Properties

Label 152.6.a.c.1.2
Level $152$
Weight $6$
Character 152.1
Self dual yes
Analytic conductor $24.378$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [152,6,Mod(1,152)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("152.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(152, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 152.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.3783406116\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 1012x^{4} + 2938x^{3} + 184643x^{2} - 1214504x + 729856 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-17.4790\) of defining polynomial
Character \(\chi\) \(=\) 152.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-18.4790 q^{3} +70.0177 q^{5} -152.088 q^{7} +98.4744 q^{9} +259.063 q^{11} +625.486 q^{13} -1293.86 q^{15} +160.671 q^{17} -361.000 q^{19} +2810.44 q^{21} -2528.59 q^{23} +1777.48 q^{25} +2670.69 q^{27} +1719.07 q^{29} -5144.77 q^{31} -4787.23 q^{33} -10648.9 q^{35} -13394.5 q^{37} -11558.4 q^{39} -19614.0 q^{41} -2498.66 q^{43} +6894.95 q^{45} -17793.8 q^{47} +6323.77 q^{49} -2969.04 q^{51} -13506.5 q^{53} +18139.0 q^{55} +6670.93 q^{57} -27961.8 q^{59} +36418.3 q^{61} -14976.8 q^{63} +43795.1 q^{65} +33655.4 q^{67} +46725.9 q^{69} -5865.51 q^{71} -49109.8 q^{73} -32846.1 q^{75} -39400.3 q^{77} +65185.2 q^{79} -73281.1 q^{81} -38353.1 q^{83} +11249.8 q^{85} -31766.7 q^{87} +10409.3 q^{89} -95129.0 q^{91} +95070.4 q^{93} -25276.4 q^{95} +16402.2 q^{97} +25511.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} - 25 q^{5} - 161 q^{7} + 572 q^{9} - 205 q^{11} - 382 q^{13} - 950 q^{15} - 65 q^{17} - 2166 q^{19} - 6006 q^{21} - 5584 q^{23} - 3111 q^{25} - 6874 q^{27} - 9972 q^{29} - 7140 q^{31} - 3774 q^{33}+ \cdots + 49107 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −18.4790 −1.18543 −0.592715 0.805412i \(-0.701944\pi\)
−0.592715 + 0.805412i \(0.701944\pi\)
\(4\) 0 0
\(5\) 70.0177 1.25252 0.626258 0.779616i \(-0.284586\pi\)
0.626258 + 0.779616i \(0.284586\pi\)
\(6\) 0 0
\(7\) −152.088 −1.17314 −0.586570 0.809898i \(-0.699522\pi\)
−0.586570 + 0.809898i \(0.699522\pi\)
\(8\) 0 0
\(9\) 98.4744 0.405244
\(10\) 0 0
\(11\) 259.063 0.645540 0.322770 0.946477i \(-0.395386\pi\)
0.322770 + 0.946477i \(0.395386\pi\)
\(12\) 0 0
\(13\) 625.486 1.02650 0.513251 0.858239i \(-0.328441\pi\)
0.513251 + 0.858239i \(0.328441\pi\)
\(14\) 0 0
\(15\) −1293.86 −1.48477
\(16\) 0 0
\(17\) 160.671 0.134839 0.0674193 0.997725i \(-0.478523\pi\)
0.0674193 + 0.997725i \(0.478523\pi\)
\(18\) 0 0
\(19\) −361.000 −0.229416
\(20\) 0 0
\(21\) 2810.44 1.39068
\(22\) 0 0
\(23\) −2528.59 −0.996688 −0.498344 0.866979i \(-0.666058\pi\)
−0.498344 + 0.866979i \(0.666058\pi\)
\(24\) 0 0
\(25\) 1777.48 0.568794
\(26\) 0 0
\(27\) 2670.69 0.705041
\(28\) 0 0
\(29\) 1719.07 0.379576 0.189788 0.981825i \(-0.439220\pi\)
0.189788 + 0.981825i \(0.439220\pi\)
\(30\) 0 0
\(31\) −5144.77 −0.961528 −0.480764 0.876850i \(-0.659641\pi\)
−0.480764 + 0.876850i \(0.659641\pi\)
\(32\) 0 0
\(33\) −4787.23 −0.765242
\(34\) 0 0
\(35\) −10648.9 −1.46938
\(36\) 0 0
\(37\) −13394.5 −1.60850 −0.804252 0.594289i \(-0.797434\pi\)
−0.804252 + 0.594289i \(0.797434\pi\)
\(38\) 0 0
\(39\) −11558.4 −1.21685
\(40\) 0 0
\(41\) −19614.0 −1.82225 −0.911123 0.412135i \(-0.864783\pi\)
−0.911123 + 0.412135i \(0.864783\pi\)
\(42\) 0 0
\(43\) −2498.66 −0.206080 −0.103040 0.994677i \(-0.532857\pi\)
−0.103040 + 0.994677i \(0.532857\pi\)
\(44\) 0 0
\(45\) 6894.95 0.507575
\(46\) 0 0
\(47\) −17793.8 −1.17496 −0.587481 0.809238i \(-0.699880\pi\)
−0.587481 + 0.809238i \(0.699880\pi\)
\(48\) 0 0
\(49\) 6323.77 0.376258
\(50\) 0 0
\(51\) −2969.04 −0.159842
\(52\) 0 0
\(53\) −13506.5 −0.660470 −0.330235 0.943899i \(-0.607128\pi\)
−0.330235 + 0.943899i \(0.607128\pi\)
\(54\) 0 0
\(55\) 18139.0 0.808549
\(56\) 0 0
\(57\) 6670.93 0.271956
\(58\) 0 0
\(59\) −27961.8 −1.04577 −0.522883 0.852404i \(-0.675144\pi\)
−0.522883 + 0.852404i \(0.675144\pi\)
\(60\) 0 0
\(61\) 36418.3 1.25313 0.626564 0.779370i \(-0.284461\pi\)
0.626564 + 0.779370i \(0.284461\pi\)
\(62\) 0 0
\(63\) −14976.8 −0.475409
\(64\) 0 0
\(65\) 43795.1 1.28571
\(66\) 0 0
\(67\) 33655.4 0.915940 0.457970 0.888968i \(-0.348577\pi\)
0.457970 + 0.888968i \(0.348577\pi\)
