Properties

Label 152.2.q.c.73.1
Level $152$
Weight $2$
Character 152.73
Analytic conductor $1.214$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [152,2,Mod(9,152)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(152, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("152.9"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 152.q (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.21372611072\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 3 x^{17} + 21 x^{16} - 34 x^{15} + 204 x^{14} - 267 x^{13} + 1304 x^{12} - 972 x^{11} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 73.1
Root \(1.40179 - 2.42798i\) of defining polynomial
Character \(\chi\) \(=\) 152.73
Dual form 152.2.q.c.25.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.63451 + 0.958884i) q^{3} +(0.465881 - 2.64214i) q^{5} +(-0.731458 - 1.26692i) q^{7} +(3.72306 - 3.12402i) q^{9} +(2.54594 - 4.40970i) q^{11} +(-3.68269 - 1.34039i) q^{13} +(1.30614 + 7.40749i) q^{15} +(0.0943594 + 0.0791769i) q^{17} +(-1.78486 - 3.97672i) q^{19} +(3.14186 + 2.63634i) q^{21} +(1.23224 + 6.98836i) q^{23} +(-2.06542 - 0.751751i) q^{25} +(-2.60750 + 4.51632i) q^{27} +(-6.46506 + 5.42483i) q^{29} +(-3.09116 - 5.35404i) q^{31} +(-2.47892 + 14.0587i) q^{33} +(-3.68816 + 1.34238i) q^{35} +4.32850 q^{37} +10.9874 q^{39} +(9.35604 - 3.40532i) q^{41} +(-0.262249 + 1.48729i) q^{43} +(-6.51961 - 11.2923i) q^{45} +(2.06572 - 1.73334i) q^{47} +(2.42994 - 4.20878i) q^{49} +(-0.324512 - 0.118113i) q^{51} +(-1.04945 - 5.95173i) q^{53} +(-10.4650 - 8.78115i) q^{55} +(8.51545 + 8.76523i) q^{57} +(6.47790 + 5.43560i) q^{59} +(1.19119 + 6.75559i) q^{61} +(-6.68115 - 2.43174i) q^{63} +(-5.25719 + 9.10572i) q^{65} +(7.33630 - 6.15589i) q^{67} +(-9.94737 - 17.2294i) q^{69} +(-0.403285 + 2.28714i) q^{71} +(-11.1183 + 4.04674i) q^{73} +6.16221 q^{75} -7.44900 q^{77} +(2.80329 - 1.02032i) q^{79} +(0.00700815 - 0.0397452i) q^{81} +(1.93498 + 3.35148i) q^{83} +(0.253157 - 0.212424i) q^{85} +(11.8305 - 20.4910i) q^{87} +(8.22470 + 2.99355i) q^{89} +(0.995562 + 5.64611i) q^{91} +(13.2776 + 11.1412i) q^{93} +(-11.3386 + 2.86318i) q^{95} +(-9.50253 - 7.97357i) q^{97} +(-4.29730 - 24.3712i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 9 q^{7} - 6 q^{9} - 3 q^{11} + 3 q^{13} + 33 q^{15} + 9 q^{17} - 24 q^{19} - 15 q^{21} + 6 q^{23} + 6 q^{25} - 12 q^{27} - 3 q^{29} - 6 q^{31} - 45 q^{33} - 15 q^{35} + 48 q^{37} + 12 q^{39} - 18 q^{41}+ \cdots + 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/152\mathbb{Z}\right)^\times\).

