Properties

Label 152.2.q.c.9.2
Level $152$
Weight $2$
Character 152.9
Analytic conductor $1.214$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [152,2,Mod(9,152)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(152, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("152.9"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 152.q (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.21372611072\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 3 x^{17} + 21 x^{16} - 34 x^{15} + 204 x^{14} - 267 x^{13} + 1304 x^{12} - 972 x^{11} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 9.2
Root \(-0.0372770 - 0.0645657i\) of defining polynomial
Character \(\chi\) \(=\) 152.9
Dual form 152.2.q.c.17.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0571117 + 0.0479224i) q^{3} +(0.846087 + 0.307950i) q^{5} +(2.43770 - 4.22221i) q^{7} +(-0.519979 + 2.94895i) q^{9} +(0.751011 + 1.30079i) q^{11} +(3.17207 + 2.66168i) q^{13} +(-0.0630792 + 0.0229589i) q^{15} +(-0.653155 - 3.70423i) q^{17} +(-2.89658 - 3.25727i) q^{19} +(0.0631176 + 0.357958i) q^{21} +(-5.40609 + 1.96766i) q^{23} +(-3.20919 - 2.69283i) q^{25} +(-0.223455 - 0.387035i) q^{27} +(-1.28615 + 7.29412i) q^{29} +(-1.88138 + 3.25864i) q^{31} +(-0.105228 - 0.0383000i) q^{33} +(3.36274 - 2.82167i) q^{35} -3.40626 q^{37} -0.308716 q^{39} +(-1.68420 + 1.41321i) q^{41} +(-1.79265 - 0.652471i) q^{43} +(-1.34808 + 2.33494i) q^{45} +(-0.265978 + 1.50844i) q^{47} +(-8.38473 - 14.5228i) q^{49} +(0.214818 + 0.180254i) q^{51} +(9.33685 - 3.39833i) q^{53} +(0.234842 + 1.33185i) q^{55} +(0.321525 + 0.0472171i) q^{57} +(1.35529 + 7.68626i) q^{59} +(3.18704 - 1.15999i) q^{61} +(11.1835 + 9.38411i) q^{63} +(1.86418 + 3.22885i) q^{65} +(-0.445701 + 2.52769i) q^{67} +(0.214456 - 0.371449i) q^{69} +(-6.80954 - 2.47847i) q^{71} +(6.31681 - 5.30043i) q^{73} +0.312329 q^{75} +7.32295 q^{77} +(12.2907 - 10.3131i) q^{79} +(-8.41025 - 3.06108i) q^{81} +(-4.18215 + 7.24370i) q^{83} +(0.588092 - 3.33524i) q^{85} +(-0.276098 - 0.478215i) q^{87} +(-9.49361 - 7.96608i) q^{89} +(18.9707 - 6.90478i) q^{91} +(-0.0487133 - 0.276267i) q^{93} +(-1.44768 - 3.64794i) q^{95} +(1.91303 + 10.8493i) q^{97} +(-4.22647 + 1.53831i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 9 q^{7} - 6 q^{9} - 3 q^{11} + 3 q^{13} + 33 q^{15} + 9 q^{17} - 24 q^{19} - 15 q^{21} + 6 q^{23} + 6 q^{25} - 12 q^{27} - 3 q^{29} - 6 q^{31} - 45 q^{33} - 15 q^{35} + 48 q^{37} + 12 q^{39} - 18 q^{41}+ \cdots + 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/152\mathbb{Z}\right)^\times\).

\(n\) \(39\) \(77\) \(97\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.0571117 + 0.0479224i −0.0329734 + 0.0276680i −0.659125 0.752033i \(-0.729073\pi\)
0.626152 + 0.779701i \(0.284629\pi\)
\(4\) 0 0
\(5\) 0.846087 + 0.307950i 0.378382 + 0.137720i 0.524207 0.851591i \(-0.324362\pi\)
−0.145826 + 0.989310i \(0.546584\pi\)
\(6\) 0 0
\(7\) 2.43770 4.22221i 0.921363 1.59585i 0.124054 0.992276i \(-0.460411\pi\)
0.797309 0.603571i \(-0.206256\pi\)
\(8\) 0 0
\(9\) −0.519979 + 2.94895i −0.173326 + 0.982983i
\(10\) 0 0
\(11\) 0.751011 + 1.30079i 0.226438 + 0.392203i 0.956750 0.290911i \(-0.0939585\pi\)
−0.730312 + 0.683114i \(0.760625\pi\)
\(12\) 0 0
\(13\) 3.17207 + 2.66168i 0.879773 + 0.738218i 0.966133 0.258046i \(-0.0830788\pi\)
−0.0863590 + 0.996264i \(0.527523\pi\)
\(14\) 0 0
\(15\) −0.0630792 + 0.0229589i −0.0162870 + 0.00592797i
\(16\) 0 0
\(17\) −0.653155 3.70423i −0.158413 0.898407i −0.955599 0.294672i \(-0.904790\pi\)
0.797185 0.603735i \(-0.206321\pi\)
\(18\) 0 0
\(19\) −2.89658 3.25727i −0.664521 0.747269i
\(20\) 0 0
\(21\) 0.0631176 + 0.357958i 0.0137734 + 0.0781128i
\(22\) 0 0
\(23\) −5.40609 + 1.96766i −1.12725 + 0.410285i −0.837292 0.546755i \(-0.815863\pi\)
−0.289956 + 0.957040i \(0.593641\pi\)
\(24\) 0 0
\(25\) −3.20919 2.69283i −0.641839 0.538566i
\(26\) 0 0
\(27\) −0.223455 0.387035i −0.0430039 0.0744849i
\(28\) 0 0
\(29\) −1.28615 + 7.29412i −0.238832 + 1.35448i 0.595559 + 0.803312i \(0.296931\pi\)
−0.834391 + 0.551173i \(0.814180\pi\)
\(30\) 0 0
\(31\) −1.88138 + 3.25864i −0.337905 + 0.585269i −0.984039 0.177955i \(-0.943052\pi\)
0.646133 + 0.763225i \(0.276385\pi\)
\(32\) 0 0
\(33\) −0.105228 0.0383000i −0.0183179 0.00666718i
\(34\) 0 0
\(35\) 3.36274 2.82167i 0.568406 0.476949i
\(36\) 0 0
\(37\) −3.40626 −0.559986 −0.279993 0.960002i \(-0.590332\pi\)
−0.279993 + 0.960002i \(0.590332\pi\)
\(38\) 0 0
\(39\) −0.308716 −0.0494342
\(40\) 0 0
\(41\) −1.68420 + 1.41321i −0.263028 + 0.220707i −0.764758 0.644317i \(-0.777142\pi\)
0.501730 + 0.865024i \(0.332697\pi\)
\(42\) 0 0
\(43\) −1.79265 0.652471i −0.273376 0.0995008i 0.201694 0.979449i \(-0.435355\pi\)
−0.475071 + 0.879948i \(0.657577\pi\)
\(44\) 0 0
\(45\) −1.34808 + 2.33494i −0.200960 + 0.348072i
\(46\) 0 0
\(47\) −0.265978 + 1.50844i −0.0387969 + 0.220028i −0.998042 0.0625471i \(-0.980078\pi\)
0.959245 + 0.282575i \(0.0911887\pi\)
\(48\) 0 0
\(49\) −8.38473 14.5228i −1.19782 2.07468i
\(50\) 0 0
\(51\) 0.214818 + 0.180254i 0.0300805 + 0.0252406i
\(52\) 0 0
\(53\) 9.33685 3.39833i 1.28251 0.466797i 0.391252 0.920284i \(-0.372042\pi\)
0.891263 + 0.453487i \(0.149820\pi\)
\(54\) 0 0
\(55\) 0.234842 + 1.33185i 0.0316661 + 0.179587i
\(56\) 0 0
\(57\) 0.321525 + 0.0472171i 0.0425870 + 0.00625405i
\(58\) 0 0
\(59\) 1.35529 + 7.68626i 0.176444 + 1.00067i 0.936464 + 0.350765i \(0.114078\pi\)
−0.760019 + 0.649901i \(0.774810\pi\)
\(60\) 0 0
\(61\) 3.18704 1.15999i 0.408059 0.148521i −0.129831 0.991536i \(-0.541444\pi\)
0.537890 + 0.843015i \(0.319221\pi\)
\(62\) 0 0
\(63\) 11.1835 + 9.38411i 1.40899 + 1.18229i