\(68\) 0 0
\(69\) 46725.9 1.18150
\(70\) 0 0
\(71\) −5865.51 −0.138089 −0.0690446 0.997614i \(-0.521995\pi\)
−0.0690446 + 0.997614i \(0.521995\pi\)
\(72\) 0 0
\(73\) −49109.8 −1.07860 −0.539301 0.842113i \(-0.681311\pi\)
−0.539301 + 0.842113i \(0.681311\pi\)
\(74\) 0 0
\(75\) −32846.1 −0.674266
\(76\) 0 0
\(77\) −39400.3 −0.757309
\(78\) 0 0
\(79\) 65185.2 1.17512 0.587558 0.809182i \(-0.300089\pi\)
0.587558 + 0.809182i \(0.300089\pi\)
\(80\) 0 0
\(81\) −73281.1 −1.24102
\(82\) 0 0
\(83\) −38353.1 −0.611090 −0.305545 0.952178i \(-0.598839\pi\)
−0.305545 + 0.952178i \(0.598839\pi\)
\(84\) 0 0
\(85\) 11249.8 0.168887
\(86\) 0 0
\(87\) −31766.7 −0.449961
\(88\) 0 0
\(89\) 10409.3 0.139298 0.0696492 0.997572i \(-0.477812\pi\)
0.0696492 + 0.997572i \(0.477812\pi\)
\(90\) 0 0
\(91\) −95129.0 −1.20423
\(92\) 0 0
\(93\) 95070.4 1.13982
\(94\) 0 0
\(95\) −25276.4 −0.287347
\(96\) 0 0
\(97\) 16402.2 0.177000 0.0885000 0.996076i \(-0.471793\pi\)
0.0885000 + 0.996076i \(0.471793\pi\)
\(98\) 0 0
\(99\) 25511.0 0.261602
\(100\) 0 0
\(101\) 15177.5 0.148046 0.0740232 0.997257i \(-0.476416\pi\)
0.0740232 + 0.997257i \(0.476416\pi\)
\(102\) 0 0
\(103\) 76659.9 0.711992 0.355996 0.934488i \(-0.384142\pi\)
0.355996 + 0.934488i \(0.384142\pi\)
\(104\) 0 0
\(105\) 196781. 1.74184
\(106\) 0 0
\(107\) −156306. −1.31982 −0.659912 0.751343i \(-0.729406\pi\)
−0.659912 + 0.751343i \(0.729406\pi\)
\(108\) 0 0
\(109\) 170983. 1.37843 0.689217 0.724555i \(-0.257955\pi\)
0.689217 + 0.724555i \(0.257955\pi\)
\(110\) 0 0
\(111\) 247517. 1.90677
\(112\) 0 0
\(113\) 64792.4 0.477340 0.238670 0.971101i \(-0.423289\pi\)
0.238670 + 0.971101i \(0.423289\pi\)
\(114\) 0 0
\(115\) −177046. −1.24837
\(116\) 0 0
\(117\) 61594.4 0.415984
\(118\) 0 0
\(119\) −24436.1 −0.158185
\(120\) 0 0
\(121\) −93937.5 −0.583278
\(122\) 0 0
\(123\) 362448. 2.16015
\(124\) 0 0
\(125\) −94350.2 −0.540092
\(126\) 0 0
\(127\) −295505. −1.62576 −0.812880 0.582432i \(-0.802101\pi\)
−0.812880 + 0.582432i \(0.802101\pi\)
\(128\) 0 0
\(129\) 46172.8 0.244293
\(130\) 0 0
\(131\) −59737.2 −0.304135 −0.152067 0.988370i \(-0.548593\pi\)
−0.152067 + 0.988370i \(0.548593\pi\)
\(132\) 0 0
\(133\) 54903.8 0.269137
\(134\) 0 0
\(135\) 186996. 0.883075
\(136\) 0 0
\(137\) 223726. 1.01839 0.509195 0.860651i \(-0.329943\pi\)
0.509195 + 0.860651i \(0.329943\pi\)
\(138\) 0 0
\(139\) −154449. −0.678027 −0.339014 0.940781i \(-0.610093\pi\)
−0.339014 + 0.940781i \(0.610093\pi\)
\(140\) 0 0
\(141\) 328812. 1.39283
\(142\) 0 0
\(143\) 162040. 0.662648
\(144\) 0 0
\(145\) 120365. 0.475424
\(146\) 0 0
\(147\) −116857. −0.446028
\(148\) 0 0
\(149\) 2314.71 0.00854145 0.00427072 0.999991i \(-0.498641\pi\)
0.00427072 + 0.999991i \(0.498641\pi\)
\(150\) 0 0
\(151\) 157129. 0.560809 0.280405 0.959882i \(-0.409531\pi\)
0.280405 + 0.959882i \(0.409531\pi\)
\(152\) 0 0
\(153\) 15822.0 0.0546426
\(154\) 0 0
\(155\) −360225. −1.20433
\(156\) 0 0
\(157\) −515617. −1.66947 −0.834734 0.550654i \(-0.814378\pi\)
−0.834734 + 0.550654i \(0.814378\pi\)
\(158\) 0 0
\(159\) 249587. 0.782941
\(160\) 0 0
\(161\) 384568. 1.16925
\(162\) 0 0
\(163\) −603036. −1.77777 −0.888883 0.458135i \(-0.848518\pi\)
−0.888883 + 0.458135i \(0.848518\pi\)
\(164\) 0 0
\(165\) −335191. −0.958478
\(166\) 0 0
\(167\) 423435. 1.17489 0.587443 0.809265i \(-0.300135\pi\)
0.587443 + 0.809265i \(0.300135\pi\)
\(168\) 0 0
\(169\) 19940.2 0.0537047
\(170\) 0 0
\(171\) −35549.3 −0.0929695
\(172\) 0 0
\(173\) −96321.5 −0.244685 −0.122343 0.992488i \(-0.539041\pi\)
−0.122343 + 0.992488i \(0.539041\pi\)
\(174\) 0 0
\(175\) −270334. −0.667275
\(176\) 0 0
\(177\) 516706. 1.23968
\(178\) 0 0
\(179\) 716878. 1.67229 0.836147 0.548506i \(-0.184803\pi\)
0.836147 + 0.548506i \(0.184803\pi\)
\(180\) 0 0
\(181\) −345785. −0.784531 −0.392266 0.919852i \(-0.628309\pi\)
−0.392266 + 0.919852i \(0.628309\pi\)
\(182\) 0 0
\(183\) −672975. −1.48550
\(184\) 0 0
\(185\) −937852. −2.01467
\(186\) 0 0
\(187\) 41623.8 0.0870437
\(188\) 0 0
\(189\) −406180. −0.827112
\(190\) 0 0
\(191\) 517892. 1.02720 0.513601 0.858029i \(-0.328311\pi\)
0.513601 + 0.858029i \(0.328311\pi\)
\(192\) 0 0
\(193\) 260809. 0.503998 0.251999 0.967728i \(-0.418912\pi\)
0.251999 + 0.967728i \(0.418912\pi\)
\(194\) 0 0