\(n\) \(39\) \(77\) \(97\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.63451 + 0.958884i −1.52104 + 0.553612i −0.961407 0.275131i \(-0.911279\pi\)
−0.559630 + 0.828743i \(0.689057\pi\)
\(4\) 0 0
\(5\) 0.465881 2.64214i 0.208348 1.18160i −0.683734 0.729731i \(-0.739645\pi\)
0.892083 0.451872i \(-0.149244\pi\)
\(6\) 0 0
\(7\) −0.731458 1.26692i −0.276465 0.478851i 0.694039 0.719938i \(-0.255830\pi\)
−0.970504 + 0.241086i \(0.922496\pi\)
\(8\) 0 0
\(9\) 3.72306 3.12402i 1.24102 1.04134i
\(10\) 0 0
\(11\) 2.54594 4.40970i 0.767631 1.32958i −0.171214 0.985234i \(-0.554769\pi\)
0.938844 0.344341i \(-0.111898\pi\)
\(12\) 0 0
\(13\) −3.68269 1.34039i −1.02139 0.371757i −0.223596 0.974682i \(-0.571779\pi\)
−0.797798 + 0.602925i \(0.794002\pi\)
\(14\) 0 0
\(15\) 1.30614 + 7.40749i 0.337244 + 1.91260i
\(16\) 0 0
\(17\) 0.0943594 + 0.0791769i 0.0228855 + 0.0192032i 0.654159 0.756357i \(-0.273023\pi\)
−0.631273 + 0.775561i \(0.717467\pi\)
\(18\) 0 0
\(19\) −1.78486 3.97672i −0.409475 0.912321i
\(20\) 0 0
\(21\) 3.14186 + 2.63634i 0.685611 + 0.575296i
\(22\) 0 0
\(23\) 1.23224 + 6.98836i 0.256939 + 1.45717i 0.791046 + 0.611757i \(0.209537\pi\)
−0.534106 + 0.845417i \(0.679352\pi\)
\(24\) 0 0
\(25\) −2.06542 0.751751i −0.413084 0.150350i
\(26\) 0 0
\(27\) −2.60750 + 4.51632i −0.501813 + 0.869165i
\(28\) 0 0
\(29\) −6.46506 + 5.42483i −1.20053 + 1.00737i −0.200917 + 0.979608i \(0.564392\pi\)
−0.999615 + 0.0277578i \(0.991163\pi\)
\(30\) 0 0
\(31\) −3.09116 5.35404i −0.555188 0.961615i −0.997889 0.0649450i \(-0.979313\pi\)
0.442700 0.896670i \(-0.354021\pi\)
\(32\) 0 0
\(33\) −2.47892 + 14.0587i −0.431525 + 2.44730i
\(34\) 0 0
\(35\) −3.68816 + 1.34238i −0.623413 + 0.226904i
\(36\) 0 0
\(37\) 4.32850 0.711601 0.355800 0.934562i \(-0.384208\pi\)
0.355800 + 0.934562i \(0.384208\pi\)
\(38\) 0 0
\(39\) 10.9874 1.75939
\(40\) 0 0
\(41\) 9.35604 3.40532i 1.46117 0.531822i 0.515481 0.856901i \(-0.327613\pi\)
0.945687 + 0.325080i \(0.105391\pi\)
\(42\) 0 0
\(43\) −0.262249 + 1.48729i −0.0399925 + 0.226809i −0.998253 0.0590886i \(-0.981181\pi\)
0.958260 + 0.285897i \(0.0922917\pi\)
\(44\) 0 0
\(45\) −6.51961 11.2923i −0.971886 1.68336i
\(46\) 0 0
\(47\) 2.06572 1.73334i 0.301316 0.252834i −0.479576 0.877501i \(-0.659209\pi\)
0.780892 + 0.624666i \(0.214765\pi\)
\(48\) 0 0
\(49\) 2.42994 4.20878i 0.347134 0.601254i
\(50\) 0 0
\(51\) −0.324512 0.118113i −0.0454408 0.0165391i
\(52\) 0 0
\(53\) −1.04945 5.95173i −0.144153 0.817534i −0.968043 0.250784i \(-0.919312\pi\)
