324\) 0 0
\(325\) −928010. −0.487354
\(326\) 0 0
\(327\) 1.94534e6 1.00607
\(328\) 0 0
\(329\) −245551. −0.125070
\(330\) 0 0
\(331\) −3.26030e6 −1.63564 −0.817819 0.575475i \(-0.804817\pi\)
−0.817819 + 0.575475i \(0.804817\pi\)
\(332\) 0 0
\(333\) 1.62748e6 0.804277
\(334\) 0 0
\(335\) 314711. 0.153215
\(336\) 0 0
\(337\) 355953. 0.170733 0.0853665 0.996350i \(-0.472794\pi\)
0.0853665 + 0.996350i \(0.472794\pi\)
\(338\) 0 0
\(339\) 831833. 0.393131
\(340\) 0 0
\(341\) 2.00672e6 0.934547
\(342\) 0 0
\(343\) −376894. −0.172975
\(344\) 0 0
\(345\) −296703. −0.134207
\(346\) 0 0
\(347\) −3.24862e6 −1.44835 −0.724177 0.689614i \(-0.757780\pi\)
−0.724177 + 0.689614i \(0.757780\pi\)
\(348\) 0 0
\(349\) −2.81147e6 −1.23558 −0.617788 0.786344i \(-0.711971\pi\)
−0.617788 + 0.786344i \(0.711971\pi\)
\(350\) 0 0
\(351\) −1.19966e6 −0.519743
\(352\) 0 0
\(353\) 4.28147e6 1.82876 0.914380 0.404858i \(-0.132679\pi\)
0.914380 + 0.404858i \(0.132679\pi\)
\(354\) 0 0
\(355\) 684527. 0.288283
\(356\) 0 0
\(357\) −259158. −0.107620
\(358\) 0 0
\(359\) −1.06670e6 −0.436824 −0.218412 0.975857i \(-0.570088\pi\)
−0.218412 + 0.975857i \(0.570088\pi\)
\(360\) 0 0
\(361\) 130321. 0.0526316
\(362\) 0 0
\(363\) −918623. −0.365907
\(364\) 0 0
\(365\) −709532. −0.278766
\(366\) 0 0
\(367\) −1.70462e6 −0.660638 −0.330319 0.943869i \(-0.607156\pi\)
−0.330319 + 0.943869i \(0.607156\pi\)
\(368\) 0 0
\(369\) −1.95349e6 −0.746870
\(370\) 0 0
\(371\) −143199. −0.0540137
\(372\) 0 0
\(373\) 2.08821e6 0.777145 0.388572 0.921418i \(-0.372968\pi\)
0.388572 + 0.921418i \(0.372968\pi\)
\(374\) 0 0
\(375\) 612462. 0.224906
\(376\) 0 0
\(377\) 1.24457e6 0.450989
\(378\) 0 0
\(379\) −349590. −0.125015 −0.0625073 0.998045i \(-0.519910\pi\)
−0.0625073 + 0.998045i \(0.519910\pi\)
\(380\) 0 0
\(381\) 1.27614e6 0.450389
\(382\) 0 0
\(383\) −4.04499e6 −1.40903 −0.704516 0.709688i \(-0.748836\pi\)
−0.704516 + 0.709688i \(0.748836\pi\)
\(384\) 0 0
\(385\) 29090.0 0.0100021
\(386\) 0 0
\(387\) −1.48234e6 −0.503119
\(388\) 0 0
\(389\) −537591. −0.180127 −0.0900633 0.995936i \(-0.528707\pi\)
−0.0900633 + 0.995936i \(0.528707\pi\)
\(390\) 0 0
\(391\) −6.64108e6 −2.19683
\(392\) 0 0
\(393\) 1.70816e6 0.557888
\(394\) 0 0
\(395\) 468967. 0.151234
\(396\) 0 0
\(397\) −4.66458e6 −1.48537 −0.742687 0.669638i \(-0.766449\pi\)
−0.742687 + 0.669638i \(0.766449\pi\)
\(398\) 0 0
\(399\) −42022.5 −0.0132145
\(400\) 0 0
\(401\) 4.06136e6 1.26128 0.630638 0.776077i \(-0.282793\pi\)
0.630638 + 0.776077i \(0.282793\pi\)
\(402\) 0 0
\(403\) −2.28491e6 −0.700820
\(404\) 0 0
\(405\) 72039.2 0.0218239
\(406\) 0 0
\(407\) 3.21556e6 0.962213
\(408\) 0 0