\(195\) −809291. −1.52412
\(196\) 0 0
\(197\) −908450. −1.66777 −0.833884 0.551940i \(-0.813888\pi\)
−0.833884 + 0.551940i \(0.813888\pi\)
\(198\) 0 0
\(199\) −55645.3 −0.0996084 −0.0498042 0.998759i \(-0.515860\pi\)
−0.0498042 + 0.998759i \(0.515860\pi\)
\(200\) 0 0
\(201\) −621918. −1.08578
\(202\) 0 0
\(203\) −261450. −0.445296
\(204\) 0 0
\(205\) −1.37333e6 −2.28239
\(206\) 0 0
\(207\) −249002. −0.403902
\(208\) 0 0
\(209\) −93521.6 −0.148097
\(210\) 0 0
\(211\) 1.24888e6 1.93114 0.965570 0.260145i \(-0.0837702\pi\)
0.965570 + 0.260145i \(0.0837702\pi\)
\(212\) 0 0
\(213\) 108389. 0.163695
\(214\) 0 0
\(215\) −174950. −0.258118
\(216\) 0 0
\(217\) 782458. 1.12801
\(218\) 0 0
\(219\) 907501. 1.27861
\(220\) 0 0
\(221\) 100497. 0.138412
\(222\) 0 0
\(223\) −608221. −0.819029 −0.409514 0.912304i \(-0.634302\pi\)
−0.409514 + 0.912304i \(0.634302\pi\)
\(224\) 0 0
\(225\) 175036. 0.230501
\(226\) 0 0
\(227\) 1.10525e6 1.42362 0.711810 0.702372i \(-0.247875\pi\)
0.711810 + 0.702372i \(0.247875\pi\)
\(228\) 0 0
\(229\) −786681. −0.991311 −0.495656 0.868519i \(-0.665072\pi\)
−0.495656 + 0.868519i \(0.665072\pi\)
\(230\) 0 0
\(231\) 728080. 0.897737
\(232\) 0 0
\(233\) −573358. −0.691888 −0.345944 0.938255i \(-0.612441\pi\)
−0.345944 + 0.938255i \(0.612441\pi\)
\(234\) 0 0
\(235\) −1.24588e6 −1.47166
\(236\) 0 0
\(237\) −1.20456e6 −1.39302
\(238\) 0 0
\(239\) 325087. 0.368133 0.184066 0.982914i \(-0.441074\pi\)
0.184066 + 0.982914i \(0.441074\pi\)
\(240\) 0 0
\(241\) 463016. 0.513515 0.256758 0.966476i \(-0.417346\pi\)
0.256758 + 0.966476i \(0.417346\pi\)
\(242\) 0 0
\(243\) 705185. 0.766103
\(244\) 0 0
\(245\) 442776. 0.471269
\(246\) 0 0
\(247\) −225801. −0.235496
\(248\) 0 0
\(249\) 708728. 0.724404
\(250\) 0 0
\(251\) 982838. 0.984686 0.492343 0.870401i \(-0.336141\pi\)
0.492343 + 0.870401i \(0.336141\pi\)
\(252\) 0 0
\(253\) −655064. −0.643402
\(254\) 0 0
\(255\) −207885. −0.200204
\(256\) 0 0
\(257\) 171205. 0.161690 0.0808451 0.996727i \(-0.474238\pi\)
0.0808451 + 0.996727i \(0.474238\pi\)
\(258\) 0 0
\(259\) 2.03714e6 1.88700
\(260\) 0 0
\(261\) 169284. 0.153821
\(262\) 0 0
\(263\) −1.24374e6 −1.10877 −0.554384 0.832261i \(-0.687046\pi\)
−0.554384 + 0.832261i \(0.687046\pi\)
\(264\) 0 0
\(265\) −945695. −0.827249
\(266\) 0 0
\(267\) −192353. −0.165128
\(268\) 0 0
\(269\) 2.13594e6 1.79973 0.899865 0.436168i \(-0.143665\pi\)
0.899865 + 0.436168i \(0.143665\pi\)
\(270\) 0 0
\(271\) 530072. 0.438441 0.219221 0.975675i \(-0.429649\pi\)
0.219221 + 0.975675i \(0.429649\pi\)
\(272\) 0 0
\(273\) 1.75789e6 1.42753
\(274\) 0 0
\(275\) 460479. 0.367179
\(276\) 0 0
\(277\) 1.22727e6 0.961038 0.480519 0.876984i \(-0.340448\pi\)
0.480519 + 0.876984i \(0.340448\pi\)
\(278\) 0 0
\(279\) −506628. −0.389654
\(280\) 0 0
\(281\) −1.77694e6 −1.34248 −0.671239 0.741241i \(-0.734238\pi\)
−0.671239 + 0.741241i \(0.734238\pi\)
\(282\) 0 0
\(283\) −1.23061e6 −0.913383 −0.456692 0.889625i \(-0.650966\pi\)
−0.456692 + 0.889625i \(0.650966\pi\)
\(284\) 0 0
\(285\) 467083. 0.340629
\(286\) 0 0
\(287\) 2.98306e6 2.13775
\(288\) 0 0
\(289\) −1.39404e6 −0.981819
\(290\) 0 0
\(291\) −303097. −0.209821
\(292\) 0 0
\(293\) 1.95416e6 1.32981 0.664906 0.746927i \(-0.268472\pi\)
0.664906 + 0.746927i \(0.268472\pi\)
\(294\) 0 0
\(295\) −1.95782e6 −1.30984
\(296\) 0 0
\(297\) 691877. 0.455132
\(298\) 0 0
\(299\) −1.58160e6 −1.02310
\(300\) 0 0
\(301\) 380016. 0.241761
\(302\) 0 0
\(303\) −280466. −0.175499
\(304\) 0 0
\(305\) 2.54993e6 1.56956
\(306\) 0 0
\(307\) 1.71778e6 1.04021 0.520105 0.854102i \(-0.325893\pi\)
0.520105 + 0.854102i \(0.325893\pi\)
\(308\) 0 0
\(309\) −1.41660e6 −0.844017
\(310\) 0 0
\(311\) −2.56907e6 −1.50617 −0.753087 0.657920i \(-0.771436\pi\)
−0.753087 + 0.657920i \(0.771436\pi\)
\(312\) 0 0
\(313\) −2.49115e6 −1.43727 −0.718636 0.695387i \(-0.755233\pi\)
−0.718636 + 0.695387i \(0.755233\pi\)
\(314\) 0 0
\(315\) −1.04864e6 −0.595456
\(316\) 0 0
\(317\) −2.54780e6 −1.42403 −0.712013 0.702166i \(-0.752216\pi\)
−0.712013 + 0.702166i \(0.752216\pi\)
\(318\) 0 0
\(319\) 445347. 0.245031
\(320\) 0 0
\(321\) 2.88838e6 1.56456
\(322\) 0 0
\(323\) −58002.1 −0.0309341
\(324\) 0 0
\(325\) 1.11179e6 0.583868
\(326\) 0 0
\(327\) −3.15959e6 −1.63404
\(328\) 0 0