0.823890 0.566750i \(-0.191799\pi\)
\(54\) 0 0
\(55\) −10.4650 8.78115i −1.41110 1.18405i
\(56\) 0 0
\(57\) 8.51545 + 8.76523i 1.12790 + 1.16098i
\(58\) 0 0
\(59\) 6.47790 + 5.43560i 0.843350 + 0.707655i 0.958315 0.285715i \(-0.0922310\pi\)
−0.114964 + 0.993370i \(0.536675\pi\)
\(60\) 0 0
\(61\) 1.19119 + 6.75559i 0.152517 + 0.864965i 0.961021 + 0.276475i \(0.0891663\pi\)
−0.808504 + 0.588490i \(0.799723\pi\)
\(62\) 0 0
\(63\) −6.68115 2.43174i −0.841746 0.306370i
\(64\) 0 0
\(65\) −5.25719 + 9.10572i −0.652074 + 1.12943i
\(66\) 0 0
\(67\) 7.33630 6.15589i 0.896272 0.752061i −0.0731863 0.997318i \(-0.523317\pi\)
0.969458 + 0.245257i \(0.0788723\pi\)
\(68\) 0 0
\(69\) −9.94737 17.2294i −1.19752 2.07417i
\(70\) 0 0
\(71\) −0.403285 + 2.28714i −0.0478611 + 0.271434i −0.999342 0.0362743i \(-0.988451\pi\)
0.951481 + 0.307708i \(0.0995621\pi\)
\(72\) 0 0
\(73\) −11.1183 + 4.04674i −1.30130 + 0.473636i −0.897421 0.441175i \(-0.854562\pi\)
−0.403882 + 0.914811i \(0.632339\pi\)
\(74\) 0 0
\(75\) 6.16221 0.711551
\(76\) 0 0
\(77\) −7.44900 −0.848892
\(78\) 0 0
\(79\) 2.80329 1.02032i 0.315395 0.114794i −0.179472 0.983763i \(-0.557439\pi\)
0.494867 + 0.868969i \(0.335217\pi\)
\(80\) 0 0
\(81\) 0.00700815 0.0397452i 0.000778684 0.00441613i
\(82\) 0 0
\(83\) 1.93498 + 3.35148i 0.212391 + 0.367873i 0.952462 0.304656i \(-0.0985415\pi\)
−0.740071 + 0.672529i \(0.765208\pi\)
\(84\) 0 0
\(85\) 0.253157 0.212424i 0.0274587 0.0230406i
\(86\) 0 0
\(87\) 11.8305 20.4910i 1.26836 2.19687i
\(88\) 0 0
\(89\) 8.22470 + 2.99355i 0.871817 + 0.317315i 0.738903 0.673812i \(-0.235344\pi\)
0.132914 + 0.991128i \(0.457567\pi\)
\(90\) 0 0
\(91\) 0.995562 + 5.64611i 0.104363 + 0.591873i
\(92\) 0 0
\(93\) 13.2776 + 11.1412i 1.37682 + 1.15529i
\(94\) 0 0
\(95\) −11.3386 + 2.86318i −1.16331 + 0.293756i
\(96\) 0 0
\(97\) −9.50253 7.97357i −0.964836 0.809594i 0.0168968 0.999857i \(-0.494621\pi\)
−0.981733 + 0.190264i \(0.939066\pi\)
\(98\) 0 0
\(99\) −4.29730 24.3712i −0.431894 2.44940i
\(100\) 0 0
\(101\) 0.137551 + 0.0500646i 0.0136869 + 0.00498161i 0.348855 0.937177i \(-0.386571\pi\)
−0.335168 + 0.942159i \(0.608793\pi\)
\(102\) 0 0
\(103\) 1.51184 2.61859i 0.148966 0.258017i −0.781879 0.623430i \(-0.785739\pi\)
0.930846 + 0.365413i \(0.119072\pi\)
\(104\) 0 0
\(105\) 8.42932 7.07304i 0.822617 0.690258i
\(106\) 0 0
\(107\) 3.44801 + 5.97212i 0.333331 + 0.577347i 0.983163 0.182731i \(-0.0584939\pi\)