\(64\) 0 0
\(65\) 1.86418 + 3.22885i 0.231223 + 0.400490i
\(66\) 0 0
\(67\) −0.445701 + 2.52769i −0.0544510 + 0.308807i −0.999854 0.0170971i \(-0.994558\pi\)
0.945403 + 0.325904i \(0.105669\pi\)
\(68\) 0 0
\(69\) 0.214456 0.371449i 0.0258175 0.0447172i
\(70\) 0 0
\(71\) −6.80954 2.47847i −0.808144 0.294140i −0.0952868 0.995450i \(-0.530377\pi\)
−0.712857 + 0.701310i \(0.752599\pi\)
\(72\) 0 0
\(73\) 6.31681 5.30043i 0.739327 0.620369i −0.193330 0.981134i \(-0.561929\pi\)
0.932657 + 0.360765i \(0.117484\pi\)
\(74\) 0 0
\(75\) 0.312329 0.0360647
\(76\) 0 0
\(77\) 7.32295 0.834527
\(78\) 0 0
\(79\) 12.2907 10.3131i 1.38281 1.16031i 0.414647 0.909982i \(-0.363905\pi\)
0.968160 0.250331i \(-0.0805393\pi\)
\(80\) 0 0
\(81\) −8.41025 3.06108i −0.934473 0.340120i
\(82\) 0 0
\(83\) −4.18215 + 7.24370i −0.459051 + 0.795099i −0.998911 0.0466555i \(-0.985144\pi\)
0.539860 + 0.841755i \(0.318477\pi\)
\(84\) 0 0
\(85\) 0.588092 3.33524i 0.0637875 0.361757i
\(86\) 0 0
\(87\) −0.276098 0.478215i −0.0296008 0.0512700i
\(88\) 0 0
\(89\) −9.49361 7.96608i −1.00632 0.844403i −0.0184730 0.999829i \(-0.505880\pi\)
−0.987848 + 0.155426i \(0.950325\pi\)
\(90\) 0 0
\(91\) 18.9707 6.90478i 1.98867 0.723818i
\(92\) 0 0
\(93\) −0.0487133 0.276267i −0.00505133 0.0286475i
\(94\) 0 0
\(95\) −1.44768 3.64794i −0.148529 0.374270i
\(96\) 0 0
\(97\) 1.91303 + 10.8493i 0.194239 + 1.10158i 0.913498 + 0.406843i \(0.133370\pi\)
−0.719259 + 0.694742i \(0.755519\pi\)
\(98\) 0 0
\(99\) −4.22647 + 1.53831i −0.424776 + 0.154606i
\(100\) 0 0
\(101\) 14.7030 + 12.3372i 1.46300 + 1.22760i 0.922351 + 0.386352i \(0.126265\pi\)
0.540647 + 0.841249i \(0.318179\pi\)
\(102\) 0 0
\(103\) 0.980290 + 1.69791i 0.0965908 + 0.167300i 0.910271 0.414012i \(-0.135873\pi\)
−0.813681 + 0.581312i \(0.802540\pi\)
\(104\) 0 0
\(105\) −0.0568303 + 0.322301i −0.00554607 + 0.0314533i
\(106\) 0 0
\(107\) −5.52414 + 9.56810i −0.534039 + 0.924983i 0.465170 + 0.885221i \(0.345993\pi\)
−0.999209 + 0.0397616i \(0.987340\pi\)
\(108\) 0 0
\(109\) −9.39024 3.41777i −0.899422 0.327363i −0.149401 0.988777i \(-0.547734\pi\)
−0.750021 + 0.661414i \(0.769957\pi\)
\(110\) 0 0
\(111\) 0.194537 0.163236i 0.0184647 0.0154937i
\(112\) 0 0
\(113\) 15.3630 1.44523 0.722617 0.691249i \(-0.242939\pi\)
0.722617 + 0.691249i \(0.242939\pi\)
\(114\) 0 0
\(115\) −5.17996 −0.483034
\(116\) 0 0
\(117\) −9.49857 + 7.97025i −0.878143 + 0.736850i
\(118\) 0 0
\(119\) −17.2322 6.27202i −1.57968 0.574955i
\(120\) 0 0
\(121\) 4.37196 7.57246i 0.397451 0.688406i
\(122\) 0 0
\(123\) 0.0284630 0.161422i 0.00256643 0.0145549i
\(124\) 0 0
\(125\) −4.13696 7.16543i −0.370021 0.640896i
\(126\) 0 0
\(127\) 4.82452 + 4.04826i 0.428107 + 0.359225i 0.831237 0.555918i \(-0.187633\pi\)
−0.403130 + 0.915143i \(0.632078\pi\)
\(128\) 0 0
\(129\) 0.133649 0.0486443i 0.0117671 0.00428289i
\(130\) 0 0
\(131\) −2.39308 13.5718i −0.209084 1.18578i −0.890882 0.454236i \(-0.849912\pi\)
0.681797 0.731541i \(-0.261199\pi\)
\(132\) 0 0
\(133\) −20.8139 + 4.28975i −1.80479 + 0.371969i
\(134\) 0 0
\(135\) −0.0698745 0.396278i −0.00601384 0.0341062i
\(136\) 0 0
\(137\) −8.81317 + 3.20773i −0.752960 + 0.274055i −0.689851 0.723951i \(-0.742324\pi\)
−0.0631094 + 0.998007i \(0.520102\pi\)
\(138\) 0 0
\(139\) −6.13672 5.14932i −0.520510 0.436760i 0.344300 0.938860i \(-0.388116\pi\)
−0.864809 + 0.502100i \(0.832561\pi\)
\(140\) 0 0
\(141\) −0.0570975 0.0988957i −0.00480847 0.00832852i
\(142\) 0 0
\(143\) −1.08003 + 6.12515i −0.0903165 + 0.512210i
\(144\) 0 0
\(145\) −3.33442 + 5.77539i −0.276909 + 0.479620i
\(146\) 0 0
\(147\) 1.17483 + 0.427604i 0.0968985 + 0.0352682i
\(148\) 0 0
\(149\) 2.96174 2.48520i 0.242636 0.203595i −0.513358 0.858175i \(-0.671599\pi\)
0.755993 + 0.654579i \(0.227154\pi\)
\(150\) 0 0
\(151\) −6.96895 −0.567125 −0.283562 0.958954i \(-0.591516\pi\)
−0.283562 + 0.958954i \(0.591516\pi\)
\(152\) 0 0
\(153\) 11.2632 0.910576
\(154\) 0 0
\(155\) −2.59531 + 2.17772i −0.208460 + 0.174919i
\(156\) 0 0
\(157\) 9.88539 + 3.59799i 0.788940 + 0.287151i 0.704895 0.709311i \(-0.250994\pi\)
0.0840448 + 0.996462i \(0.473216\pi\)
\(158\) 0 0
\(159\) −0.370387 + 0.641529i −0.0293736 + 0.0508765i
\(160\) 0 0
\(161\) −4.87054 + 27.6222i −0.383853 + 2.17694i
\(162\) 0 0
\(163\) −5.67049 9.82157i −0.444147 0.769285i 0.553846 0.832619i \(-0.313160\pi\)
−0.997992 + 0.0633346i \(0.979826\pi\)
\(164\) 0 0
\(165\) −0.0772379 0.0648103i −0.00601296 0.00504547i
\(166\) 0 0
\(167\) 12.6635 4.60915i 0.979934 0.356667i 0.198119 0.980178i \(-0.436517\pi\)
0.781815 + 0.623511i \(0.214294\pi\)
\(168\) 0 0
\(169\) 0.720044 + 4.08357i 0.0553880 + 0.314121i
\(170\) 0 0
\(171\) 11.1117 6.84816i 0.849732 0.523692i
\(172\) 0 0
\(173\) −2.08871 11.8457i −0.158802 0.900609i −0.955227 0.295872i \(-0.904390\pi\)
0.796426 0.604736i \(-0.206721\pi\)
\(174\) 0 0
\(175\) −19.1928 + 6.98559i −1.45084 + 0.528061i
\(176\) 0 0
\(177\) −0.445747 0.374026i −0.0335044 0.0281135i
\(178\) 0 0
\(179\) −12.3965 21.4714i −0.926558 1.60485i −0.789036 0.614347i \(-0.789419\pi\)
−0.137523 0.990499i \(-0.543914\pi\)
\(180\) 0 0
\(181\) −3.23698 + 18.3578i −0.240603 + 1.36453i 0.589884 + 0.807488i \(0.299174\pi\)
−0.830486 + 0.557039i \(0.811937\pi\)
\(182\) 0 0
\(183\) −0.126428 + 0.218980i −0.00934582 + 0.0161874i
\(184\) 0 0
\(185\) −2.88199 1.04896i −0.211888 0.0771211i
\(186\) 0 0
\(187\) 4.32789 3.63153i 0.316487 0.265564i
\(188\) 0 0
\(189\) −2.17886 −0.158489
\(190\) 0 0
\(191\) 2.40294 0.173870 0.0869352 0.996214i \(-0.472293\pi\)
0.0869352 + 0.996214i \(0.472293\pi\)
\(192\) 0 0