\(329\) 2.70622e6 1.37839
\(330\) 0 0
\(331\) 1.16690e6 0.585417 0.292708 0.956202i \(-0.405443\pi\)
0.292708 + 0.956202i \(0.405443\pi\)
\(332\) 0 0
\(333\) −1.31901e6 −0.651837
\(334\) 0 0
\(335\) 2.35647e6 1.14723
\(336\) 0 0
\(337\) 2.29823e6 1.10235 0.551174 0.834391i \(-0.314180\pi\)
0.551174 + 0.834391i \(0.314180\pi\)
\(338\) 0 0
\(339\) −1.19730e6 −0.565854
\(340\) 0 0
\(341\) −1.33282e6 −0.620705
\(342\) 0 0
\(343\) 1.59437e6 0.731737
\(344\) 0 0
\(345\) 3.27164e6 1.47985
\(346\) 0 0
\(347\) 1.21467e6 0.541546 0.270773 0.962643i \(-0.412721\pi\)
0.270773 + 0.962643i \(0.412721\pi\)
\(348\) 0 0
\(349\) −517696. −0.227516 −0.113758 0.993509i \(-0.536289\pi\)
−0.113758 + 0.993509i \(0.536289\pi\)
\(350\) 0 0
\(351\) 1.67048e6 0.723726
\(352\) 0 0
\(353\) 117465. 0.0501730 0.0250865 0.999685i \(-0.492014\pi\)
0.0250865 + 0.999685i \(0.492014\pi\)
\(354\) 0 0
\(355\) −410690. −0.172959
\(356\) 0 0
\(357\) 451555. 0.187517
\(358\) 0 0
\(359\) 559009. 0.228920 0.114460 0.993428i \(-0.463486\pi\)
0.114460 + 0.993428i \(0.463486\pi\)
\(360\) 0 0
\(361\) 130321. 0.0526316
\(362\) 0 0
\(363\) 1.73587e6 0.691436
\(364\) 0 0
\(365\) −3.43856e6 −1.35096
\(366\) 0 0
\(367\) 2.04987e6 0.794441 0.397221 0.917723i \(-0.369975\pi\)
0.397221 + 0.917723i \(0.369975\pi\)
\(368\) 0 0
\(369\) −1.93148e6 −0.738455
\(370\) 0 0
\(371\) 2.05418e6 0.774824
\(372\) 0 0
\(373\) −4.30519e6 −1.60221 −0.801106 0.598522i \(-0.795755\pi\)
−0.801106 + 0.598522i \(0.795755\pi\)
\(374\) 0 0
\(375\) 1.74350e6 0.640241
\(376\) 0 0
\(377\) 1.07525e6 0.389635
\(378\) 0 0
\(379\) −379620. −0.135753 −0.0678767 0.997694i \(-0.521622\pi\)
−0.0678767 + 0.997694i \(0.521622\pi\)
\(380\) 0 0
\(381\) 5.46065e6 1.92722
\(382\) 0 0
\(383\) −3.32092e6 −1.15681 −0.578405 0.815750i \(-0.696325\pi\)
−0.578405 + 0.815750i \(0.696325\pi\)
\(384\) 0 0
\(385\) −2.75872e6 −0.948541
\(386\) 0 0
\(387\) −246054. −0.0835128
\(388\) 0 0
\(389\) −2.41572e6 −0.809417 −0.404708 0.914446i \(-0.632627\pi\)
−0.404708 + 0.914446i \(0.632627\pi\)
\(390\) 0 0
\(391\) −406271. −0.134392
\(392\) 0 0
\(393\) 1.10388e6 0.360531
\(394\) 0 0
\(395\) 4.56412e6 1.47185
\(396\) 0 0
\(397\) 3.56568e6 1.13545 0.567723 0.823220i \(-0.307824\pi\)
0.567723 + 0.823220i \(0.307824\pi\)
\(398\) 0 0
\(399\) −1.01457e6 −0.319043
\(400\) 0 0
\(401\) 2.47294e6 0.767985 0.383992 0.923336i \(-0.374549\pi\)
0.383992 + 0.923336i \(0.374549\pi\)
\(402\) 0 0
\(403\) −3.21798e6 −0.987009
\(404\) 0 0
\(405\) −5.13097e6 −1.55440
\(406\) 0 0
\(407\) −3.47001e6 −1.03835
\(408\) 0 0
\(409\) −3.42792e6 −1.01326 −0.506631 0.862163i \(-0.669109\pi\)
−0.506631 + 0.862163i \(0.669109\pi\)
\(410\) 0 0
\(411\) −4.13423e6 −1.20723
\(412\) 0 0
\(413\) 4.25265e6 1.22683
\(414\) 0 0
\(415\) −2.68540e6 −0.765399
\(416\) 0 0
\(417\) 2.85406e6 0.803754
\(418\) 0 0
\(419\) 39082.0 0.0108753 0.00543766 0.999985i \(-0.498269\pi\)
0.00543766 + 0.999985i \(0.498269\pi\)
\(420\) 0 0
\(421\) −6.28126e6 −1.72720 −0.863598 0.504181i \(-0.831794\pi\)
−0.863598 + 0.504181i \(0.831794\pi\)
\(422\) 0 0
\(423\) −1.75223e6 −0.476147
\(424\) 0 0
\(425\) 285589. 0.0766954
\(426\) 0 0
\(427\) −5.53879e6 −1.47009
\(428\) 0 0
\(429\) −2.99434e6 −0.785522
\(430\) 0 0
\(431\) −6.66064e6 −1.72712 −0.863561 0.504244i \(-0.831771\pi\)
−0.863561 + 0.504244i \(0.831771\pi\)
\(432\) 0 0
\(433\) −5.40926e6 −1.38650 −0.693248 0.720699i \(-0.743821\pi\)
−0.693248 + 0.720699i \(0.743821\pi\)
\(434\) 0 0
\(435\) −2.22423e6 −0.563582
\(436\) 0 0
\(437\) 912821. 0.228656
\(438\) 0 0
\(439\) 114943. 0.0284657 0.0142328 0.999899i \(-0.495469\pi\)
0.0142328 + 0.999899i \(0.495469\pi\)
\(440\) 0 0
\(441\) 622729. 0.152476
\(442\) 0 0
\(443\) −5.64940e6 −1.36771 −0.683854 0.729619i \(-0.739697\pi\)
−0.683854 + 0.729619i \(0.739697\pi\)
\(444\) 0 0
\(445\) 728834. 0.174473
\(446\) 0 0
\(447\) −42773.6 −0.0101253
\(448\) 0 0
\(449\) 8.29484e6 1.94174 0.970872 0.239597i \(-0.0770153\pi\)
0.970872 + 0.239597i \(0.0770153\pi\)
\(450\) 0 0
\(451\) −5.08126e6 −1.17633
\(452\) 0 0
\(453\) −2.90360e6 −0.664800
\(454\) 0 0
\(455\) −6.66072e6 −1.50832
\(456\) 0 0
\(457\) 7.30985e6 1.63726 0.818631 0.574321i \(-0.194734\pi\)
0.818631 + 0.574321i \(0.194734\pi\)
\(458\) 0 0
\(459\) 429102. 0.0950668