−0.649831 + 0.760078i \(0.725161\pi\)
\(108\) 0 0
\(109\) −0.872697 + 4.94931i −0.0835892 + 0.474058i 0.914063 + 0.405572i \(0.132928\pi\)
−0.997652 + 0.0684855i \(0.978183\pi\)
\(110\) 0 0
\(111\) −11.4035 + 4.15053i −1.08237 + 0.393951i
\(112\) 0 0
\(113\) 10.9474 1.02984 0.514921 0.857238i \(-0.327821\pi\)
0.514921 + 0.857238i \(0.327821\pi\)
\(114\) 0 0
\(115\) 19.0383 1.77533
\(116\) 0 0
\(117\) −17.8983 + 6.51444i −1.65470 + 0.602260i
\(118\) 0 0
\(119\) 0.0312911 0.177461i 0.00286845 0.0162678i
\(120\) 0 0
\(121\) −7.46365 12.9274i −0.678514 1.17522i
\(122\) 0 0
\(123\) −21.3833 + 17.9427i −1.92807 + 1.61784i
\(124\) 0 0
\(125\) 3.75879 6.51041i 0.336196 0.582309i
\(126\) 0 0
\(127\) 8.46669 + 3.08162i 0.751297 + 0.273450i 0.689152 0.724617i \(-0.257983\pi\)
0.0621458 + 0.998067i \(0.480206\pi\)
\(128\) 0 0
\(129\) −0.735237 4.16974i −0.0647340 0.367125i
\(130\) 0 0
\(131\) 10.8458 + 9.10069i 0.947600 + 0.795131i 0.978892 0.204379i \(-0.0655176\pi\)
−0.0312917 + 0.999510i \(0.509962\pi\)
\(132\) 0 0
\(133\) −3.73264 + 5.17008i −0.323661 + 0.448303i
\(134\) 0 0
\(135\) 10.7180 + 8.99345i 0.922456 + 0.774033i
\(136\) 0 0
\(137\) −1.38005 7.82667i −0.117906 0.668677i −0.985270 0.171004i \(-0.945299\pi\)
0.867365 0.497673i \(-0.165812\pi\)
\(138\) 0 0
\(139\) −10.7872 3.92623i −0.914960 0.333018i −0.158729 0.987322i \(-0.550739\pi\)
−0.756232 + 0.654304i \(0.772962\pi\)
\(140\) 0 0
\(141\) −3.78009 + 6.54730i −0.318341 + 0.551382i
\(142\) 0 0
\(143\) −15.2866 + 12.8270i −1.27833 + 1.07265i
\(144\) 0 0
\(145\) 11.3212 + 19.6090i 0.940178 + 1.62844i
\(146\) 0 0
\(147\) −2.36597 + 13.4181i −0.195142 + 1.10671i
\(148\) 0 0
\(149\) 17.3523 6.31573i 1.42156 0.517405i 0.487058 0.873369i \(-0.338070\pi\)
0.934499 + 0.355965i \(0.115848\pi\)
\(150\) 0 0
\(151\) −11.0017 −0.895308 −0.447654 0.894207i \(-0.647740\pi\)
−0.447654 + 0.894207i \(0.647740\pi\)
\(152\) 0 0
\(153\) 0.598656 0.0483985
\(154\) 0 0
\(155\) −15.5863 + 5.67294i −1.25192 + 0.455661i
\(156\) 0 0
\(157\) −1.36015 + 7.71378i −0.108552 + 0.615627i 0.881190 + 0.472761i \(0.156743\pi\)
−0.989742 + 0.142866i \(0.954368\pi\)
\(158\) 0 0
\(159\) 8.47181 + 14.6736i 0.671859 + 1.16369i
\(160\) 0 0
\(161\) 7.95238 6.67284i 0.626735 0.525893i
\(162\) 0 0
\(163\) −7.33460 + 12.7039i −0.574490 + 0.995046i 0.421607 + 0.906779i \(0.361466\pi\)
−0.996097 + 0.0882671i \(0.971867\pi\)
\(164\) 0 0
\(165\) 35.9902 + 13.0994i 2.80183 + 1.01978i
\(166\) 0 0