\(409\) −57984.7 −0.0171398 −0.00856989 0.999963i \(-0.502728\pi\)
−0.00856989 + 0.999963i \(0.502728\pi\)
\(410\) 0 0
\(411\) 1.30134e6 0.380001
\(412\) 0 0
\(413\) −239567. −0.0691117
\(414\) 0 0
\(415\) −788448. −0.224726
\(416\) 0 0
\(417\) −3.01437e6 −0.848901
\(418\) 0 0
\(419\) −321540. −0.0894745 −0.0447373 0.998999i \(-0.514245\pi\)
−0.0447373 + 0.998999i \(0.514245\pi\)
\(420\) 0 0
\(421\) −5.02391e6 −1.38145 −0.690727 0.723115i \(-0.742709\pi\)
−0.690727 + 0.723115i \(0.742709\pi\)
\(422\) 0 0
\(423\) 2.96777e6 0.806454
\(424\) 0 0
\(425\) 6.75138e6 1.81309
\(426\) 0 0
\(427\) 29841.2 0.00792039
\(428\) 0 0
\(429\) −850655. −0.223157
\(430\) 0 0
\(431\) −7.10877e6 −1.84332 −0.921661 0.387996i \(-0.873168\pi\)
−0.921661 + 0.387996i \(0.873168\pi\)
\(432\) 0 0
\(433\) 977473. 0.250545 0.125272 0.992122i \(-0.460020\pi\)
0.125272 + 0.992122i \(0.460020\pi\)
\(434\) 0 0
\(435\) −404523. −0.102499
\(436\) 0 0
\(437\) −1.07685e6 −0.269744
\(438\) 0 0
\(439\) 769414. 0.190546 0.0952728 0.995451i \(-0.469628\pi\)
0.0952728 + 0.995451i \(0.469628\pi\)
\(440\) 0 0
\(441\) 2.26898e6 0.555565
\(442\) 0 0
\(443\) −7.00188e6 −1.69514 −0.847570 0.530684i \(-0.821935\pi\)
−0.847570 + 0.530684i \(0.821935\pi\)
\(444\) 0 0
\(445\) −571009. −0.136692
\(446\) 0 0
\(447\) −2.81659e6 −0.666737
\(448\) 0 0
\(449\) −2.04512e6 −0.478744 −0.239372 0.970928i \(-0.576942\pi\)
−0.239372 + 0.970928i \(0.576942\pi\)
\(450\) 0 0
\(451\) −3.85969e6 −0.893533
\(452\) 0 0
\(453\) 2.86433e6 0.655810
\(454\) 0 0
\(455\) −33122.7 −0.00750063
\(456\) 0 0
\(457\) 1.84235e6 0.412649 0.206324 0.978484i \(-0.433850\pi\)
0.206324 + 0.978484i \(0.433850\pi\)
\(458\) 0 0
\(459\) 8.72764e6 1.93359
\(460\) 0 0
\(461\) −4.45112e6 −0.975477 −0.487738 0.872990i \(-0.662178\pi\)
−0.487738 + 0.872990i \(0.662178\pi\)
\(462\) 0 0
\(463\) 7.27488e6 1.57715 0.788575 0.614938i \(-0.210819\pi\)
0.788575 + 0.614938i \(0.210819\pi\)
\(464\) 0 0
\(465\) 742666. 0.159280
\(466\) 0 0
\(467\) 6.99111e6 1.48338 0.741692 0.670740i \(-0.234023\pi\)
0.741692 + 0.670740i \(0.234023\pi\)
\(468\) 0 0
\(469\) −368310. −0.0773182
\(470\) 0 0
\(471\) 423553. 0.0879742
\(472\) 0 0
\(473\) −2.92880e6 −0.601917
\(474\) 0 0
\(475\) 1.09474e6 0.222626
\(476\) 0 0
\(477\) 1.73072e6 0.348282
\(478\) 0 0
\(479\) −2.22665e6 −0.443419 −0.221709 0.975113i \(-0.571164\pi\)
−0.221709 + 0.975113i \(0.571164\pi\)
\(480\) 0 0
\(481\) −3.66133e6 −0.721567
\(482\) 0 0
\(483\) 347235. 0.0677260
\(484\) 0 0
\(485\) −1.02085e6 −0.197064
\(486\) 0 0
\(487\) −2.18483e6 −0.417442 −0.208721 0.977975i \(-0.566930\pi\)
−0.208721 + 0.977975i \(0.566930\pi\)
\(488\) 0 0
\(489\) 94426.9 0.0178576
\(490\) 0 0