\(460\) 0 0
\(461\) 6.42356e6 1.40774 0.703872 0.710327i \(-0.251453\pi\)
0.703872 + 0.710327i \(0.251453\pi\)
\(462\) 0 0
\(463\) −3.76505e6 −0.816240 −0.408120 0.912928i \(-0.633816\pi\)
−0.408120 + 0.912928i \(0.633816\pi\)
\(464\) 0 0
\(465\) 6.65661e6 1.42765
\(466\) 0 0
\(467\) −1.26052e6 −0.267459 −0.133729 0.991018i \(-0.542695\pi\)
−0.133729 + 0.991018i \(0.542695\pi\)
\(468\) 0 0
\(469\) −5.11858e6 −1.07453
\(470\) 0 0
\(471\) 9.52810e6 1.97904
\(472\) 0 0
\(473\) −647309. −0.133033
\(474\) 0 0
\(475\) −641671. −0.130490
\(476\) 0 0
\(477\) −1.33005e6 −0.267652
\(478\) 0 0
\(479\) 6.90007e6 1.37409 0.687044 0.726615i \(-0.258908\pi\)
0.687044 + 0.726615i \(0.258908\pi\)
\(480\) 0 0
\(481\) −8.37807e6 −1.65113
\(482\) 0 0
\(483\) −7.10645e6 −1.38607
\(484\) 0 0
\(485\) 1.14845e6 0.221695
\(486\) 0 0
\(487\) 9.68962e6 1.85133 0.925666 0.378342i \(-0.123506\pi\)
0.925666 + 0.378342i \(0.123506\pi\)
\(488\) 0 0
\(489\) 1.11435e7 2.10742
\(490\) 0 0
\(491\) 7.27751e6 1.36232 0.681160 0.732134i \(-0.261476\pi\)
0.681160 + 0.732134i \(0.261476\pi\)
\(492\) 0 0
\(493\) 276204. 0.0511815
\(494\) 0 0
\(495\) 1.78623e6 0.327660
\(496\) 0 0
\(497\) 892074. 0.161998
\(498\) 0 0
\(499\) 4.89050e6 0.879228 0.439614 0.898187i \(-0.355115\pi\)
0.439614 + 0.898187i \(0.355115\pi\)
\(500\) 0 0
\(501\) −7.82467e6 −1.39275
\(502\) 0 0
\(503\) −4.85291e6 −0.855228 −0.427614 0.903961i \(-0.640646\pi\)
−0.427614 + 0.903961i \(0.640646\pi\)
\(504\) 0 0
\(505\) 1.06270e6 0.185430
\(506\) 0 0
\(507\) −368475. −0.0636632
\(508\) 0 0
\(509\) 1.85291e6 0.317000 0.158500 0.987359i \(-0.449334\pi\)
0.158500 + 0.987359i \(0.449334\pi\)
\(510\) 0 0
\(511\) 7.46901e6 1.26535
\(512\) 0 0
\(513\) −964120. −0.161748
\(514\) 0 0
\(515\) 5.36755e6 0.891781
\(516\) 0 0
\(517\) −4.60970e6 −0.758484
\(518\) 0 0
\(519\) 1.77993e6 0.290057
\(520\) 0 0
\(521\) 9.95920e6 1.60742 0.803711 0.595019i \(-0.202856\pi\)
0.803711 + 0.595019i \(0.202856\pi\)
\(522\) 0 0
\(523\) 3.15094e6 0.503716 0.251858 0.967764i \(-0.418958\pi\)
0.251858 + 0.967764i \(0.418958\pi\)
\(524\) 0 0
\(525\) 4.99550e6 0.791008
\(526\) 0 0
\(527\) −826614. −0.129651
\(528\) 0 0
\(529\) −42568.6 −0.00661379
\(530\) 0 0
\(531\) −2.75352e6 −0.423791
\(532\) 0 0
\(533\) −1.22683e7 −1.87054
\(534\) 0 0
\(535\) −1.09442e7 −1.65310
\(536\) 0 0
\(537\) −1.32472e7 −1.98239
\(538\) 0 0
\(539\) 1.63825e6 0.242890
\(540\) 0 0
\(541\) −2.29503e6 −0.337128 −0.168564 0.985691i \(-0.553913\pi\)
−0.168564 + 0.985691i \(0.553913\pi\)
\(542\) 0 0
\(543\) 6.38978e6 0.930007
\(544\) 0 0
\(545\) 1.19718e7 1.72651
\(546\) 0 0
\(547\) −5.53456e6 −0.790888 −0.395444 0.918490i \(-0.629409\pi\)
−0.395444 + 0.918490i \(0.629409\pi\)
\(548\) 0 0
\(549\) 3.58627e6 0.507823
\(550\) 0 0
\(551\) −620584. −0.0870807
\(552\) 0 0
\(553\) −9.91388e6 −1.37858
\(554\) 0 0
\(555\) 1.73306e7 2.38826
\(556\) 0 0
\(557\) 602885. 0.0823373 0.0411686 0.999152i \(-0.486892\pi\)
0.0411686 + 0.999152i \(0.486892\pi\)
\(558\) 0 0
\(559\) −1.56288e6 −0.211541
\(560\) 0 0
\(561\) −769167. −0.103184
\(562\) 0 0
\(563\) 7.59100e6 1.00932 0.504659 0.863319i \(-0.331618\pi\)
0.504659 + 0.863319i \(0.331618\pi\)
\(564\) 0 0
\(565\) 4.53662e6 0.597876
\(566\) 0 0
\(567\) 1.11452e7 1.45589
\(568\) 0 0
\(569\) −6.56162e6 −0.849631 −0.424815 0.905280i \(-0.639661\pi\)
−0.424815 + 0.905280i \(0.639661\pi\)
\(570\) 0 0
\(571\) 6.75971e6 0.867637 0.433818 0.901000i \(-0.357166\pi\)
0.433818 + 0.901000i \(0.357166\pi\)
\(572\) 0 0
\(573\) −9.57014e6 −1.21768
\(574\) 0 0
\(575\) −4.49453e6 −0.566910
\(576\) 0 0
\(577\) 1.06670e7 1.33383 0.666915 0.745133i \(-0.267614\pi\)
0.666915 + 0.745133i \(0.267614\pi\)
\(578\) 0 0
\(579\) −4.81949e6 −0.597454
\(580\) 0 0
\(581\) 5.83304e6 0.716894
\(582\) 0 0
\(583\) −3.49903e6 −0.426360
\(584\) 0 0
\(585\) 4.31270e6 0.521026
\(586\) 0 0
\(587\) −3.29726e6 −0.394964 −0.197482 0.980306i \(-0.563276\pi\)
−0.197482 + 0.980306i \(0.563276\pi\)
\(588\) 0 0
\(589\) 1.85726e6 0.220590
\(590\) 0 0
\(591\) 1.67873e7 1.97702
\(592\) 0 0
\(593\) 5.79620e6 0.676872 0.338436 0.940989i \(-0.390102\pi\)
0.338436 + 0.940989i \(0.390102\pi\)
\(594\) 0 0
\(595\) −1.71096e6 −0.198129
\(596\) 0 0
\(597\) 1.02827e6 0.118079
\(598\) 0 0