\(167\) −1.22566 6.95108i −0.0948446 0.537890i −0.994795 0.101898i \(-0.967508\pi\)
0.899950 0.435993i \(-0.143603\pi\)
\(168\) 0 0
\(169\) 1.80695 + 1.51621i 0.138996 + 0.116632i
\(170\) 0 0
\(171\) −19.0685 9.22962i −1.45820 0.705807i
\(172\) 0 0
\(173\) −7.99100 6.70525i −0.607545 0.509791i 0.286316 0.958135i \(-0.407569\pi\)
−0.893861 + 0.448345i \(0.852014\pi\)
\(174\) 0 0
\(175\) 0.558356 + 3.16660i 0.0422078 + 0.239372i
\(176\) 0 0
\(177\) −22.2782 8.10860i −1.67453 0.609480i
\(178\) 0 0
\(179\) 6.73625 11.6675i 0.503491 0.872071i −0.496501 0.868036i \(-0.665382\pi\)
0.999992 0.00403536i \(-0.00128450\pi\)
\(180\) 0 0
\(181\) −0.0539381 + 0.0452594i −0.00400919 + 0.00336411i −0.644790 0.764360i \(-0.723055\pi\)
0.640781 + 0.767724i \(0.278611\pi\)
\(182\) 0 0
\(183\) −9.61604 16.6555i −0.710838 1.23121i
\(184\) 0 0
\(185\) 2.01657 11.4365i 0.148261 0.840829i
\(186\) 0 0
\(187\) 0.589380 0.214517i 0.0430998 0.0156870i
\(188\) 0 0
\(189\) 7.62909 0.554935
\(190\) 0 0
\(191\) 5.60628 0.405656 0.202828 0.979214i \(-0.434987\pi\)
0.202828 + 0.979214i \(0.434987\pi\)
\(192\) 0 0
\(193\) 17.9679 6.53977i 1.29336 0.470743i 0.398529 0.917156i \(-0.369521\pi\)
0.894827 + 0.446412i \(0.147299\pi\)
\(194\) 0 0
\(195\) 5.11880 29.0302i 0.366565 2.07889i
\(196\) 0 0
\(197\) −6.96229 12.0590i −0.496042 0.859170i 0.503947 0.863734i \(-0.331881\pi\)
−0.999990 + 0.00456395i \(0.998547\pi\)
\(198\) 0 0
\(199\) −3.56650 + 2.99265i −0.252822 + 0.212143i −0.760386 0.649471i \(-0.774990\pi\)
0.507564 + 0.861614i \(0.330546\pi\)
\(200\) 0 0
\(201\) −13.4248 + 23.2524i −0.946912 + 1.64010i
\(202\) 0 0
\(203\) 11.6018 + 4.22269i 0.814284 + 0.296375i
\(204\) 0 0
\(205\) −4.63854 26.3065i −0.323970 1.83732i
\(206\) 0 0
\(207\) 26.4195 + 22.1686i 1.83628 + 1.54082i
\(208\) 0 0
\(209\) −22.0803 2.25378i −1.52733 0.155897i
\(210\) 0 0
\(211\) −7.81756 6.55971i −0.538183 0.451589i 0.332733 0.943021i \(-0.392029\pi\)
−0.870916 + 0.491432i \(0.836474\pi\)
\(212\) 0 0
\(213\) −1.13065 6.41221i −0.0774706 0.439357i
\(214\) 0 0
\(215\) 3.80745 + 1.38580i 0.259666 + 0.0945106i
\(216\) 0 0
\(217\) −4.52210 + 7.83251i −0.306980 + 0.531705i
\(218\) 0 0
\(219\) 25.4110 21.3224i 1.71712 1.44083i
\(220\) 0 0
\(221\) −0.241368 0.418062i −0.0162362 0.0281219i
\(222\) 0 0
\(223\) 1.13148 6.41695i 0.0757696 0.429711i −0.923200 0.384321i \(-0.874436\pi\)
0.998969 0.0453903i \(-0.0144532\pi\)
\(224\) 0 0
\(225\) −10.0382 + 3.65359i −0.669211 + 0.243573i
\(226\) 0 0