\(193\) 1.57700 1.32326i 0.113515 0.0952504i −0.584263 0.811564i \(-0.698616\pi\)
0.697778 + 0.716314i \(0.254172\pi\)
\(194\) 0 0
\(195\) −0.261201 0.0950693i −0.0187050 0.00680805i
\(196\) 0 0
\(197\) 10.9933 19.0410i 0.783242 1.35661i −0.146802 0.989166i \(-0.546898\pi\)
0.930044 0.367449i \(-0.119769\pi\)
\(198\) 0 0
\(199\) 0.0440381 0.249753i 0.00312178 0.0177045i −0.983207 0.182493i \(-0.941583\pi\)
0.986329 + 0.164789i \(0.0526943\pi\)
\(200\) 0 0
\(201\) −0.0956784 0.165720i −0.00674864 0.0116890i
\(202\) 0 0
\(203\) 27.6621 + 23.2113i 1.94150 + 1.62911i
\(204\) 0 0
\(205\) −1.86018 + 0.677050i −0.129921 + 0.0472873i
\(206\) 0 0
\(207\) −2.99146 16.9654i −0.207921 1.17918i
\(208\) 0 0
\(209\) 2.06166 6.21409i 0.142608 0.429838i
\(210\) 0 0
\(211\) 2.92275 + 16.5758i 0.201211 + 1.14112i 0.903292 + 0.429025i \(0.141143\pi\)
−0.702082 + 0.712096i \(0.747746\pi\)
\(212\) 0 0
\(213\) 0.507678 0.184780i 0.0347855 0.0126609i
\(214\) 0 0
\(215\) −1.31581 1.10409i −0.0897373 0.0752986i
\(216\) 0 0
\(217\) 9.17245 + 15.8872i 0.622667 + 1.07849i
\(218\) 0 0
\(219\) −0.106754 + 0.605433i −0.00721378 + 0.0409114i
\(220\) 0 0
\(221\) 7.78762 13.4885i 0.523852 0.907338i
\(222\) 0 0
\(223\) 24.3233 + 8.85297i 1.62881 + 0.592839i 0.985032 0.172372i \(-0.0551431\pi\)
0.643780 + 0.765211i \(0.277365\pi\)
\(224\) 0 0
\(225\) 9.60974 8.06353i 0.640649 0.537569i
\(226\) 0 0
\(227\) −17.2212 −1.14301 −0.571506 0.820598i \(-0.693641\pi\)
−0.571506 + 0.820598i \(0.693641\pi\)
\(228\) 0 0
\(229\) 8.94376 0.591020 0.295510 0.955340i \(-0.404510\pi\)
0.295510 + 0.955340i \(0.404510\pi\)
\(230\) 0 0
\(231\) −0.418226 + 0.350933i −0.0275172 + 0.0230897i
\(232\) 0 0
\(233\) 6.30702 + 2.29557i 0.413187 + 0.150388i 0.540245 0.841508i \(-0.318331\pi\)
−0.127059 + 0.991895i \(0.540554\pi\)
\(234\) 0 0
\(235\) −0.689565 + 1.19436i −0.0449822 + 0.0779115i
\(236\) 0 0
\(237\) −0.207712 + 1.17800i −0.0134924 + 0.0765190i
\(238\) 0 0
\(239\) 7.37042 + 12.7659i 0.476753 + 0.825760i 0.999645 0.0266389i \(-0.00848041\pi\)
−0.522892 + 0.852399i \(0.675147\pi\)
\(240\) 0 0
\(241\) 1.71665 + 1.44044i 0.110579 + 0.0927868i 0.696401 0.717653i \(-0.254784\pi\)
−0.585822 + 0.810440i \(0.699228\pi\)
\(242\) 0 0
\(243\) 1.88689 0.686772i 0.121044 0.0440565i
\(244\) 0 0
\(245\) −2.62191 14.8696i −0.167508 0.949984i
\(246\) 0 0
\(247\) −0.518339 18.0421i −0.0329811 1.14799i
\(248\) 0 0
\(249\) −0.108286 0.614118i −0.00686232 0.0389182i
\(250\) 0 0
\(251\) 9.84138 3.58197i 0.621182 0.226092i −0.0122065 0.999925i \(-0.503886\pi\)
0.633389 + 0.773834i \(0.281663\pi\)
\(252\) 0 0
\(253\) −6.61954 5.55445i −0.416167 0.349206i
\(254\) 0 0
\(255\) 0.126246 + 0.218664i 0.00790580 + 0.0136932i
\(256\) 0 0
\(257\) −0.465247 + 2.63855i −0.0290213 + 0.164588i −0.995874 0.0907468i \(-0.971075\pi\)
0.966853 + 0.255335i \(0.0821857\pi\)
\(258\) 0 0
\(259\) −8.30344 + 14.3820i −0.515950 + 0.893652i
\(260\) 0 0
\(261\) −20.8412 7.58559i −1.29004 0.469536i
\(262\) 0 0
\(263\) 5.15900 4.32892i 0.318118 0.266932i −0.469720 0.882816i \(-0.655645\pi\)
0.787838 + 0.615883i \(0.211201\pi\)
\(264\) 0 0
\(265\) 8.94630 0.549567
\(266\) 0 0
\(267\) 0.923950 0.0565448
\(268\) 0 0
\(269\) −8.29577 + 6.96098i −0.505802 + 0.424418i −0.859649 0.510885i \(-0.829318\pi\)
0.353847 + 0.935303i \(0.384873\pi\)
\(270\) 0 0
\(271\) 9.24264 + 3.36405i 0.561450 + 0.204351i 0.607127 0.794605i \(-0.292322\pi\)
−0.0456762 + 0.998956i \(0.514544\pi\)
\(272\) 0 0
\(273\) −0.752556 + 1.30347i −0.0455468 + 0.0788894i
\(274\) 0 0
\(275\) 1.09267 6.19683i 0.0658904 0.373683i
\(276\) 0 0
\(277\) −11.0574 19.1520i −0.664375 1.15073i −0.979454 0.201665i \(-0.935365\pi\)
0.315080 0.949065i \(-0.397969\pi\)
\(278\) 0 0
\(279\) −8.63129 7.24251i −0.516742 0.433598i
\(280\) 0 0
\(281\) −10.4993 + 3.82144i −0.626338 + 0.227968i −0.635636 0.771989i \(-0.719262\pi\)
0.00929888 + 0.999957i \(0.497040\pi\)
\(282\) 0 0
\(283\) 5.06099 + 28.7023i 0.300844 + 1.70617i 0.642448 + 0.766329i \(0.277919\pi\)
−0.341603 + 0.939844i \(0.610970\pi\)
\(284\) 0 0
\(285\) 0.257497 + 0.138963i 0.0152528 + 0.00823148i
\(286\) 0 0
\(287\) 1.86132 + 10.5560i 0.109870 + 0.623104i
\(288\) 0 0
\(289\) 2.68010 0.975478i 0.157653 0.0573810i
\(290\) 0 0
\(291\) −0.629183 0.527947i −0.0368834 0.0309488i
\(292\) 0 0
\(293\) 6.96412 + 12.0622i 0.406848 + 0.704682i 0.994535 0.104407i \(-0.0332944\pi\)
−0.587686 + 0.809089i \(0.699961\pi\)
\(294\) 0 0
\(295\) −1.22029 + 6.92061i −0.0710480 + 0.402933i
\(296\) 0 0
\(297\) 0.335634 0.581335i 0.0194755 0.0337325i
\(298\) 0 0
\(299\) −22.3858 8.14775i −1.29460 0.471197i
\(300\) 0 0
\(301\) −7.12480 + 5.97842i −0.410667 + 0.344590i
\(302\) 0 0
\(303\) −1.43094 −0.0822054
\(304\) 0 0
\(305\) 3.05373 0.174856
\(306\) 0 0
\(307\) 12.4177 10.4197i 0.708716 0.594684i −0.215522 0.976499i \(-0.569145\pi\)
0.924239 + 0.381815i \(0.124701\pi\)
\(308\) 0 0
\(309\) −0.137354 0.0499927i −0.00781379 0.00284399i
\(310\) 0 0
\(311\) 0.795408 1.37769i 0.0451034 0.0781214i −0.842592 0.538552i \(-0.818972\pi\)
0.887696 + 0.460430i \(0.152305\pi\)
\(312\) 0 0
\(313\) 1.35928 7.70884i 0.0768308 0.435729i −0.921991 0.387210i \(-0.873439\pi\)
0.998822 0.0485189i \(-0.0154501\pi\)
\(314\) 0 0
\(315\) 6.57241 + 11.3837i 0.370313 + 0.641401i
\(316\) 0 0
\(317\) −18.4157 15.4526i −1.03433 0.867904i −0.0429677 0.999076i \(-0.513681\pi\)
−0.991360 + 0.131173i \(0.958126\pi\)
\(318\) 0 0
\(319\) −10.4540 + 3.80496i −0.585314 + 0.213037i
\(320\) 0 0
\(321\) −0.143033 0.811180i −0.00798332 0.0452757i
\(322\) 0 0
\(323\) −10.1737 + 12.8571i −0.566082 + 0.715388i
\(324\) 0 0