\(599\) 8.70225e6 0.990979 0.495489 0.868614i \(-0.334989\pi\)
0.495489 + 0.868614i \(0.334989\pi\)
\(600\) 0 0
\(601\) −6.62613e6 −0.748296 −0.374148 0.927369i \(-0.622065\pi\)
−0.374148 + 0.927369i \(0.622065\pi\)
\(602\) 0 0
\(603\) 3.31419e6 0.371180
\(604\) 0 0
\(605\) −6.57729e6 −0.730565
\(606\) 0 0
\(607\) −7.72626e6 −0.851133 −0.425566 0.904927i \(-0.639925\pi\)
−0.425566 + 0.904927i \(0.639925\pi\)
\(608\) 0 0
\(609\) 4.83134e6 0.527867
\(610\) 0 0
\(611\) −1.11298e7 −1.20610
\(612\) 0 0
\(613\) 1.03025e6 0.110737 0.0553684 0.998466i \(-0.482367\pi\)
0.0553684 + 0.998466i \(0.482367\pi\)
\(614\) 0 0
\(615\) 2.53778e7 2.70561
\(616\) 0 0
\(617\) −2.43072e6 −0.257052 −0.128526 0.991706i \(-0.541025\pi\)
−0.128526 + 0.991706i \(0.541025\pi\)
\(618\) 0 0
\(619\) 1.04157e6 0.109260 0.0546300 0.998507i \(-0.482602\pi\)
0.0546300 + 0.998507i \(0.482602\pi\)
\(620\) 0 0
\(621\) −6.75309e6 −0.702706
\(622\) 0 0
\(623\) −1.58313e6 −0.163416
\(624\) 0 0
\(625\) −1.21608e7 −1.24527
\(626\) 0 0
\(627\) 1.72819e6 0.175559
\(628\) 0 0
\(629\) −2.15210e6 −0.216888
\(630\) 0 0
\(631\) 8.12769e6 0.812631 0.406316 0.913733i \(-0.366813\pi\)
0.406316 + 0.913733i \(0.366813\pi\)
\(632\) 0 0
\(633\) −2.30780e7 −2.28923
\(634\) 0 0
\(635\) −2.06906e7 −2.03629
\(636\) 0 0
\(637\) 3.95543e6 0.386229
\(638\) 0 0
\(639\) −577603. −0.0559599
\(640\) 0 0
\(641\) 7.32327e6 0.703979 0.351990 0.936004i \(-0.385505\pi\)
0.351990 + 0.936004i \(0.385505\pi\)
\(642\) 0 0
\(643\) 1.15623e7 1.10285 0.551424 0.834225i \(-0.314085\pi\)
0.551424 + 0.834225i \(0.314085\pi\)
\(644\) 0 0
\(645\) 3.23291e6 0.305981
\(646\) 0 0
\(647\) −1.23804e7 −1.16271 −0.581356 0.813649i \(-0.697478\pi\)
−0.581356 + 0.813649i \(0.697478\pi\)
\(648\) 0 0
\(649\) −7.24385e6 −0.675084
\(650\) 0 0
\(651\) −1.44591e7 −1.33717
\(652\) 0 0
\(653\) 1.90958e7 1.75249 0.876245 0.481865i \(-0.160041\pi\)
0.876245 + 0.481865i \(0.160041\pi\)
\(654\) 0 0
\(655\) −4.18266e6 −0.380934
\(656\) 0 0
\(657\) −4.83606e6 −0.437097
\(658\) 0 0
\(659\) −9.31704e6 −0.835727 −0.417863 0.908510i \(-0.637221\pi\)
−0.417863 + 0.908510i \(0.637221\pi\)
\(660\) 0 0
\(661\) −214237. −0.0190718 −0.00953588 0.999955i \(-0.503035\pi\)
−0.00953588 + 0.999955i \(0.503035\pi\)
\(662\) 0 0
\(663\) −1.85709e6 −0.164078
\(664\) 0 0
\(665\) 3.84424e6 0.337098
\(666\) 0 0
\(667\) −4.34682e6 −0.378318
\(668\) 0 0
\(669\) 1.12393e7 0.970901
\(670\) 0 0
\(671\) 9.43463e6 0.808944
\(672\) 0 0
\(673\) −1.26137e7 −1.07351 −0.536755 0.843738i \(-0.680350\pi\)
−0.536755 + 0.843738i \(0.680350\pi\)
\(674\) 0 0
\(675\) 4.74711e6 0.401023
\(676\) 0 0
\(677\) −7.31311e6 −0.613240 −0.306620 0.951832i \(-0.599198\pi\)
−0.306620 + 0.951832i \(0.599198\pi\)
\(678\) 0 0
\(679\) −2.49458e6 −0.207646
\(680\) 0 0
\(681\) −2.04239e7 −1.68760
\(682\) 0 0
\(683\) 1.63995e7 1.34518 0.672589 0.740016i \(-0.265182\pi\)
0.672589 + 0.740016i \(0.265182\pi\)
\(684\) 0 0
\(685\) 1.56648e7 1.27555
\(686\) 0 0
\(687\) 1.45371e7 1.17513
\(688\) 0 0
\(689\) −8.44813e6 −0.677974
\(690\) 0 0
\(691\) 435527. 0.0346992 0.0173496 0.999849i \(-0.494477\pi\)
0.0173496 + 0.999849i \(0.494477\pi\)
\(692\) 0 0
\(693\) −3.87992e6 −0.306895
\(694\) 0 0
\(695\) −1.08141e7 −0.849239
\(696\) 0 0
\(697\) −3.15140e6 −0.245709
\(698\) 0 0
\(699\) 1.05951e7 0.820185
\(700\) 0 0
\(701\) −2.43006e7 −1.86776 −0.933882 0.357580i \(-0.883602\pi\)
−0.933882 + 0.357580i \(0.883602\pi\)
\(702\) 0 0
\(703\) 4.83541e6 0.369016
\(704\) 0 0
\(705\) 2.30226e7 1.74455
\(706\) 0 0
\(707\) −2.30832e6 −0.173679
\(708\) 0 0
\(709\) −1.63023e7 −1.21796 −0.608981 0.793185i \(-0.708422\pi\)
−0.608981 + 0.793185i \(0.708422\pi\)
\(710\) 0 0
\(711\) 6.41907e6 0.476210
\(712\) 0 0
\(713\) 1.30090e7 0.958343
\(714\) 0 0
\(715\) 1.13457e7 0.829976
\(716\) 0 0
\(717\) −6.00728e6 −0.436396
\(718\) 0 0
\(719\) −1.08258e6 −0.0780974 −0.0390487 0.999237i \(-0.512433\pi\)
−0.0390487 + 0.999237i \(0.512433\pi\)
\(720\) 0 0
\(721\) −1.16590e7 −0.835266
\(722\) 0 0
\(723\) −8.55609e6 −0.608737
\(724\) 0 0
\(725\) 3.05562e6 0.215900
\(726\) 0 0
\(727\) −2.21287e7 −1.55282 −0.776409 0.630229i \(-0.782961\pi\)
−0.776409 + 0.630229i \(0.782961\pi\)
\(728\) 0 0
\(729\) 4.77617e6 0.332860
\(730\) 0 0