\(227\) −10.8291 −0.718749 −0.359375 0.933193i \(-0.617010\pi\)
−0.359375 + 0.933193i \(0.617010\pi\)
\(228\) 0 0
\(229\) 18.8721 1.24710 0.623552 0.781782i \(-0.285689\pi\)
0.623552 + 0.781782i \(0.285689\pi\)
\(230\) 0 0
\(231\) 19.6245 7.14272i 1.29120 0.469957i
\(232\) 0 0
\(233\) 0.756978 4.29304i 0.0495913 0.281246i −0.949920 0.312492i \(-0.898836\pi\)
0.999512 + 0.0312456i \(0.00994740\pi\)
\(234\) 0 0
\(235\) −3.61737 6.26546i −0.235971 0.408714i
\(236\) 0 0
\(237\) −6.40695 + 5.37607i −0.416176 + 0.349213i
\(238\) 0 0
\(239\) 1.62108 2.80779i 0.104859 0.181621i −0.808822 0.588054i \(-0.799894\pi\)
0.913681 + 0.406433i \(0.133228\pi\)
\(240\) 0 0
\(241\) −4.30613 1.56730i −0.277382 0.100959i 0.199583 0.979881i \(-0.436041\pi\)
−0.476965 + 0.878922i \(0.658263\pi\)
\(242\) 0 0
\(243\) −2.69707 15.2959i −0.173017 0.981230i
\(244\) 0 0
\(245\) −9.98814 8.38104i −0.638119 0.535445i
\(246\) 0 0
\(247\) 1.24274 + 17.0374i 0.0790738 + 1.08406i
\(248\) 0 0
\(249\) −8.31140 6.97410i −0.526714 0.441965i
\(250\) 0 0
\(251\) 2.72340 + 15.4452i 0.171899 + 0.974889i 0.941662 + 0.336559i \(0.109263\pi\)
−0.769763 + 0.638330i \(0.779626\pi\)
\(252\) 0 0
\(253\) 33.9538 + 12.3582i 2.13466 + 0.776952i
\(254\) 0 0
\(255\) −0.463255 + 0.802382i −0.0290102 + 0.0502471i
\(256\) 0 0
\(257\) −1.18195 + 0.991777i −0.0737283 + 0.0618654i −0.678907 0.734224i \(-0.737546\pi\)
0.605179 + 0.796090i \(0.293102\pi\)
\(258\) 0 0
\(259\) −3.16611 5.48387i −0.196733 0.340751i
\(260\) 0 0
\(261\) −7.12255 + 40.3940i −0.440875 + 2.50032i
\(262\) 0 0
\(263\) −2.08326 + 0.758243i −0.128459 + 0.0467553i −0.405450 0.914117i \(-0.632885\pi\)
0.276991 + 0.960873i \(0.410663\pi\)
\(264\) 0 0
\(265\) −16.2143 −0.996034
\(266\) 0 0
\(267\) −24.5385 −1.50173
\(268\) 0 0
\(269\) −21.7316 + 7.90967i −1.32500 + 0.482261i −0.905057 0.425289i \(-0.860172\pi\)
−0.419944 + 0.907550i \(0.637950\pi\)
\(270\) 0 0
\(271\) −0.107500 + 0.609664i −0.00653017 + 0.0370344i −0.987899 0.155100i \(-0.950430\pi\)
0.981369 + 0.192135i \(0.0615410\pi\)
\(272\) 0 0
\(273\) −8.03678 13.9201i −0.486408 0.842484i
\(274\) 0 0
\(275\) −8.57343 + 7.19396i −0.516997 + 0.433812i
\(276\) 0 0
\(277\) −4.99063 + 8.64402i −0.299858 + 0.519369i −0.976103 0.217308i \(-0.930273\pi\)
0.676245 + 0.736676i \(0.263606\pi\)
\(278\) 0 0
\(279\) −28.2347 10.2766i −1.69037 0.615244i
\(280\) 0 0
\(281\) 0.394452 + 2.23705i 0.0235311 + 0.133451i 0.994310 0.106523i \(-0.0339719\pi\)
−0.970779 + 0.239975i \(0.922861\pi\)