\(491\) −1.65873e6 −0.310508 −0.155254 0.987875i \(-0.549620\pi\)
−0.155254 + 0.987875i \(0.549620\pi\)
\(492\) 0 0
\(493\) −9.05440e6 −1.67781
\(494\) 0 0
\(495\) −351586. −0.0644939
\(496\) 0 0
\(497\) −801108. −0.145479
\(498\) 0 0
\(499\) −5.16603e6 −0.928764 −0.464382 0.885635i \(-0.653724\pi\)
−0.464382 + 0.885635i \(0.653724\pi\)
\(500\) 0 0
\(501\) −1.37047e6 −0.243935
\(502\) 0 0
\(503\) −2.93883e6 −0.517910 −0.258955 0.965889i \(-0.583378\pi\)
−0.258955 + 0.965889i \(0.583378\pi\)
\(504\) 0 0
\(505\) −1.47974e6 −0.258200
\(506\) 0 0
\(507\) −2.87161e6 −0.496142
\(508\) 0 0
\(509\) 6.03442e6 1.03238 0.516192 0.856473i \(-0.327349\pi\)
0.516192 + 0.856473i \(0.327349\pi\)
\(510\) 0 0
\(511\) 830372. 0.140676
\(512\) 0 0
\(513\) 1.41519e6 0.237422
\(514\) 0 0
\(515\) 548591. 0.0911446
\(516\) 0 0
\(517\) 5.86369e6 0.964817
\(518\) 0 0
\(519\) −5.51064e6 −0.898015
\(520\) 0 0
\(521\) 5.87340e6 0.947972 0.473986 0.880532i \(-0.342815\pi\)
0.473986 + 0.880532i \(0.342815\pi\)
\(522\) 0 0
\(523\) 5.67148e6 0.906655 0.453327 0.891344i \(-0.350237\pi\)
0.453327 + 0.891344i \(0.350237\pi\)
\(524\) 0 0
\(525\) −353002. −0.0558958
\(526\) 0 0
\(527\) 1.66230e7 2.60725
\(528\) 0 0
\(529\) 2.46175e6 0.382477
\(530\) 0 0
\(531\) 2.89544e6 0.445634
\(532\) 0 0
\(533\) 4.39475e6 0.670064
\(534\) 0 0
\(535\) −696916. −0.105268
\(536\) 0 0
\(537\) 596084. 0.0892014
\(538\) 0 0
\(539\) 4.48304e6 0.664661
\(540\) 0 0
\(541\) −1.08967e7 −1.60067 −0.800336 0.599552i \(-0.795346\pi\)
−0.800336 + 0.599552i \(0.795346\pi\)
\(542\) 0 0
\(543\) 232350. 0.0338177
\(544\) 0 0
\(545\) −1.80883e6 −0.260860
\(546\) 0 0
\(547\) −5.29622e6 −0.756829 −0.378414 0.925636i \(-0.623531\pi\)
−0.378414 + 0.925636i \(0.623531\pi\)
\(548\) 0 0
\(549\) −360665. −0.0510709
\(550\) 0 0
\(551\) −1.46817e6 −0.206014
\(552\) 0 0
\(553\) −548836. −0.0763185
\(554\) 0 0
\(555\) 1.19004e6 0.163995
\(556\) 0 0
\(557\) 2.84427e6 0.388447 0.194224 0.980957i \(-0.437781\pi\)
0.194224 + 0.980957i \(0.437781\pi\)
\(558\) 0 0
\(559\) 3.33481e6 0.451380
\(560\) 0 0
\(561\) 6.18862e6 0.830207
\(562\) 0 0
\(563\) 8.21754e6 1.09262 0.546312 0.837582i \(-0.316031\pi\)
0.546312 + 0.837582i \(0.316031\pi\)
\(564\) 0 0
\(565\) −773460. −0.101933
\(566\) 0 0
\(567\) −84308.2 −0.0110132
\(568\) 0 0
\(569\) 6.27293e6 0.812251 0.406125 0.913817i \(-0.366880\pi\)
0.406125 + 0.913817i \(0.366880\pi\)
\(570\) 0 0
\(571\) 1.50316e7 1.92937 0.964685 0.263404i \(-0.0848454\pi\)
0.964685 + 0.263404i \(0.0848454\pi\)
\(572\) 0 0
\(573\) −691104. −0.0879340
\(574\) 0 0
\(575\) −9.04589e6 −1.14099
\(576\) 0 0
\(577\) −1.29397e7 −1.61802 −0.809011 0.587794i \(-0.799997\pi\)