\(325\) −3.01232 17.0837i −0.167093 0.947633i
\(326\) 0 0
\(327\) 0.700080 0.254808i 0.0387145 0.0140909i
\(328\) 0 0
\(329\) 5.72057 + 4.80013i 0.315385 + 0.264640i
\(330\) 0 0
\(331\) 3.72375 + 6.44972i 0.204676 + 0.354509i 0.950029 0.312161i \(-0.101053\pi\)
−0.745354 + 0.666669i \(0.767719\pi\)
\(332\) 0 0
\(333\) 1.77119 10.0449i 0.0970604 0.550457i
\(334\) 0 0
\(335\) −1.15551 + 2.00140i −0.0631321 + 0.109348i
\(336\) 0 0
\(337\) 10.0217 + 3.64761i 0.545919 + 0.198698i 0.600232 0.799826i \(-0.295075\pi\)
−0.0543134 + 0.998524i \(0.517297\pi\)
\(338\) 0 0
\(339\) −0.877409 + 0.736233i −0.0476543 + 0.0399867i
\(340\) 0 0
\(341\) −5.65174 −0.306059
\(342\) 0 0
\(343\) −47.6299 −2.57177
\(344\) 0 0
\(345\) 0.295836 0.248236i 0.0159273 0.0133646i
\(346\) 0 0
\(347\) −20.0551 7.29945i −1.07661 0.391855i −0.257967 0.966154i \(-0.583053\pi\)
−0.818646 + 0.574299i \(0.805275\pi\)
\(348\) 0 0
\(349\) −12.0043 + 20.7921i −0.642578 + 1.11298i 0.342277 + 0.939599i \(0.388802\pi\)
−0.984855 + 0.173379i \(0.944532\pi\)
\(350\) 0 0
\(351\) 0.321350 1.82247i 0.0171524 0.0972761i
\(352\) 0 0
\(353\) −10.9493 18.9647i −0.582771 1.00939i −0.995149 0.0983765i \(-0.968635\pi\)
0.412378 0.911013i \(-0.364698\pi\)
\(354\) 0 0
\(355\) −4.99822 4.19400i −0.265278 0.222594i
\(356\) 0 0
\(357\) 1.28473 0.467604i 0.0679952 0.0247482i
\(358\) 0 0
\(359\) 3.15021 + 17.8657i 0.166262 + 0.942917i 0.947754 + 0.319002i \(0.103348\pi\)
−0.781492 + 0.623915i \(0.785541\pi\)
\(360\) 0 0
\(361\) −2.21963 + 18.8699i −0.116822 + 0.993153i
\(362\) 0 0
\(363\) 0.113200 + 0.641991i 0.00594148 + 0.0336958i
\(364\) 0 0
\(365\) 6.97684 2.53936i 0.365185 0.132916i
\(366\) 0 0
\(367\) 19.7837 + 16.6005i 1.03270 + 0.866540i 0.991170 0.132597i \(-0.0423317\pi\)
0.0415319 + 0.999137i \(0.486776\pi\)
\(368\) 0 0
\(369\) −3.29174 5.70147i −0.171361 0.296807i
\(370\) 0 0
\(371\) 8.41190 47.7063i 0.436724 2.47679i
\(372\) 0 0
\(373\) −0.191644 + 0.331936i −0.00992293 + 0.0171870i −0.870944 0.491382i \(-0.836492\pi\)
0.861021 + 0.508569i \(0.169825\pi\)
\(374\) 0 0
\(375\) 0.579653 + 0.210977i 0.0299332 + 0.0108948i
\(376\) 0 0
\(377\) −23.4944 + 19.7141i −1.21002 + 1.01533i
\(378\) 0 0
\(379\) 12.1230 0.622718 0.311359 0.950292i \(-0.399216\pi\)
0.311359 + 0.950292i \(0.399216\pi\)
\(380\) 0 0
\(381\) −0.469539 −0.0240552
\(382\) 0 0
\(383\) 18.0633 15.1569i 0.922990 0.774480i −0.0515558 0.998670i \(-0.516418\pi\)
0.974546 + 0.224190i \(0.0719735\pi\)
\(384\) 0 0
\(385\) 6.19585 + 2.25510i 0.315770 + 0.114931i
\(386\) 0 0
\(387\) 2.85624 4.94716i 0.145191 0.251478i
\(388\) 0 0
\(389\) 2.87755 16.3194i 0.145898 0.827426i −0.820745 0.571295i \(-0.806441\pi\)
0.966642 0.256131i \(-0.0824478\pi\)
\(390\) 0 0
\(391\) 10.8197 + 18.7402i 0.547174 + 0.947732i
\(392\) 0 0
\(393\) 0.787068 + 0.660428i 0.0397023 + 0.0333142i
\(394\) 0 0
\(395\) 13.5749 4.94085i 0.683027 0.248601i
\(396\) 0 0
\(397\) 2.56104 + 14.5244i 0.128535 + 0.728959i 0.979145 + 0.203162i \(0.0651218\pi\)
−0.850610 + 0.525797i \(0.823767\pi\)
\(398\) 0 0
\(399\) 0.983140 1.24245i 0.0492186 0.0622001i
\(400\) 0 0
\(401\) 2.43436 + 13.8060i 0.121566 + 0.689436i 0.983288 + 0.182056i \(0.0582751\pi\)
−0.861722 + 0.507381i \(0.830614\pi\)
\(402\) 0 0
\(403\) −14.6413 + 5.32901i −0.729336 + 0.265457i
\(404\) 0 0
\(405\) −6.17314 5.17988i −0.306746 0.257390i
\(406\) 0 0
\(407\) −2.55814 4.43083i −0.126802 0.219628i
\(408\) 0 0
\(409\) −2.17011 + 12.3073i −0.107305 + 0.608557i 0.882969 + 0.469430i \(0.155541\pi\)
−0.990275 + 0.139127i \(0.955570\pi\)
\(410\) 0 0
\(411\) 0.349613 0.605547i 0.0172451 0.0298694i
\(412\) 0 0
\(413\) 35.7568 + 13.0144i 1.75948 + 0.640398i
\(414\) 0 0
\(415\) −5.76916 + 4.84090i −0.283197 + 0.237631i
\(416\) 0 0
\(417\) 0.597246 0.0292473
\(418\) 0 0
\(419\) 23.0450 1.12582 0.562911 0.826517i \(-0.309681\pi\)
0.562911 + 0.826517i \(0.309681\pi\)
\(420\) 0 0
\(421\) 0.538028 0.451459i 0.0262219 0.0220028i −0.629583 0.776934i \(-0.716774\pi\)
0.655804 + 0.754931i \(0.272330\pi\)
\(422\) 0 0
\(423\) −4.31000 1.56871i −0.209560 0.0762734i
\(424\) 0 0
\(425\) −7.87876 + 13.6464i −0.382176 + 0.661948i
\(426\) 0 0
\(427\) 2.87132 16.2841i 0.138953 0.788042i
\(428\) 0 0
\(429\) −0.231849 0.401575i −0.0111938 0.0193882i
\(430\) 0 0
\(431\) −17.5441 14.7212i −0.845069 0.709097i 0.113629 0.993523i \(-0.463753\pi\)
−0.958698 + 0.284426i \(0.908197\pi\)
\(432\) 0 0
\(433\) −1.02276 + 0.372254i −0.0491507 + 0.0178894i −0.366478 0.930427i \(-0.619437\pi\)
0.317328 + 0.948316i \(0.397214\pi\)
\(434\) 0 0
\(435\) −0.0863360 0.489636i −0.00413949 0.0234762i
\(436\) 0 0
\(437\) 22.0684 + 11.9096i 1.05567 + 0.569715i
\(438\) 0 0
\(439\) −6.02958 34.1954i −0.287776 1.63206i −0.695198 0.718819i \(-0.744683\pi\)
0.407422 0.913240i \(-0.366428\pi\)
\(440\) 0 0
\(441\) 47.1868 17.1746i 2.24699 0.817838i
\(442\) 0 0
\(443\) −19.1005 16.0272i −0.907490 0.761474i 0.0641500 0.997940i \(-0.479566\pi\)
−0.971640 + 0.236466i \(0.924011\pi\)
\(444\) 0 0
\(445\) −5.57926 9.66356i −0.264482 0.458097i
\(446\) 0 0
\(447\) −0.0500535 + 0.283868i −0.00236745 + 0.0134265i
\(448\) 0 0
\(449\) 15.4902 26.8298i 0.731028 1.26618i −0.225416 0.974263i \(-0.572374\pi\)
0.956444 0.291915i \(-0.0942925\pi\)
\(450\) 0 0
\(451\) −3.10315 1.12945i −0.146121 0.0531839i
\(452\) 0 0
\(453\) 0.398008 0.333969i 0.0187001 0.0156912i
\(454\) 0 0
\(455\) 18.1772 0.852161
\(456\) 0 0
\(457\) 1.44629 0.0676548 0.0338274 0.999428i \(-0.489230\pi\)
0.0338274 + 0.999428i \(0.489230\pi\)
\(458\) 0 0
\(459\) −1.28771 + 1.08052i −0.0601054 + 0.0504344i
\(460\) 0 0