\(282\) 0 0
\(283\) 9.92729 + 8.32998i 0.590116 + 0.495166i 0.888252 0.459357i \(-0.151920\pi\)
−0.298135 + 0.954524i \(0.596365\pi\)
\(284\) 0 0
\(285\) 27.1262 18.4155i 1.60682 1.09084i
\(286\) 0 0
\(287\) −11.1578 9.36252i −0.658625 0.552652i
\(288\) 0 0
\(289\) −2.94938 16.7268i −0.173493 0.983929i
\(290\) 0 0
\(291\) 32.6803 + 11.8946i 1.91575 + 0.697277i
\(292\) 0 0
\(293\) −6.69915 + 11.6033i −0.391369 + 0.677871i −0.992630 0.121182i \(-0.961332\pi\)
0.601262 + 0.799052i \(0.294665\pi\)
\(294\) 0 0
\(295\) 17.3796 14.5832i 1.01188 0.849066i
\(296\) 0 0
\(297\) 13.2771 + 22.9966i 0.770414 + 1.33440i
\(298\) 0 0
\(299\) 4.82918 27.3876i 0.279278 1.58387i
\(300\) 0 0
\(301\) 2.07610 0.755638i 0.119664 0.0435542i
\(302\) 0 0
\(303\) −0.410387 −0.0235761
\(304\) 0 0
\(305\) 18.4042 1.05382
\(306\) 0 0
\(307\) 30.1328 10.9675i 1.71977 0.625946i 0.721952 0.691943i \(-0.243245\pi\)
0.997820 + 0.0659970i \(0.0210228\pi\)
\(308\) 0 0
\(309\) −1.47205 + 8.34839i −0.0837418 + 0.474923i
\(310\) 0 0
\(311\) −1.72247 2.98341i −0.0976723 0.169173i 0.813048 0.582196i \(-0.197806\pi\)
−0.910721 + 0.413023i \(0.864473\pi\)
\(312\) 0 0
\(313\) 18.6501 15.6493i 1.05417 0.884552i 0.0606418 0.998160i \(-0.480685\pi\)
0.993526 + 0.113608i \(0.0362408\pi\)
\(314\) 0 0
\(315\) −9.53763 + 16.5197i −0.537385 + 0.930778i
\(316\) 0 0
\(317\) 16.8920 + 6.14817i 0.948748 + 0.345316i 0.769614 0.638509i \(-0.220448\pi\)
0.179133 + 0.983825i \(0.442671\pi\)
\(318\) 0 0
\(319\) 7.46221 + 42.3203i 0.417804 + 2.36948i
\(320\) 0 0
\(321\) −14.8104 12.4274i −0.826635 0.693629i
\(322\) 0 0
\(323\) 0.146446 0.516560i 0.00814846 0.0287422i
\(324\) 0 0
\(325\) 6.59865 + 5.53692i 0.366027 + 0.307133i
\(326\) 0 0
\(327\) −2.44668 13.8758i −0.135302 0.767335i
\(328\) 0 0
\(329\) −3.70700 1.34924i −0.204373 0.0743858i
\(330\) 0 0
\(331\) −13.1916 + 22.8485i −0.725076 + 1.25587i 0.233867 + 0.972269i \(0.424862\pi\)
−0.958943 + 0.283600i \(0.908471\pi\)
\(332\) 0 0
\(333\) 16.1153 13.5223i 0.883111 0.741018i
\(334\) 0 0
\(335\) −12.8469 22.2515i −0.701901 1.21573i
\(336\) 0 0
\(337\) −3.31131 + 18.7794i −0.180378 + 1.02298i 0.751373 + 0.659878i \(0.229392\pi\)
−0.931751 + 0.363098i \(0.881719\pi\)
\(338\) 0 0
\(339\) −28.8410 + 10.4973i −1.56643 + 0.570132i
\(340\) 0 0
\(341\) −31.4797 −1.70472
\(342\) 0 0
\(343\) −17.3500 −0.936812
\(344\) 0 0
\(345\) −50.1567 + 18.2556i −2.70035 + 0.982846i
\(346\) 0 0
\(347\) −1.07931 + 6.12109i −0.0579406 + 0.328598i −0.999976 0.00691577i \(-0.997799\pi\)