−0.809011 + 0.587794i \(0.799997\pi\)
\(578\) 0 0
\(579\) −5.32898e6 −0.660614
\(580\) 0 0
\(581\) 922729. 0.113405
\(582\) 0 0
\(583\) 3.41954e6 0.416674
\(584\) 0 0
\(585\) 400326. 0.0483642
\(586\) 0 0
\(587\) 7.51154e6 0.899775 0.449887 0.893085i \(-0.351464\pi\)
0.449887 + 0.893085i \(0.351464\pi\)
\(588\) 0 0
\(589\) 2.69542e6 0.320139
\(590\) 0 0
\(591\) 9.55690e6 1.12551
\(592\) 0 0
\(593\) −2.62097e6 −0.306073 −0.153036 0.988221i \(-0.548905\pi\)
−0.153036 + 0.988221i \(0.548905\pi\)
\(594\) 0 0
\(595\) 240972. 0.0279045
\(596\) 0 0
\(597\) −8.29046e6 −0.952012
\(598\) 0 0
\(599\) 4.02540e6 0.458397 0.229199 0.973380i \(-0.426389\pi\)
0.229199 + 0.973380i \(0.426389\pi\)
\(600\) 0 0
\(601\) 1.27237e7 1.43691 0.718454 0.695575i \(-0.244850\pi\)
0.718454 + 0.695575i \(0.244850\pi\)
\(602\) 0 0
\(603\) 4.45145e6 0.498550
\(604\) 0 0
\(605\) 854159. 0.0948747
\(606\) 0 0
\(607\) 6.17632e6 0.680390 0.340195 0.940355i \(-0.389507\pi\)
0.340195 + 0.940355i \(0.389507\pi\)
\(608\) 0 0
\(609\) 473418. 0.0517251
\(610\) 0 0
\(611\) −6.67657e6 −0.723520
\(612\) 0 0
\(613\) −7.72670e6 −0.830506 −0.415253 0.909706i \(-0.636307\pi\)
−0.415253 + 0.909706i \(0.636307\pi\)
\(614\) 0 0
\(615\) −1.42843e6 −0.152290
\(616\) 0 0
\(617\) 3.96955e6 0.419787 0.209893 0.977724i \(-0.432688\pi\)
0.209893 + 0.977724i \(0.432688\pi\)
\(618\) 0 0
\(619\) 1.55633e6 0.163258 0.0816289 0.996663i \(-0.473988\pi\)
0.0816289 + 0.996663i \(0.473988\pi\)
\(620\) 0 0
\(621\) −1.16938e7 −1.21682
\(622\) 0 0
\(623\) 668257. 0.0689801
\(624\) 0 0
\(625\) 8.90712e6 0.912089
\(626\) 0 0
\(627\) 1.00349e6 0.101939
\(628\) 0 0
\(629\) 2.66366e7 2.68443
\(630\) 0 0
\(631\) −9.70032e6 −0.969868 −0.484934 0.874551i \(-0.661156\pi\)
−0.484934 + 0.874551i \(0.661156\pi\)
\(632\) 0 0
\(633\) −8.33594e6 −0.826885
\(634\) 0 0
\(635\) −1.18659e6 −0.116780
\(636\) 0 0
\(637\) −5.10451e6 −0.498432
\(638\) 0 0
\(639\) 9.68232e6 0.938052
\(640\) 0 0
\(641\) −6.33483e6 −0.608962 −0.304481 0.952518i \(-0.598483\pi\)
−0.304481 + 0.952518i \(0.598483\pi\)
\(642\) 0 0
\(643\) −3.07299e6 −0.293112 −0.146556 0.989202i \(-0.546819\pi\)
−0.146556 + 0.989202i \(0.546819\pi\)
\(644\) 0 0
\(645\) −1.08392e6 −0.102588
\(646\) 0 0
\(647\) −5.74018e6 −0.539094 −0.269547 0.962987i \(-0.586874\pi\)
−0.269547 + 0.962987i \(0.586874\pi\)
\(648\) 0 0
\(649\) 5.72078e6 0.533143
\(650\) 0 0
\(651\) −869149. −0.0803789
\(652\) 0 0
\(653\) −8.69840e6 −0.798282 −0.399141 0.916889i \(-0.630692\pi\)
−0.399141 + 0.916889i \(0.630692\pi\)
\(654\) 0 0
\(655\) −1.58829e6 −0.144653
\(656\) 0 0
\(657\) −1.00360e7 −0.907084
\(658\) 0 0
\(659\) −1.11634e6 −0.100135 −0.0500674 0.998746i \(-0.515944\pi\)