\(461\) −2.49659 0.908684i −0.116278 0.0423217i 0.283226 0.959053i \(-0.408595\pi\)
−0.399504 + 0.916732i \(0.630818\pi\)
\(462\) 0 0
\(463\) −9.38621 + 16.2574i −0.436214 + 0.755545i −0.997394 0.0721489i \(-0.977014\pi\)
0.561180 + 0.827694i \(0.310348\pi\)
\(464\) 0 0
\(465\) 0.0438608 0.248747i 0.00203399 0.0115354i
\(466\) 0 0
\(467\) 16.9214 + 29.3088i 0.783031 + 1.35625i 0.930168 + 0.367133i \(0.119661\pi\)
−0.147137 + 0.989116i \(0.547006\pi\)
\(468\) 0 0
\(469\) 9.58599 + 8.04360i 0.442640 + 0.371419i
\(470\) 0 0
\(471\) −0.736996 + 0.268244i −0.0339590 + 0.0123601i
\(472\) 0 0
\(473\) −0.497572 2.82187i −0.0228784 0.129750i
\(474\) 0 0
\(475\) 0.524405 + 18.2532i 0.0240613 + 0.837515i
\(476\) 0 0
\(477\) 5.16655 + 29.3010i 0.236560 + 1.34160i
\(478\) 0 0
\(479\) 14.9720 5.44936i 0.684088 0.248988i 0.0234863 0.999724i \(-0.492523\pi\)
0.660602 + 0.750736i \(0.270301\pi\)
\(480\) 0 0
\(481\) −10.8049 9.06639i −0.492661 0.413392i
\(482\) 0 0
\(483\) −1.04556 1.81096i −0.0475745 0.0824015i
\(484\) 0 0
\(485\) −1.72247 + 9.76861i −0.0782133 + 0.443570i
\(486\) 0 0
\(487\) 13.2382 22.9293i 0.599881 1.03902i −0.392957 0.919557i \(-0.628548\pi\)
0.992838 0.119467i \(-0.0381187\pi\)
\(488\) 0 0
\(489\) 0.794524 + 0.289183i 0.0359296 + 0.0130773i
\(490\) 0 0
\(491\) −10.6617 + 8.94624i −0.481156 + 0.403738i −0.850844 0.525418i \(-0.823909\pi\)
0.369688 + 0.929156i \(0.379465\pi\)
\(492\) 0 0
\(493\) 27.8591 1.25471
\(494\) 0 0
\(495\) −4.04969 −0.182020
\(496\) 0 0
\(497\) −27.0642 + 22.7096i −1.21400 + 1.01866i
\(498\) 0 0
\(499\) 18.1464 + 6.60476i 0.812346 + 0.295670i 0.714592 0.699541i \(-0.246612\pi\)
0.0977533 + 0.995211i \(0.468834\pi\)
\(500\) 0 0
\(501\) −0.502354 + 0.870103i −0.0224435 + 0.0388733i
\(502\) 0 0
\(503\) 0.0372156 0.211060i 0.00165936 0.00941071i −0.983967 0.178352i \(-0.942924\pi\)
0.985626 + 0.168941i \(0.0540347\pi\)
\(504\) 0 0
\(505\) 8.64072 + 14.9662i 0.384507 + 0.665985i
\(506\) 0 0
\(507\) −0.236817 0.198713i −0.0105174 0.00882517i
\(508\) 0 0
\(509\) −22.0843 + 8.03801i −0.978867 + 0.356279i −0.781400 0.624031i \(-0.785494\pi\)
−0.197468 + 0.980309i \(0.563272\pi\)
\(510\) 0 0
\(511\) −6.98110 39.5918i −0.308826 1.75144i
\(512\) 0 0
\(513\) −0.613423 + 1.84893i −0.0270833 + 0.0816323i
\(514\) 0 0
\(515\) 0.306538 + 1.73846i 0.0135077 + 0.0766057i
\(516\) 0 0
\(517\) −2.16191 + 0.786872i −0.0950808 + 0.0346066i
\(518\) 0 0
\(519\) 0.686962 + 0.576429i 0.0301543 + 0.0253024i
\(520\) 0 0
\(521\) −5.47324 9.47994i −0.239787 0.415324i 0.720866 0.693075i \(-0.243744\pi\)
−0.960653 + 0.277751i \(0.910411\pi\)
\(522\) 0 0
\(523\) 4.89094 27.7379i 0.213866 1.21289i −0.668998 0.743264i \(-0.733277\pi\)
0.882864 0.469629i \(-0.155612\pi\)
\(524\) 0 0
\(525\) 0.761364 1.31872i 0.0332286 0.0575537i
\(526\) 0 0
\(527\) 13.2996 + 4.84065i 0.579338 + 0.210862i
\(528\) 0 0
\(529\) 7.73513 6.49055i 0.336310 0.282198i
\(530\) 0 0
\(531\) −23.3711 −1.01422
\(532\) 0 0
\(533\) −9.10393 −0.394335
\(534\) 0 0
\(535\) −7.62041 + 6.39428i −0.329459 + 0.276449i
\(536\) 0 0
\(537\) 1.73694 + 0.632196i 0.0749547 + 0.0272813i
\(538\) 0 0
\(539\) 12.5940 21.8135i 0.542464 0.939575i
\(540\) 0 0
\(541\) −5.49172 + 31.1451i −0.236108 + 1.33903i 0.604161 + 0.796863i \(0.293509\pi\)
−0.840268 + 0.542171i \(0.817603\pi\)
\(542\) 0 0
\(543\) −0.694882 1.20357i −0.0298202 0.0516502i
\(544\) 0 0
\(545\) −6.89245 5.78346i −0.295240 0.247736i
\(546\) 0 0
\(547\) −36.8659 + 13.4181i −1.57627 + 0.573716i −0.974389 0.224868i \(-0.927805\pi\)
−0.601883 + 0.798585i \(0.705583\pi\)
\(548\) 0 0
\(549\) 1.76355 + 10.0016i 0.0752665 + 0.426858i
\(550\) 0 0
\(551\) 27.4844 16.9387i 1.17087 0.721612i
\(552\) 0 0
\(553\) −13.5832 77.0340i −0.577615 3.27582i
\(554\) 0 0
\(555\) 0.214864 0.0782042i 0.00912048 0.00331958i
\(556\) 0 0
\(557\) −23.2983 19.5496i −0.987180 0.828342i −0.00202276 0.999998i \(-0.500644\pi\)
−0.985157 + 0.171656i \(0.945088\pi\)
\(558\) 0 0
\(559\) −3.94973 6.84114i −0.167056 0.289349i
\(560\) 0 0
\(561\) −0.0731414 + 0.414806i −0.00308803 + 0.0175131i
\(562\) 0 0
\(563\) −16.7446 + 29.0025i −0.705701 + 1.22231i 0.260736 + 0.965410i \(0.416035\pi\)
−0.966438 + 0.256901i \(0.917299\pi\)
\(564\) 0 0
\(565\) 12.9985 + 4.73105i 0.546849 + 0.199037i
\(566\) 0 0
\(567\) −33.4262 + 28.0479i −1.40377 + 1.17790i
\(568\) 0 0
\(569\) −44.8839 −1.88163 −0.940816 0.338918i \(-0.889939\pi\)
−0.940816 + 0.338918i \(0.889939\pi\)
\(570\) 0 0
\(571\) 0.658444 0.0275550 0.0137775 0.999905i \(-0.495614\pi\)
0.0137775 + 0.999905i \(0.495614\pi\)
\(572\) 0 0
\(573\) −0.137236 + 0.115154i −0.00573310 + 0.00481064i
\(574\) 0 0
\(575\) 22.6478 + 8.24311i 0.944477 + 0.343761i
\(576\) 0 0
\(577\) 1.77931 3.08185i 0.0740735 0.128299i −0.826610 0.562776i \(-0.809733\pi\)
0.900683 + 0.434477i \(0.143067\pi\)
\(578\) 0 0
\(579\) −0.0266514 + 0.151147i −0.00110759 + 0.00628147i
\(580\) 0 0
\(581\) 20.3896 + 35.3159i 0.845904 + 1.46515i
\(582\) 0 0
\(583\) 11.4326 + 9.59309i 0.473490 + 0.397305i
\(584\) 0 0
\(585\) −10.4911 + 3.81843i −0.433752 + 0.157873i
\(586\) 0 0
\(587\) 6.22859 + 35.3241i 0.257081 + 1.45798i 0.790673 + 0.612239i \(0.209731\pi\)
−0.533591 + 0.845742i \(0.679158\pi\)
\(588\) 0 0
\(589\) 16.0638 3.31077i 0.661899 0.136418i
\(590\) 0 0
\(591\) 0.284643 + 1.61429i 0.0117086 + 0.0664030i
\(592\) 0 0
\(593\) −19.4440 + 7.07703i −0.798469 + 0.290619i −0.708852 0.705358i \(-0.750786\pi\)
−0.0896168 + 0.995976i \(0.528564\pi\)
\(594\) 0 0
\(595\) −12.6485 10.6133i −0.518537 0.435105i
\(596\) 0 0
\(597\) 0.00945365 + 0.0163742i 0.000386912 + 0.000670152i
\(598\) 0 0