\(731\) −401461. −0.0277875
\(732\) 0 0
\(733\) 1.35432e7 0.931028 0.465514 0.885041i \(-0.345869\pi\)
0.465514 + 0.885041i \(0.345869\pi\)
\(734\) 0 0
\(735\) −8.18207e6 −0.558656
\(736\) 0 0
\(737\) 8.71884e6 0.591276
\(738\) 0 0
\(739\) −3.84195e6 −0.258786 −0.129393 0.991593i \(-0.541303\pi\)
−0.129393 + 0.991593i \(0.541303\pi\)
\(740\) 0 0
\(741\) 4.17257e6 0.279163
\(742\) 0 0
\(743\) −1.06878e7 −0.710256 −0.355128 0.934818i \(-0.615563\pi\)
−0.355128 + 0.934818i \(0.615563\pi\)
\(744\) 0 0
\(745\) 162071. 0.0106983
\(746\) 0 0
\(747\) −3.77680e6 −0.247641
\(748\) 0 0
\(749\) 2.37723e7 1.54834
\(750\) 0 0
\(751\) −2.09801e7 −1.35740 −0.678701 0.734414i \(-0.737457\pi\)
−0.678701 + 0.734414i \(0.737457\pi\)
\(752\) 0 0
\(753\) −1.81619e7 −1.16728
\(754\) 0 0
\(755\) 1.10018e7 0.702422
\(756\) 0 0
\(757\) 2.90118e7 1.84007 0.920035 0.391837i \(-0.128160\pi\)
0.920035 + 0.391837i \(0.128160\pi\)
\(758\) 0 0
\(759\) 1.21049e7 0.762708
\(760\) 0 0
\(761\) 4.43022e6 0.277309 0.138654 0.990341i \(-0.455722\pi\)
0.138654 + 0.990341i \(0.455722\pi\)
\(762\) 0 0
\(763\) −2.60044e7 −1.61710
\(764\) 0 0
\(765\) 1.10782e6 0.0684407
\(766\) 0 0
\(767\) −1.74897e7 −1.07348
\(768\) 0 0
\(769\) 1.08879e6 0.0663936 0.0331968 0.999449i \(-0.489431\pi\)
0.0331968 + 0.999449i \(0.489431\pi\)
\(770\) 0 0
\(771\) −3.16370e6 −0.191673
\(772\) 0 0
\(773\) −1.43240e7 −0.862212 −0.431106 0.902301i \(-0.641877\pi\)
−0.431106 + 0.902301i \(0.641877\pi\)
\(774\) 0 0
\(775\) −9.14474e6 −0.546911
\(776\) 0 0
\(777\) −3.76444e7 −2.23691
\(778\) 0 0
\(779\) 7.08066e6 0.418052
\(780\) 0 0
\(781\) −1.51953e6 −0.0891422
\(782\) 0 0
\(783\) 4.59111e6 0.267617
\(784\) 0 0
\(785\) −3.61023e7 −2.09103
\(786\) 0 0
\(787\) −3.25819e7 −1.87517 −0.937583 0.347761i \(-0.886942\pi\)
−0.937583 + 0.347761i \(0.886942\pi\)
\(788\) 0 0
\(789\) 2.29831e7 1.31437
\(790\) 0 0
\(791\) −9.85415e6 −0.559987
\(792\) 0 0
\(793\) 2.27792e7 1.28634
\(794\) 0 0
\(795\) 1.74755e7 0.980646
\(796\) 0 0
\(797\) 7.67176e6 0.427808 0.213904 0.976855i \(-0.431382\pi\)
0.213904 + 0.976855i \(0.431382\pi\)
\(798\) 0 0
\(799\) −2.85894e6 −0.158430
\(800\) 0 0
\(801\) 1.02505e6 0.0564499
\(802\) 0 0
\(803\) −1.27225e7 −0.696280
\(804\) 0 0
\(805\) 2.69266e7 1.46451
\(806\) 0 0
\(807\) −3.94700e7 −2.13346
\(808\) 0 0
\(809\) 1.98169e7 1.06455 0.532273 0.846573i \(-0.321338\pi\)
0.532273 + 0.846573i \(0.321338\pi\)
\(810\) 0 0
\(811\) 2.53549e7 1.35366 0.676829 0.736140i \(-0.263354\pi\)
0.676829 + 0.736140i \(0.263354\pi\)
\(812\) 0 0
\(813\) −9.79521e6 −0.519742
\(814\) 0 0
\(815\) −4.22232e7 −2.22668
\(816\) 0 0
\(817\) 902016. 0.0472780
\(818\) 0 0
\(819\) −9.36777e6 −0.488008
\(820\) 0 0
\(821\) −2.27985e7 −1.18045 −0.590227 0.807238i \(-0.700962\pi\)
−0.590227 + 0.807238i \(0.700962\pi\)
\(822\) 0 0
\(823\) 3.51660e6 0.180977 0.0904885 0.995898i \(-0.471157\pi\)
0.0904885 + 0.995898i \(0.471157\pi\)
\(824\) 0 0
\(825\) −8.50921e6 −0.435265
\(826\) 0 0
\(827\) 760144. 0.0386484 0.0193242 0.999813i \(-0.493849\pi\)
0.0193242 + 0.999813i \(0.493849\pi\)
\(828\) 0 0
\(829\) 2.94228e7 1.48695 0.743476 0.668763i \(-0.233176\pi\)
0.743476 + 0.668763i \(0.233176\pi\)
\(830\) 0 0
\(831\) −2.26788e7 −1.13924
\(832\) 0 0
\(833\) 1.01604e6 0.0507341
\(834\) 0 0
\(835\) 2.96480e7 1.47156
\(836\) 0 0
\(837\) −1.37401e7 −0.677917
\(838\) 0 0
\(839\) −1.82408e6 −0.0894620 −0.0447310 0.998999i \(-0.514243\pi\)
−0.0447310 + 0.998999i \(0.514243\pi\)
\(840\) 0 0
\(841\) −1.75559e7 −0.855922
\(842\) 0 0
\(843\) 3.28361e7 1.59141
\(844\) 0 0
\(845\) 1.39617e6 0.0672660
\(846\) 0 0
\(847\) 1.42868e7 0.684267
\(848\) 0 0
\(849\) 2.27404e7 1.08275
\(850\) 0 0
\(851\) 3.38692e7 1.60318
\(852\) 0 0
\(853\) 7.39342e6 0.347915 0.173957 0.984753i \(-0.444345\pi\)
0.173957 + 0.984753i \(0.444345\pi\)
\(854\) 0 0
\(855\) −2.48908e6 −0.116446
\(856\) 0 0
\(857\) 2.92351e7 1.35973 0.679864 0.733338i \(-0.262039\pi\)
0.679864 + 0.733338i \(0.262039\pi\)
\(858\) 0 0
\(859\) 3.19321e7 1.47654 0.738269 0.674506i \(-0.235644\pi\)
0.738269 + 0.674506i \(0.235644\pi\)
\(860\) 0 0
\(861\) −5.51240e7 −2.53415
\(862\) 0 0
\(863\) 2.41161e7 1.10225 0.551124 0.834423i \(-0.314199\pi\)
0.551124 + 0.834423i \(0.314199\pi\)
\(864\) 0 0
\(865\) −6.74421e6 −0.306472