−0.0500674 + 0.998746i \(0.515944\pi\)
\(660\) 0 0
\(661\) 1.46309e6 0.130247 0.0651233 0.997877i \(-0.479256\pi\)
0.0651233 + 0.997877i \(0.479256\pi\)
\(662\) 0 0
\(663\) −7.04654e6 −0.622576
\(664\) 0 0
\(665\) 39073.6 0.00342633
\(666\) 0 0
\(667\) 1.21316e7 1.05585
\(668\) 0 0
\(669\) 1.10236e7 0.952266
\(670\) 0 0
\(671\) −712599. −0.0610997
\(672\) 0 0
\(673\) −4.69133e6 −0.399262 −0.199631 0.979871i \(-0.563974\pi\)
−0.199631 + 0.979871i \(0.563974\pi\)
\(674\) 0 0
\(675\) 1.18880e7 1.00427
\(676\) 0 0
\(677\) −847754. −0.0710883 −0.0355441 0.999368i \(-0.511316\pi\)
−0.0355441 + 0.999368i \(0.511316\pi\)
\(678\) 0 0
\(679\) 1.19471e6 0.0994464
\(680\) 0 0
\(681\) −1.41867e7 −1.17223
\(682\) 0 0
\(683\) −1.91086e7 −1.56739 −0.783695 0.621146i \(-0.786667\pi\)
−0.783695 + 0.621146i \(0.786667\pi\)
\(684\) 0 0
\(685\) −1.21002e6 −0.0985292
\(686\) 0 0
\(687\) −1.24109e7 −1.00326
\(688\) 0 0
\(689\) −3.89358e6 −0.312465
\(690\) 0 0
\(691\) −3.39649e6 −0.270605 −0.135302 0.990804i \(-0.543201\pi\)
−0.135302 + 0.990804i \(0.543201\pi\)
\(692\) 0 0
\(693\) 411465. 0.0325462
\(694\) 0 0
\(695\) 2.80284e6 0.220108
\(696\) 0 0
\(697\) −3.19723e7 −2.49283
\(698\) 0 0
\(699\) 7.95979e6 0.616182
\(700\) 0 0
\(701\) −1.80641e6 −0.138842 −0.0694209 0.997587i \(-0.522115\pi\)
−0.0694209 + 0.997587i \(0.522115\pi\)
\(702\) 0 0
\(703\) 4.31913e6 0.329616
\(704\) 0 0
\(705\) 2.17009e6 0.164439
\(706\) 0 0
\(707\) 1.73175e6 0.130298
\(708\) 0 0
\(709\) −1.59078e7 −1.18849 −0.594243 0.804285i \(-0.702548\pi\)
−0.594243 + 0.804285i \(0.702548\pi\)
\(710\) 0 0
\(711\) 6.63332e6 0.492104
\(712\) 0 0
\(713\) −2.22725e7 −1.64076
\(714\) 0 0
\(715\) 790961. 0.0578615
\(716\) 0 0
\(717\) 1.65908e7 1.20523
\(718\) 0 0
\(719\) 4.47853e6 0.323082 0.161541 0.986866i \(-0.448354\pi\)
0.161541 + 0.986866i \(0.448354\pi\)
\(720\) 0 0
\(721\) −642022. −0.0459951
\(722\) 0 0
\(723\) −9.31188e6 −0.662509
\(724\) 0 0
\(725\) −1.23331e7 −0.871420
\(726\) 0 0
\(727\) −2.27370e7 −1.59550 −0.797750 0.602988i \(-0.793977\pi\)
−0.797750 + 0.602988i \(0.793977\pi\)
\(728\) 0 0
\(729\) 1.08715e7 0.757655
\(730\) 0 0
\(731\) −2.42612e7 −1.67926
\(732\) 0 0
\(733\) 6.47613e6 0.445201 0.222600 0.974910i \(-0.428546\pi\)
0.222600 + 0.974910i \(0.428546\pi\)
\(734\) 0 0
\(735\) 1.65912e6 0.113282
\(736\) 0 0
\(737\) 8.79514e6 0.596450
\(738\) 0 0
\(739\) 995404. 0.0670484 0.0335242 0.999438i \(-0.489327\pi\)
0.0335242 + 0.999438i \(0.489327\pi\)
\(740\) 0 0
\(741\) −1.14260e6 −0.0764447
\(742\) 0 0
\(743\) 7.89367e6 0.524574 0.262287 0.964990i \(-0.415523\pi\)
0.262287 + 0.964990i \(0.415523\pi\)
\(744\) 0 0