\(599\) −4.42673 + 25.1053i −0.180871 + 1.02577i 0.750275 + 0.661126i \(0.229921\pi\)
−0.931146 + 0.364646i \(0.881190\pi\)
\(600\) 0 0
\(601\) 6.01475 10.4179i 0.245347 0.424953i −0.716882 0.697194i \(-0.754431\pi\)
0.962229 + 0.272241i \(0.0877648\pi\)
\(602\) 0 0
\(603\) −7.22229 2.62870i −0.294114 0.107049i
\(604\) 0 0
\(605\) 6.03101 5.06061i 0.245195 0.205743i
\(606\) 0 0
\(607\) −1.27655 −0.0518135 −0.0259067 0.999664i \(-0.508247\pi\)
−0.0259067 + 0.999664i \(0.508247\pi\)
\(608\) 0 0
\(609\) −2.69217 −0.109092
\(610\) 0 0
\(611\) −4.85868 + 4.07692i −0.196561 + 0.164934i
\(612\) 0 0
\(613\) 8.72020 + 3.17389i 0.352206 + 0.128192i 0.512063 0.858948i \(-0.328881\pi\)
−0.159858 + 0.987140i \(0.551104\pi\)
\(614\) 0 0
\(615\) 0.0737922 0.127812i 0.00297559 0.00515387i
\(616\) 0 0
\(617\) 6.07347 34.4443i 0.244509 1.38668i −0.577123 0.816657i \(-0.695825\pi\)
0.821631 0.570019i \(-0.193064\pi\)
\(618\) 0 0
\(619\) 4.16416 + 7.21253i 0.167372 + 0.289896i 0.937495 0.347999i \(-0.113139\pi\)
−0.770123 + 0.637895i \(0.779805\pi\)
\(620\) 0 0
\(621\) 1.96957 + 1.65266i 0.0790361 + 0.0663191i
\(622\) 0 0
\(623\) −56.7770 + 20.6652i −2.27472 + 0.827932i
\(624\) 0 0
\(625\) 2.34369 + 13.2917i 0.0937477 + 0.531669i
\(626\) 0 0
\(627\) 0.180049 + 0.453697i 0.00719047 + 0.0181189i
\(628\) 0 0
\(629\) 2.22482 + 12.6176i 0.0887093 + 0.503095i
\(630\) 0 0
\(631\) −38.9932 + 14.1924i −1.55230 + 0.564990i −0.968955 0.247238i \(-0.920477\pi\)
−0.583341 + 0.812227i \(0.698255\pi\)
\(632\) 0 0
\(633\) −0.961273 0.806604i −0.0382072 0.0320596i
\(634\) 0 0
\(635\) 2.83530 + 4.91089i 0.112516 + 0.194883i
\(636\) 0 0
\(637\) 12.0581 68.3847i 0.477758 2.70950i
\(638\) 0 0
\(639\) 10.8497 18.7922i 0.429208 0.743409i
\(640\) 0 0
\(641\) −41.8086 15.2171i −1.65134 0.601039i −0.662374 0.749174i \(-0.730451\pi\)
−0.988967 + 0.148135i \(0.952673\pi\)
\(642\) 0 0
\(643\) 30.4636 25.5620i 1.20137 1.00807i 0.201777 0.979431i \(-0.435328\pi\)
0.999590 0.0286354i \(-0.00911619\pi\)
\(644\) 0 0
\(645\) 0.128059 0.00504231
\(646\) 0 0
\(647\) −2.21149 −0.0869428 −0.0434714 0.999055i \(-0.513842\pi\)
−0.0434714 + 0.999055i \(0.513842\pi\)
\(648\) 0 0
\(649\) −8.98036 + 7.53542i −0.352510 + 0.295791i
\(650\) 0 0
\(651\) −1.28520 0.467776i −0.0503711 0.0183336i
\(652\) 0 0
\(653\) 9.53266 16.5110i 0.373042 0.646127i −0.616990 0.786971i \(-0.711648\pi\)
0.990032 + 0.140844i \(0.0449815\pi\)
\(654\) 0 0
\(655\) 2.15470 12.2199i 0.0841910 0.477471i
\(656\) 0 0
\(657\) 12.3461 + 21.3841i 0.481667 + 0.834272i
\(658\) 0 0
\(659\) 21.8019 + 18.2939i 0.849280 + 0.712631i 0.959631 0.281262i \(-0.0907530\pi\)
−0.110351 + 0.993893i \(0.535197\pi\)
\(660\) 0 0
\(661\) −31.6686 + 11.5264i −1.23176 + 0.448326i −0.874201 0.485564i \(-0.838614\pi\)
−0.357563 + 0.933889i \(0.616392\pi\)
\(662\) 0 0
\(663\) 0.201640 + 1.14355i 0.00783103 + 0.0444120i
\(664\) 0 0
\(665\) −18.9314 2.78014i −0.734127 0.107809i
\(666\) 0 0
\(667\) −7.39928 41.9634i −0.286501 1.62483i
\(668\) 0 0
\(669\) −1.81340 + 0.660025i −0.0701102 + 0.0255180i
\(670\) 0 0
\(671\) 3.90241 + 3.27451i 0.150651 + 0.126411i
\(672\) 0 0
\(673\) −8.13873 14.0967i −0.313725 0.543388i 0.665441 0.746451i \(-0.268244\pi\)
−0.979166 + 0.203063i \(0.934910\pi\)
\(674\) 0 0
\(675\) −0.325111 + 1.84380i −0.0125135 + 0.0709678i
\(676\) 0 0
\(677\) −6.48501 + 11.2324i −0.249239 + 0.431695i −0.963315 0.268373i \(-0.913514\pi\)
0.714076 + 0.700069i \(0.246847\pi\)
\(678\) 0 0
\(679\) 50.4717 + 18.3702i 1.93692 + 0.704983i
\(680\) 0 0
\(681\) 0.983532 0.825281i 0.0376890 0.0316249i
\(682\) 0 0
\(683\) 4.22475 0.161656 0.0808278 0.996728i \(-0.474244\pi\)
0.0808278 + 0.996728i \(0.474244\pi\)
\(684\) 0 0
\(685\) −8.44453 −0.322649
\(686\) 0 0
\(687\) −0.510793 + 0.428606i −0.0194880 + 0.0163524i
\(688\) 0 0
\(689\) 38.6624 + 14.0720i 1.47292 + 0.536099i
\(690\) 0 0
\(691\) −8.89665 + 15.4095i −0.338445 + 0.586203i −0.984140 0.177391i \(-0.943234\pi\)
0.645696 + 0.763595i \(0.276567\pi\)
\(692\) 0 0
\(693\) −3.80778 + 21.5950i −0.144646 + 0.820326i
\(694\) 0 0
\(695\) −3.60646 6.24658i −0.136801 0.236946i
\(696\) 0 0
\(697\) 6.33490 + 5.31562i 0.239952 + 0.201343i
\(698\) 0 0
\(699\) −0.470214 + 0.171144i −0.0177851 + 0.00647325i
\(700\) 0 0
\(701\) −0.689000 3.90751i −0.0260232 0.147585i 0.969028 0.246952i \(-0.0794291\pi\)
−0.995051 + 0.0993677i \(0.968318\pi\)
\(702\) 0 0
\(703\) 9.86652 + 11.0951i 0.372123 + 0.418460i
\(704\) 0 0
\(705\) −0.0178544 0.101258i −0.000672437 0.00381358i
\(706\) 0 0
\(707\) 87.9318 32.0046i 3.30702 1.20366i
\(708\) 0 0
\(709\) 0.284143 + 0.238424i 0.0106712 + 0.00895422i 0.648108 0.761549i \(-0.275561\pi\)
−0.637436 + 0.770503i \(0.720005\pi\)
\(710\) 0 0
\(711\) 24.0219 + 41.6071i 0.900891 + 1.56039i
\(712\) 0 0
\(713\) 3.75901 21.3184i 0.140776 0.798381i
\(714\) 0 0
\(715\) −2.80004 + 4.84981i −0.104716 + 0.181373i
\(716\) 0 0
\(717\) −1.03271 0.375876i −0.0385673 0.0140373i
\(718\) 0 0
\(719\) −21.2652 + 17.8436i −0.793059 + 0.665455i −0.946501 0.322702i \(-0.895409\pi\)
0.153442 + 0.988158i \(0.450964\pi\)
\(720\) 0 0
\(721\) 9.55859 0.355981
\(722\) 0 0
\(723\) −0.167070 −0.00621340
\(724\) 0 0
\(725\) 23.7694 19.9449i 0.882772 0.740734i
\(726\) 0 0
\(727\) −6.60839 2.40526i −0.245092 0.0892061i 0.216553 0.976271i \(-0.430518\pi\)
−0.461645 + 0.887065i \(0.652741\pi\)
\(728\) 0 0
\(729\) 13.3502 23.1232i 0.494450 0.856413i
\(730\) 0 0
\(731\) −1.24602 + 7.06654i −0.0460858 + 0.261365i
\(732\) 0 0
\(733\) −0.667519 1.15618i −0.0246554 0.0427044i 0.853434 0.521200i \(-0.174516\pi\)
−0.878090 + 0.478496i \(0.841182\pi\)
\(734\) 0 0
