Properties

Label 152.6.a.c
Level $152$
Weight $6$
Character orbit 152.a
Self dual yes
Analytic conductor $24.378$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Error: table mf_hecke_newspace_traces does not exist

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [152,6,Mod(1,152)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("152.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(152, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 152.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.3783406116\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 1012x^{4} + 2938x^{3} + 184643x^{2} - 1214504x + 729856 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{3} + ( - \beta_{3} - 4) q^{5} + (\beta_{3} - \beta_{2} - 3 \beta_1 - 26) q^{7} + (\beta_{5} + \beta_{4} + 3 \beta_{3} + \cdots + 97) q^{9} + ( - 3 \beta_{5} - 4 \beta_{4} + \cdots - 33) q^{11}+ \cdots + (359 \beta_{5} + 440 \beta_{4} + \cdots + 7273) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} - 25 q^{5} - 161 q^{7} + 572 q^{9} - 205 q^{11} - 382 q^{13} - 950 q^{15} - 65 q^{17} - 2166 q^{19} - 6006 q^{21} - 5584 q^{23} - 3111 q^{25} - 6874 q^{27} - 9972 q^{29} - 7140 q^{31} - 3774 q^{33}+ \cdots + 49107 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 1012x^{4} + 2938x^{3} + 184643x^{2} - 1214504x + 729856 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 44\nu^{5} - 137\nu^{4} - 38767\nu^{3} + 218113\nu^{2} + 4844027\nu - 60205124 ) / 423036 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -169\nu^{5} - 275\nu^{4} + 162521\nu^{3} + 220639\nu^{2} - 24714652\nu + 55807456 ) / 846072 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -91\nu^{5} - 1052\nu^{4} + 79376\nu^{3} + 936856\nu^{2} - 7485721\nu - 55818908 ) / 423036 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 171\nu^{5} + 1159\nu^{4} - 163749\nu^{3} - 854003\nu^{2} + 24374526\nu - 33927488 ) / 282024 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} + \beta_{4} + 3\beta_{3} + 2\beta_{2} - 4\beta _1 + 339 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -16\beta_{5} - 34\beta_{4} + 12\beta_{3} + 46\beta_{2} + 605\beta _1 - 656 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 1049\beta_{5} + 743\beta_{4} + 3111\beta_{3} + 1396\beta_{2} - 2624\beta _1 + 217703 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -15788\beta_{5} - 32600\beta_{4} + 5388\beta_{3} + 44576\beta_{2} + 434613\beta _1 - 212296 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−27.6020
−17.4790
0.669693
7.12757
11.3428
27.9410
0 −28.6020 0 −47.0403 0 92.6779 0 575.077 0
1.2 0 −18.4790 0 70.0177 0 −152.088 0 98.4744 0
1.3 0 −0.330307 0 −50.5728 0 153.008 0 −242.891 0
1.4 0 6.12757 0 59.9535 0 −44.7227 0 −205.453 0
1.5 0 10.3428 0 −9.61696 0 11.2548 0 −136.027 0
1.6 0 26.9410 0 −47.7412 0 −221.130 0 482.820 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 152.6.a.c 6
4.b odd 2 1 304.6.a.n 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
152.6.a.c 6 1.a even 1 1 trivial
304.6.a.n 6 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} + 4T_{3}^{5} - 1007T_{3}^{4} - 1110T_{3}^{3} + 187380T_{3}^{2} - 840456T_{3} - 298080 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(152))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + 4 T^{5} + \cdots - 298080 \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots + 4585004992 \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots - 240049768320 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots - 795454171823952 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots - 20\!\cdots\!24 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 96\!\cdots\!02 \) Copy content Toggle raw display
$19$ \( (T + 361)^{6} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 42\!\cdots\!08 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 12\!\cdots\!32 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 83\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 26\!\cdots\!52 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 21\!\cdots\!24 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 29\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 13\!\cdots\!16 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 10\!\cdots\!84 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 11\!\cdots\!68 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 54\!\cdots\!36 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 62\!\cdots\!92 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 35\!\cdots\!48 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 24\!\cdots\!78 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 17\!\cdots\!72 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 21\!\cdots\!76 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 59\!\cdots\!08 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 81\!\cdots\!92 \) Copy content Toggle raw display
show more
show less