\(745\) 2.61894e6 0.172876
\(746\) 0 0
\(747\) −1.11522e7 −0.731241
\(748\) 0 0
\(749\) 815608. 0.0531223
\(750\) 0 0
\(751\) 4.00975e6 0.259428 0.129714 0.991551i \(-0.458594\pi\)
0.129714 + 0.991551i \(0.458594\pi\)
\(752\) 0 0
\(753\) −2.84038e6 −0.182553
\(754\) 0 0
\(755\) −2.66333e6 −0.170043
\(756\) 0 0
\(757\) 2.18293e7 1.38452 0.692260 0.721648i \(-0.256615\pi\)
0.692260 + 0.721648i \(0.256615\pi\)
\(758\) 0 0
\(759\) −8.29187e6 −0.522454
\(760\) 0 0
\(761\) 2.37089e7 1.48405 0.742027 0.670370i \(-0.233865\pi\)
0.742027 + 0.670370i \(0.233865\pi\)
\(762\) 0 0
\(763\) 2.11689e6 0.131640
\(764\) 0 0
\(765\) −2.91242e6 −0.179929
\(766\) 0 0
\(767\) −6.51385e6 −0.399806
\(768\) 0 0
\(769\) −2.45681e7 −1.49815 −0.749075 0.662485i \(-0.769502\pi\)
−0.749075 + 0.662485i \(0.769502\pi\)
\(770\) 0 0
\(771\) −8.92763e6 −0.540879
\(772\) 0 0
\(773\) −1.94815e6 −0.117266 −0.0586331 0.998280i \(-0.518674\pi\)
−0.0586331 + 0.998280i \(0.518674\pi\)
\(774\) 0 0
\(775\) 2.26424e7 1.35415
\(776\) 0 0
\(777\) −1.39272e6 −0.0827583
\(778\) 0 0
\(779\) −5.18432e6 −0.306089
\(780\) 0 0
\(781\) 1.91302e7 1.12226
\(782\) 0 0
\(783\) −1.59432e7 −0.929334
\(784\) 0 0
\(785\) −393830. −0.0228105
\(786\) 0 0
\(787\) 1.28507e7 0.739586 0.369793 0.929114i \(-0.379429\pi\)
0.369793 + 0.929114i \(0.379429\pi\)
\(788\) 0 0
\(789\) −7.74681e6 −0.443027
\(790\) 0 0
\(791\) 905188. 0.0514396
\(792\) 0 0
\(793\) 811386. 0.0458189
\(794\) 0 0
\(795\) 1.26553e6 0.0710159
\(796\) 0 0
\(797\) −1.78593e7 −0.995909 −0.497954 0.867203i \(-0.665915\pi\)
−0.497954 + 0.867203i \(0.665915\pi\)
\(798\) 0 0
\(799\) 4.85729e7 2.69170
\(800\) 0 0
\(801\) −8.07666e6 −0.444785
\(802\) 0 0
\(803\) −1.98290e7 −1.08521
\(804\) 0 0
\(805\) −322868. −0.0175604
\(806\) 0 0
\(807\) −1.42999e6 −0.0772945
\(808\) 0 0
\(809\) −7.75903e6 −0.416808 −0.208404 0.978043i \(-0.566827\pi\)
−0.208404 + 0.978043i \(0.566827\pi\)
\(810\) 0 0
\(811\) −2.75388e7 −1.47026 −0.735128 0.677929i \(-0.762878\pi\)
−0.735128 + 0.677929i \(0.762878\pi\)
\(812\) 0 0
\(813\) 2.18145e6 0.115750
\(814\) 0 0
\(815\) −87800.6 −0.00463024
\(816\) 0 0
\(817\) −3.93395e6 −0.206193
\(818\) 0 0
\(819\) −468506. −0.0244065
\(820\) 0 0
\(821\) 2.39140e7 1.23821 0.619105 0.785308i \(-0.287496\pi\)
0.619105 + 0.785308i \(0.287496\pi\)
\(822\) 0 0
\(823\) −2.33465e7 −1.20149 −0.600747 0.799439i \(-0.705130\pi\)
−0.600747 + 0.799439i \(0.705130\pi\)
\(824\) 0 0
\(825\) 8.42959e6 0.431193
\(826\) 0 0
\(827\) 1.83932e7 0.935178 0.467589 0.883946i \(-0.345123\pi\)
0.467589 + 0.883946i \(0.345123\pi\)
\(828\) 0 0
\(829\) 1.57573e7 0.796337 0.398168 0.917312i \(-0.369646\pi\)
0.398168 + 0.917312i \(0.369646\pi\)