\(735\) 0.862329 + 0.723580i 0.0318075 + 0.0266896i
\(736\) 0 0
\(737\) −3.62272 + 1.31856i −0.133445 + 0.0485699i
\(738\) 0 0
\(739\) 1.65784 + 9.40207i 0.0609846 + 0.345861i 0.999998 + 0.00198036i \(0.000630369\pi\)
−0.939013 + 0.343880i \(0.888259\pi\)
\(740\) 0 0
\(741\) 0.894222 + 1.00557i 0.0328501 + 0.0369406i
\(742\) 0 0
\(743\) −2.29396 13.0097i −0.0841573 0.477280i −0.997535 0.0701672i \(-0.977647\pi\)
0.913378 0.407113i \(-0.133464\pi\)
\(744\) 0 0
\(745\) 3.27121 1.19062i 0.119848 0.0436211i
\(746\) 0 0
\(747\) −19.1867 16.0995i −0.702003 0.589051i
\(748\) 0 0
\(749\) 26.9324 + 46.6482i 0.984087 + 1.70449i
\(750\) 0 0
\(751\) 1.54348 8.75350i 0.0563223 0.319420i −0.943610 0.331059i \(-0.892594\pi\)
0.999932 + 0.0116396i \(0.00370508\pi\)
\(752\) 0 0
\(753\) −0.390401 + 0.676195i −0.0142270 + 0.0246419i
\(754\) 0 0
\(755\) −5.89633 2.14609i −0.214590 0.0781042i
\(756\) 0 0
\(757\) 15.4257 12.9437i 0.560656 0.470447i −0.317874 0.948133i \(-0.602969\pi\)
0.878530 + 0.477686i \(0.158524\pi\)
\(758\) 0 0
\(759\) 0.644236 0.0233843
\(760\) 0 0
\(761\) −17.1139 −0.620377 −0.310188 0.950675i \(-0.600392\pi\)
−0.310188 + 0.950675i \(0.600392\pi\)
\(762\) 0 0
\(763\) −37.3211 + 31.3161i −1.35111 + 1.13372i
\(764\) 0 0
\(765\) 9.52964 + 3.46851i 0.344545 + 0.125404i
\(766\) 0 0
\(767\) −16.1593 + 27.9887i −0.583478 + 1.01061i
\(768\) 0 0
\(769\) 8.82477 50.0477i 0.318229 1.80477i −0.235283 0.971927i \(-0.575602\pi\)
0.553512 0.832841i \(-0.313287\pi\)
\(770\) 0 0
\(771\) −0.0998744 0.172988i −0.00359689 0.00622999i
\(772\) 0 0
\(773\) −25.0406 21.0116i −0.900649 0.755735i 0.0696678 0.997570i \(-0.477806\pi\)
−0.970317 + 0.241836i \(0.922251\pi\)
\(774\) 0 0
\(775\) 14.8127 5.39137i 0.532087 0.193664i
\(776\) 0 0
\(777\) −0.214995 1.21930i −0.00771291 0.0437421i
\(778\) 0 0
\(779\) 9.48165 + 1.39241i 0.339715 + 0.0498884i
\(780\) 0 0
\(781\) −1.89007 10.7191i −0.0676321 0.383561i
\(782\) 0 0
\(783\) 3.11048 1.13212i 0.111159 0.0404587i
\(784\) 0 0
\(785\) 7.25590 + 6.08842i 0.258974 + 0.217305i
\(786\) 0 0
\(787\) −20.6795 35.8180i −0.737145 1.27677i −0.953776 0.300519i \(-0.902840\pi\)
0.216631 0.976254i \(-0.430493\pi\)
\(788\) 0 0
\(789\) −0.0871872 + 0.494463i −0.00310395 + 0.0176034i
\(790\) 0 0
\(791\) 37.4504 64.8660i 1.33158 2.30637i
\(792\) 0 0
\(793\) 13.1970 + 4.80333i 0.468641 + 0.170571i
\(794\) 0 0
\(795\) −0.510938 + 0.428728i −0.0181211 + 0.0152054i
\(796\) 0 0
\(797\) 18.7142 0.662893 0.331446 0.943474i \(-0.392463\pi\)
0.331446 + 0.943474i \(0.392463\pi\)
\(798\) 0 0
\(799\) 5.76132 0.203821
\(800\) 0 0
\(801\) 28.4281 23.8540i 1.00446 0.842839i
\(802\) 0 0
\(803\) 11.6387 + 4.23616i 0.410722 + 0.149491i
\(804\) 0 0
\(805\) −12.6272 + 21.8709i −0.445050 + 0.770848i
\(806\) 0 0
\(807\) 0.140199 0.795106i 0.00493523 0.0279891i
\(808\) 0 0
\(809\) 20.2960 + 35.1536i 0.713568 + 1.23594i 0.963509 + 0.267675i \(0.0862552\pi\)
−0.249942 + 0.968261i \(0.580411\pi\)
\(810\) 0 0
\(811\) −20.2180 16.9649i −0.709951 0.595720i 0.214634 0.976694i \(-0.431144\pi\)
−0.924585 + 0.380975i \(0.875588\pi\)
\(812\) 0 0
\(813\) −0.689076 + 0.250803i −0.0241669 + 0.00879605i
\(814\) 0 0
\(815\) −1.77317 10.0561i −0.0621113 0.352251i
\(816\) 0 0
\(817\) 3.06728 + 7.72908i 0.107311 + 0.270406i
\(818\) 0 0
\(819\) 10.4975 + 59.5341i 0.366811 + 2.08029i
\(820\) 0 0
\(821\) 16.5325 6.01732i 0.576987 0.210006i −0.0370095 0.999315i \(-0.511783\pi\)
0.613996 + 0.789309i \(0.289561\pi\)
\(822\) 0 0
\(823\) 8.81502 + 7.39668i 0.307272 + 0.257832i 0.783364 0.621564i \(-0.213502\pi\)
−0.476091 + 0.879396i \(0.657947\pi\)
\(824\) 0 0
\(825\) 0.234563 + 0.406275i 0.00816643 + 0.0141447i
\(826\) 0 0
\(827\) −4.16521 + 23.6221i −0.144839 + 0.821421i 0.822658 + 0.568537i \(0.192490\pi\)
−0.967497 + 0.252884i \(0.918621\pi\)
\(828\) 0 0
\(829\) −16.2682 + 28.1773i −0.565017 + 0.978637i 0.432032 + 0.901858i \(0.357797\pi\)
−0.997048 + 0.0767789i \(0.975536\pi\)
\(830\) 0 0
\(831\) 1.54931 + 0.563904i 0.0537451 + 0.0195616i
\(832\) 0 0
\(833\) −48.3191 + 40.5445i −1.67416 + 1.40478i
\(834\) 0 0
\(835\) 12.1338 0.419909
\(836\) 0 0
\(837\) 1.68161 0.0581250
\(838\) 0 0
\(839\) 13.5516 11.3712i 0.467854 0.392576i −0.378157 0.925742i \(-0.623442\pi\)
0.846011 + 0.533165i \(0.178998\pi\)
\(840\) 0 0
\(841\) −24.2990 8.84411i −0.837896 0.304969i
\(842\) 0 0
\(843\) 0.416502 0.721402i 0.0143451 0.0248464i
\(844\) 0 0
\(845\) −0.648318 + 3.67679i −0.0223028 + 0.126486i
\(846\) 0 0
\(847\) −21.3150 36.9187i −0.732394 1.26854i
\(848\) 0 0
\(849\) −1.66452 1.39670i −0.0571263 0.0479346i
\(850\) 0 0
\(851\) 18.4146 6.70236i 0.631243 0.229754i
\(852\) 0 0
\(853\) 5.85399 + 33.1996i 0.200437 + 1.13673i 0.904461 + 0.426557i \(0.140274\pi\)
−0.704024 + 0.710176i \(0.748615\pi\)
\(854\) 0 0
\(855\) 11.5103 2.37229i 0.393646 0.0811305i
\(856\) 0 0
\(857\) 6.00554 + 34.0591i 0.205145 + 1.16344i 0.897211 + 0.441602i \(0.145590\pi\)
−0.692065 + 0.721835i \(0.743299\pi\)
\(858\) 0 0
\(859\) 9.85335 3.58633i 0.336192 0.122364i −0.168407 0.985717i \(-0.553862\pi\)
0.504599 + 0.863354i \(0.331640\pi\)
\(860\) 0 0
\(861\) −0.612174 0.513675i −0.0208628 0.0175060i
\(862\) 0 0
\(863\) −13.9197 24.1097i −0.473833 0.820703i 0.525718 0.850659i \(-0.323797\pi\)
−0.999551 + 0.0299556i \(0.990463\pi\)
\(864\) 0 0
\(865\) 1.88065 10.6657i 0.0639439 0.362644i
\(866\) 0 0
\(867\) −0.106318 + 0.184148i −0.00361075 + 0.00625400i
\(868\) 0 0
\(869\) 22.6456 + 8.24232i 0.768199 + 0.279601i
\(870\) 0 0
\(871\) −8.14171 + 6.83171i −0.275871 + 0.231484i
\(872\) 0 0
\(873\) −32.9889 −1.11651
\(874\) 0 0