\(866\) 0 0
\(867\) 2.57605e7 1.16388
\(868\) 0 0
\(869\) 1.68870e7 0.758585
\(870\) 0 0
\(871\) 2.10510e7 0.940214
\(872\) 0 0
\(873\) 1.61520e6 0.0717282
\(874\) 0 0
\(875\) 1.43495e7 0.633603
\(876\) 0 0
\(877\) 1.75569e7 0.770812 0.385406 0.922747i \(-0.374061\pi\)
0.385406 + 0.922747i \(0.374061\pi\)
\(878\) 0 0
\(879\) −3.61109e7 −1.57640
\(880\) 0 0
\(881\) −402812. −0.0174849 −0.00874244 0.999962i \(-0.502783\pi\)
−0.00874244 + 0.999962i \(0.502783\pi\)
\(882\) 0 0
\(883\) −3.52030e7 −1.51942 −0.759711 0.650261i \(-0.774660\pi\)
−0.759711 + 0.650261i \(0.774660\pi\)
\(884\) 0 0
\(885\) 3.61786e7 1.55272
\(886\) 0 0
\(887\) −2.28152e7 −0.973679 −0.486840 0.873491i \(-0.661850\pi\)
−0.486840 + 0.873491i \(0.661850\pi\)
\(888\) 0 0
\(889\) 4.49428e7 1.90724
\(890\) 0 0
\(891\) −1.89844e7 −0.801129
\(892\) 0 0
\(893\) 6.42355e6 0.269555
\(894\) 0 0
\(895\) 5.01942e7 2.09457
\(896\) 0 0
\(897\) 2.92264e7 1.21281
\(898\) 0 0
\(899\) −8.84422e6 −0.364973
\(900\) 0 0
\(901\) −2.17010e6 −0.0890569
\(902\) 0 0
\(903\) −7.02233e6 −0.286590
\(904\) 0 0
\(905\) −2.42111e7 −0.982637
\(906\) 0 0
\(907\) 2.63621e7 1.06405 0.532025 0.846729i \(-0.321431\pi\)
0.532025 + 0.846729i \(0.321431\pi\)
\(908\) 0 0
\(909\) 1.49460e6 0.0599950
\(910\) 0 0
\(911\) 1.95110e7 0.778903 0.389452 0.921047i \(-0.372665\pi\)
0.389452 + 0.921047i \(0.372665\pi\)
\(912\) 0 0
\(913\) −9.93585e6 −0.394483
\(914\) 0 0
\(915\) −4.71202e7 −1.86061
\(916\) 0 0
\(917\) 9.08531e6 0.356793
\(918\) 0 0
\(919\) 1.08939e7 0.425493 0.212747 0.977107i \(-0.431759\pi\)
0.212747 + 0.977107i \(0.431759\pi\)
\(920\) 0 0
\(921\) −3.17429e7 −1.23310
\(922\) 0 0
\(923\) −3.66880e6 −0.141749
\(924\) 0 0
\(925\) −2.38085e7 −0.914907
\(926\) 0 0
\(927\) 7.54904e6 0.288531
\(928\) 0 0
\(929\) 4.10689e7 1.56125 0.780627 0.624998i \(-0.214900\pi\)
0.780627 + 0.624998i \(0.214900\pi\)
\(930\) 0 0
\(931\) −2.28288e6 −0.0863195
\(932\) 0 0
\(933\) 4.74740e7 1.78546
\(934\) 0 0
\(935\) 2.91440e6 0.109024
\(936\) 0 0
\(937\) 3.05076e7 1.13517 0.567583 0.823316i \(-0.307878\pi\)
0.567583 + 0.823316i \(0.307878\pi\)
\(938\) 0 0
\(939\) 4.60340e7 1.70378
\(940\) 0 0
\(941\) 9.50717e6 0.350007 0.175004 0.984568i \(-0.444006\pi\)
0.175004 + 0.984568i \(0.444006\pi\)
\(942\) 0 0
\(943\) 4.95958e7 1.81621
\(944\) 0 0
\(945\) −2.84398e7 −1.03597
\(946\) 0 0
\(947\) −3.24762e7 −1.17677 −0.588384 0.808582i \(-0.700236\pi\)
−0.588384 + 0.808582i \(0.700236\pi\)
\(948\) 0 0
\(949\) −3.07175e7 −1.10719
\(950\) 0 0
\(951\) 4.70809e7 1.68808
\(952\) 0 0
\(953\) −6.92438e6 −0.246972 −0.123486 0.992346i \(-0.539407\pi\)
−0.123486 + 0.992346i \(0.539407\pi\)
\(954\) 0 0
\(955\) 3.62616e7 1.28659
\(956\) 0 0
\(957\) −8.22957e6 −0.290467
\(958\) 0 0
\(959\) −3.40260e7 −1.19471
\(960\) 0 0
\(961\) −2.16048e6 −0.0754642
\(962\) 0 0
\(963\) −1.53921e7 −0.534851
\(964\) 0 0
\(965\) 1.82612e7 0.631265
\(966\) 0 0
\(967\) 3.40976e7 1.17262 0.586311 0.810086i \(-0.300580\pi\)
0.586311 + 0.810086i \(0.300580\pi\)
\(968\) 0 0
\(969\) 1.07182e6 0.0366702
\(970\) 0 0
\(971\) −4.50092e7 −1.53198 −0.765990 0.642852i \(-0.777751\pi\)
−0.765990 + 0.642852i \(0.777751\pi\)
\(972\) 0 0
\(973\) 2.34898e7 0.795421
\(974\) 0 0
\(975\) −2.05448e7 −0.692135
\(976\) 0 0
\(977\) −1.75662e7 −0.588764 −0.294382 0.955688i \(-0.595114\pi\)
−0.294382 + 0.955688i \(0.595114\pi\)
\(978\) 0 0
\(979\) 2.69666e6 0.0899226
\(980\) 0 0
\(981\) 1.68374e7 0.558603
\(982\) 0 0
\(983\) −3.94567e6 −0.130238 −0.0651188 0.997878i \(-0.520743\pi\)
−0.0651188 + 0.997878i \(0.520743\pi\)
\(984\) 0 0
\(985\) −6.36076e7 −2.08890
\(986\) 0 0
\(987\) −5.00083e7 −1.63399
\(988\) 0 0
\(989\) 6.31809e6 0.205397
\(990\) 0 0
\(991\) −7.30525e6 −0.236293 −0.118146 0.992996i \(-0.537695\pi\)
−0.118146 + 0.992996i \(0.537695\pi\)
\(992\) 0 0
\(993\) −2.15632e7 −0.693971
\(994\) 0 0
\(995\) −3.89616e6 −0.124761
\(996\) 0 0
\(997\) 2.37141e7 0.755560 0.377780 0.925895i \(-0.376688\pi\)
0.377780 + 0.925895i \(0.376688\pi\)
\(998\) 0 0
\(999\) −3.57726e7 −1.13406
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 152.6.a.c.1.2 6
4.3 odd 2 304.6.a.n.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.6.a.c.1.2 6 1.1 even 1 trivial
304.6.a.n.1.5 6 4.3 odd 2