\(830\) 0 0
\(831\) −5.71091e6 −0.286882
\(832\) 0 0
\(833\) 3.71360e7 1.85431
\(834\) 0 0
\(835\) 1.27430e6 0.0632491
\(836\) 0 0
\(837\) 2.92702e7 1.44415
\(838\) 0 0
\(839\) 1.90793e7 0.935743 0.467872 0.883796i \(-0.345021\pi\)
0.467872 + 0.883796i \(0.345021\pi\)
\(840\) 0 0
\(841\) −3.97101e6 −0.193603
\(842\) 0 0
\(843\) 1.52198e7 0.737633
\(844\) 0 0
\(845\) 2.67010e6 0.128643
\(846\) 0 0
\(847\) −999632. −0.0478775
\(848\) 0 0
\(849\) −3.07225e6 −0.146281
\(850\) 0 0
\(851\) −3.56893e7 −1.68933
\(852\) 0 0
\(853\) −1.44587e7 −0.680386 −0.340193 0.940356i \(-0.610492\pi\)
−0.340193 + 0.940356i \(0.610492\pi\)
\(854\) 0 0
\(855\) −472249. −0.0220931
\(856\) 0 0
\(857\) 3.07370e7 1.42958 0.714791 0.699338i \(-0.246522\pi\)
0.714791 + 0.699338i \(0.246522\pi\)
\(858\) 0 0
\(859\) −4.64956e6 −0.214995 −0.107498 0.994205i \(-0.534284\pi\)
−0.107498 + 0.994205i \(0.534284\pi\)
\(860\) 0 0
\(861\) 1.67170e6 0.0768513
\(862\) 0 0
\(863\) −2.24867e7 −1.02777 −0.513887 0.857858i \(-0.671795\pi\)
−0.513887 + 0.857858i \(0.671795\pi\)
\(864\) 0 0
\(865\) 5.12394e6 0.232843
\(866\) 0 0
\(867\) 3.65792e7 1.65267
\(868\) 0 0
\(869\) 1.31061e7 0.588739
\(870\) 0 0
\(871\) −1.00144e7 −0.447280
\(872\) 0 0
\(873\) −1.44395e7 −0.641233
\(874\) 0 0
\(875\) 666472. 0.0294281
\(876\) 0 0
\(877\) 7.63556e6 0.335229 0.167615 0.985853i \(-0.446394\pi\)
0.167615 + 0.985853i \(0.446394\pi\)
\(878\) 0 0
\(879\) −8.14643e6 −0.355627
\(880\) 0 0
\(881\) 7.76916e6 0.337236 0.168618 0.985681i \(-0.446070\pi\)
0.168618 + 0.985681i \(0.446070\pi\)
\(882\) 0 0
\(883\) −1.01591e7 −0.438484 −0.219242 0.975671i \(-0.570358\pi\)
−0.219242 + 0.975671i \(0.570358\pi\)
\(884\) 0 0
\(885\) 2.11720e6 0.0908664
\(886\) 0 0
\(887\) −4.30063e7 −1.83537 −0.917684 0.397311i \(-0.869944\pi\)
−0.917684 + 0.397311i \(0.869944\pi\)
\(888\) 0 0
\(889\) 1.38868e6 0.0589316
\(890\) 0 0
\(891\) 2.01326e6 0.0849581
\(892\) 0 0
\(893\) 7.87609e6 0.330508
\(894\) 0 0
\(895\) −554254. −0.0231287
\(896\) 0 0
\(897\) 9.44136e6 0.391790
\(898\) 0 0
\(899\) −3.03661e7 −1.25311
\(900\) 0 0
\(901\) 2.83263e7 1.16246
\(902\) 0 0
\(903\) 1.26852e6 0.0517699
\(904\) 0 0
\(905\) −216045. −0.00876845
\(906\) 0 0
\(907\) 3.60530e7 1.45520 0.727600 0.686001i \(-0.240636\pi\)
0.727600 + 0.686001i \(0.240636\pi\)
\(908\) 0 0
\(909\) −2.09302e7 −0.840163
\(910\) 0 0
\(911\) 2.76790e7 1.10498 0.552490 0.833519i \(-0.313678\pi\)
0.552490 + 0.833519i \(0.313678\pi\)
\(912\) 0 0
\(913\) −2.20345e7 −0.874835
\(914\) 0 0
\(915\) −263725. −0.0104136
\(916\) 0 0
\(917\) 1.85879e6 0.0729974
\(918\) 0 0
\(919\) 2.99352e7 1.16921 0.584607 0.811317i \(-0.301249\pi\)