\(875\) −40.3386 −1.36370
\(876\) 0 0
\(877\) 8.23733 6.91194i 0.278155 0.233400i −0.493028 0.870014i \(-0.664110\pi\)
0.771183 + 0.636614i \(0.219665\pi\)
\(878\) 0 0
\(879\) −0.975783 0.355156i −0.0329123 0.0119791i
\(880\) 0 0
\(881\) −8.16415 + 14.1407i −0.275057 + 0.476413i −0.970150 0.242507i \(-0.922030\pi\)
0.695092 + 0.718921i \(0.255363\pi\)
\(882\) 0 0
\(883\) 4.20203 23.8309i 0.141409 0.801973i −0.828771 0.559588i \(-0.810959\pi\)
0.970180 0.242385i \(-0.0779296\pi\)
\(884\) 0 0
\(885\) −0.261959 0.453727i −0.00880566 0.0152519i
\(886\) 0 0
\(887\) −25.0976 21.0594i −0.842694 0.707104i 0.115474 0.993310i \(-0.463161\pi\)
−0.958168 + 0.286206i \(0.907606\pi\)
\(888\) 0 0
\(889\) 28.8533 10.5018i 0.967710 0.352218i
\(890\) 0 0
\(891\) −2.33437 13.2389i −0.0782044 0.443519i
\(892\) 0 0
\(893\) 5.68382 3.50295i 0.190202 0.117222i
\(894\) 0 0
\(895\) −3.87640 21.9842i −0.129574 0.734849i
\(896\) 0 0
\(897\) 1.66895 0.607448i 0.0557246 0.0202821i
\(898\) 0 0
\(899\) −21.3492 17.9141i −0.712036 0.597469i
\(900\) 0 0
\(901\) −18.6866 32.3661i −0.622541 1.07827i
\(902\) 0 0
\(903\) 0.120409 0.682875i 0.00400697 0.0227247i
\(904\) 0 0
\(905\) −8.39207 + 14.5355i −0.278962 + 0.483176i
\(906\) 0 0
\(907\) −2.66758 0.970921i −0.0885757 0.0322389i 0.297352 0.954768i \(-0.403896\pi\)
−0.385928 + 0.922529i \(0.626119\pi\)
\(908\) 0 0
\(909\) −44.0271 + 36.9432i −1.46029 + 1.22533i
\(910\) 0 0
\(911\) −24.6095 −0.815349 −0.407675 0.913127i \(-0.633660\pi\)
−0.407675 + 0.913127i \(0.633660\pi\)
\(912\) 0 0
\(913\) −12.5634 −0.415787
\(914\) 0 0
\(915\) −0.174404 + 0.146342i −0.00576561 + 0.00483792i
\(916\) 0 0
\(917\) −63.1368 22.9799i −2.08496 0.758864i
\(918\) 0 0
\(919\) −8.86763 + 15.3592i −0.292516 + 0.506653i −0.974404 0.224804i \(-0.927826\pi\)
0.681888 + 0.731457i \(0.261159\pi\)
\(920\) 0 0
\(921\) −0.209860 + 1.19017i −0.00691511 + 0.0392175i
\(922\) 0 0
\(923\) −15.0034 25.9867i −0.493844 0.855363i
\(924\) 0 0
\(925\) 10.9314 + 9.17250i 0.359421 + 0.301590i
\(926\) 0 0
\(927\) −5.51678 + 2.00795i −0.181195 + 0.0659496i
\(928\) 0 0
\(929\) 0.538315 + 3.05294i 0.0176615 + 0.100164i 0.992364 0.123342i \(-0.0393611\pi\)
−0.974703 + 0.223505i \(0.928250\pi\)
\(930\) 0 0
\(931\) −23.0176 + 69.3777i −0.754370 + 2.27376i
\(932\) 0 0
\(933\) 0.0205950 + 0.116800i 0.000674249 + 0.00382385i
\(934\) 0 0
\(935\) 4.78010 1.73981i 0.156326 0.0568980i
\(936\) 0 0
\(937\) 22.2172 + 18.6424i 0.725803 + 0.609021i 0.928984 0.370120i \(-0.120684\pi\)
−0.203181 + 0.979141i \(0.565128\pi\)
\(938\) 0 0
\(939\) 0.291795 + 0.505404i 0.00952238 + 0.0164932i
\(940\) 0 0
\(941\) 0.900989 5.10976i 0.0293714 0.166574i −0.966594 0.256313i \(-0.917492\pi\)
0.995965 + 0.0897393i \(0.0286034\pi\)
\(942\) 0 0
\(943\) 6.32423 10.9539i 0.205945 0.356708i
\(944\) 0 0
\(945\) −1.84350 0.670981i −0.0599692 0.0218270i
\(946\) 0 0
\(947\) 4.67086 3.91932i 0.151783 0.127361i −0.563734 0.825956i \(-0.690636\pi\)
0.715517 + 0.698596i \(0.246191\pi\)
\(948\) 0 0
\(949\) 34.1454 1.10841
\(950\) 0 0
\(951\) 1.79227 0.0581185
\(952\) 0 0
\(953\) 7.30332 6.12821i 0.236578 0.198512i −0.516789 0.856113i \(-0.672873\pi\)
0.753367 + 0.657600i \(0.228428\pi\)
\(954\) 0 0
\(955\) 2.03309 + 0.739985i 0.0657893 + 0.0239454i
\(956\) 0 0
\(957\) 0.414705 0.718290i 0.0134055 0.0232190i
\(958\) 0 0
\(959\) −7.94011 + 45.0306i −0.256399 + 1.45411i
\(960\) 0 0
\(961\) 8.42084 + 14.5853i 0.271640 + 0.470494i
\(962\) 0 0
\(963\) −25.3434 21.2656i −0.816680 0.685275i
\(964\) 0 0
\(965\) 1.74178 0.633956i 0.0560699 0.0204078i
\(966\) 0 0
\(967\) 6.00694 + 34.0671i 0.193170 + 1.09552i 0.915001 + 0.403453i \(0.132190\pi\)
−0.721830 + 0.692070i \(0.756699\pi\)
\(968\) 0 0
\(969\) −0.0351028 1.22184i −0.00112766 0.0392512i
\(970\) 0 0
\(971\) 1.45826 + 8.27021i 0.0467978 + 0.265404i 0.999225 0.0393627i \(-0.0125328\pi\)
−0.952427 + 0.304766i \(0.901422\pi\)
\(972\) 0 0
\(973\) −36.7010 + 13.3581i −1.17658 + 0.428240i
\(974\) 0 0
\(975\) 0.990730 + 0.831321i 0.0317288 + 0.0266236i
\(976\) 0 0
\(977\) 0.964414 + 1.67041i 0.0308543 + 0.0534413i 0.881040 0.473041i \(-0.156844\pi\)
−0.850186 + 0.526483i \(0.823511\pi\)
\(978\) 0 0
\(979\) 3.23239 18.3318i 0.103308 0.585887i
\(980\) 0 0
\(981\) 14.9616 25.9142i 0.477686 0.827376i
\(982\) 0 0
\(983\) −18.0660 6.57550i −0.576217 0.209726i 0.0374397 0.999299i \(-0.488080\pi\)
−0.613656 + 0.789573i \(0.710302\pi\)
\(984\) 0 0
\(985\) 15.1650 12.7249i 0.483197 0.405450i
\(986\) 0 0
\(987\) −0.556745 −0.0177214
\(988\) 0 0
\(989\) 10.9751 0.348987
\(990\) 0 0
\(991\) 3.91263 3.28309i 0.124289 0.104291i −0.578525 0.815665i \(-0.696371\pi\)
0.702813 + 0.711374i \(0.251927\pi\)
\(992\) 0 0
\(993\) −0.521755 0.189903i −0.0165574 0.00602640i
\(994\) 0 0
\(995\) 0.114172 0.197751i 0.00361948 0.00626913i
\(996\) 0 0
\(997\) 2.86243 16.2336i 0.0906540 0.514125i −0.905339 0.424690i \(-0.860383\pi\)
0.995993 0.0894343i \(-0.0285059\pi\)
\(998\) 0 0
\(999\) 0.761146 + 1.31834i 0.0240816 + 0.0417105i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 152.2.q.c.9.2 18
4.3 odd 2 304.2.u.f.161.2 18
19.6 even 9 2888.2.a.y.1.4 9
19.13 odd 18 2888.2.a.x.1.6 9
19.17 even 9 inner 152.2.q.c.17.2 yes 18
76.51 even 18 5776.2.a.ce.1.4 9
76.55 odd 18 304.2.u.f.17.2 18
76.63 odd 18 5776.2.a.cd.1.6 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.q.c.9.2 18 1.1 even 1 trivial
152.2.q.c.17.2 yes 18 19.17 even 9 inner
304.2.u.f.17.2 18 76.55 odd 18
304.2.u.f.161.2 18 4.3 odd 2
2888.2.a.x.1.6 9 19.13 odd 18
2888.2.a.y.1.4 9 19.6 even 9
5776.2.a.cd.1.6 9 76.63 odd 18
5776.2.a.ce.1.4 9 76.51 even 18