0.584607 + 0.811317i \(0.301249\pi\)
\(920\) 0 0
\(921\) −1.21624e7 −0.472465
\(922\) 0 0
\(923\) −2.17822e7 −0.841585
\(924\) 0 0
\(925\) 3.62821e7 1.39424
\(926\) 0 0
\(927\) 7.75957e6 0.296578
\(928\) 0 0
\(929\) 2.33303e6 0.0886913 0.0443457 0.999016i \(-0.485880\pi\)
0.0443457 + 0.999016i \(0.485880\pi\)
\(930\) 0 0
\(931\) 6.02160e6 0.227687
\(932\) 0 0
\(933\) 2.49073e7 0.936749
\(934\) 0 0
\(935\) −5.75434e6 −0.215261
\(936\) 0 0
\(937\) −3.65160e7 −1.35873 −0.679367 0.733799i \(-0.737746\pi\)
−0.679367 + 0.733799i \(0.737746\pi\)
\(938\) 0 0
\(939\) −4.46805e6 −0.165369
\(940\) 0 0
\(941\) 4.88450e7 1.79823 0.899117 0.437709i \(-0.144210\pi\)
0.899117 + 0.437709i \(0.144210\pi\)
\(942\) 0 0
\(943\) 4.28384e7 1.56875
\(944\) 0 0
\(945\) 424310. 0.0154562
\(946\) 0 0
\(947\) −1.28816e7 −0.466761 −0.233380 0.972385i \(-0.574979\pi\)
−0.233380 + 0.972385i \(0.574979\pi\)
\(948\) 0 0
\(949\) 2.25779e7 0.813801
\(950\) 0 0
\(951\) 4.03607e6 0.144713
\(952\) 0 0
\(953\) −4.25843e7 −1.51886 −0.759430 0.650589i \(-0.774522\pi\)
−0.759430 + 0.650589i \(0.774522\pi\)
\(954\) 0 0
\(955\) 642607. 0.0228001
\(956\) 0 0
\(957\) −1.13051e7 −0.399019
\(958\) 0 0
\(959\) 1.41609e6 0.0497217
\(960\) 0 0
\(961\) 2.71201e7 0.947290
\(962\) 0 0
\(963\) −9.85756e6 −0.342534
\(964\) 0 0
\(965\) 4.95502e6 0.171288
\(966\) 0 0
\(967\) 1.49582e6 0.0514415 0.0257208 0.999669i \(-0.491812\pi\)
0.0257208 + 0.999669i \(0.491812\pi\)
\(968\) 0 0
\(969\) 8.31253e6 0.284396
\(970\) 0 0
\(971\) 3.34637e7 1.13901 0.569504 0.821989i \(-0.307135\pi\)
0.569504 + 0.821989i \(0.307135\pi\)
\(972\) 0 0
\(973\) −3.28020e6 −0.111075
\(974\) 0 0
\(975\) −9.59818e6 −0.323353
\(976\) 0 0
\(977\) −3.14364e7 −1.05365 −0.526826 0.849973i \(-0.676618\pi\)
−0.526826 + 0.849973i \(0.676618\pi\)
\(978\) 0 0
\(979\) −1.59578e7 −0.532128
\(980\) 0 0
\(981\) −2.55851e7 −0.848818
\(982\) 0 0
\(983\) −4.32581e7 −1.42785 −0.713927 0.700220i \(-0.753085\pi\)
−0.713927 + 0.700220i \(0.753085\pi\)
\(984\) 0 0
\(985\) −8.88625e6 −0.291829
\(986\) 0 0
\(987\) −2.53968e6 −0.0829823
\(988\) 0 0
\(989\) 3.25065e7 1.05677
\(990\) 0 0
\(991\) −2.59120e7 −0.838142 −0.419071 0.907954i \(-0.637644\pi\)
−0.419071 + 0.907954i \(0.637644\pi\)
\(992\) 0 0
\(993\) −3.37204e7 −1.08523
\(994\) 0 0
\(995\) 7.70868e6 0.246844
\(996\) 0 0
\(997\) 1.89926e7 0.605127 0.302564 0.953129i \(-0.402158\pi\)
0.302564 + 0.953129i \(0.402158\pi\)
\(998\) 0 0
\(999\) 4.69025e7 1.48690
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 152.6.a.c.1.5 6
4.3 odd 2 304.6.a.n.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.6.a.c.1.5 6 1.1 even 1 trivial
304.6.a.n.1.2 6 4.3 odd 2