0.942035 + 0.335513i \(0.108910\pi\)
\(348\) 0 0
\(349\) 18.1788 + 31.4865i 0.973087 + 1.68544i 0.686109 + 0.727499i \(0.259317\pi\)
0.286978 + 0.957937i \(0.407349\pi\)
\(350\) 0 0
\(351\) 15.6562 13.1371i 0.835666 0.701207i
\(352\) 0 0
\(353\) 6.76616 11.7193i 0.360127 0.623757i −0.627855 0.778330i \(-0.716067\pi\)
0.987981 + 0.154573i \(0.0494002\pi\)
\(354\) 0 0
\(355\) 5.85508 + 2.13107i 0.310755 + 0.113106i
\(356\) 0 0
\(357\) 0.0877273 + 0.497526i 0.00464302 + 0.0263319i
\(358\) 0 0
\(359\) 6.94608 + 5.82845i 0.366600 + 0.307614i 0.807415 0.589984i \(-0.200866\pi\)
−0.440815 + 0.897598i \(0.645310\pi\)
\(360\) 0 0
\(361\) −12.6285 + 14.1958i −0.664660 + 0.747146i
\(362\) 0 0
\(363\) 32.0590 + 26.9007i 1.68266 + 1.41192i
\(364\) 0 0
\(365\) 5.51226 + 31.2616i 0.288525 + 1.63630i
\(366\) 0 0
\(367\) −26.3049 9.57418i −1.37310 0.499768i −0.453022 0.891499i \(-0.649654\pi\)
−0.920080 + 0.391731i \(0.871876\pi\)
\(368\) 0 0
\(369\) 24.1948 41.9067i 1.25953 2.18157i
\(370\) 0 0
\(371\) −6.77275 + 5.68301i −0.351624 + 0.295047i
\(372\) 0 0
\(373\) −4.00524 6.93728i −0.207383 0.359198i 0.743506 0.668729i \(-0.233161\pi\)
−0.950889 + 0.309531i \(0.899828\pi\)
\(374\) 0 0
\(375\) −3.65984 + 20.7560i −0.188993 + 1.07183i
\(376\) 0 0
\(377\) 31.0802 11.3123i 1.60071 0.582611i
\(378\) 0 0
\(379\) 1.40989 0.0724210 0.0362105 0.999344i \(-0.488471\pi\)
0.0362105 + 0.999344i \(0.488471\pi\)
\(380\) 0 0
\(381\) −25.2605 −1.29414
\(382\) 0 0
\(383\) 24.8931 9.06034i 1.27198 0.462962i 0.384206 0.923247i \(-0.374475\pi\)
0.887771 + 0.460286i \(0.152253\pi\)
\(384\) 0 0
\(385\) −3.47035 + 19.6813i −0.176865 + 1.00305i
\(386\) 0 0
\(387\) 3.66994 + 6.35653i 0.186554 + 0.323120i
\(388\) 0 0
\(389\) −20.5618 + 17.2534i −1.04252 + 0.874782i −0.992288 0.123955i \(-0.960442\pi\)
−0.0502367 + 0.998737i \(0.515998\pi\)
\(390\) 0 0
\(391\) −0.437044 + 0.756982i −0.0221023 + 0.0382822i
\(392\) 0 0
\(393\) −37.2998 13.5760i −1.88153 0.684820i
\(394\) 0 0
\(395\) −1.38982 7.88205i −0.0699293 0.396589i
\(396\) 0 0
\(397\) −28.1199 23.5954i −1.41130 1.18422i −0.955813 0.293974i \(-0.905022\pi\)
−0.455483 0.890244i \(-0.650534\pi\)
\(398\) 0 0
\(399\) 4.87617 17.1998i 0.244114 0.861067i
\(400\) 0 0
\(401\) 7.65288 + 6.42153i 0.382166 + 0.320676i 0.813552 0.581492i \(-0.197531\pi\)
−0.431386 + 0.902168i \(0.641975\pi\)
\(402\) 0 0
\(403\) 4.20727 + 23.8606i 0.209579 + 1.18858i
\(404\) 0 0
\(405\) −0.101748 0.0370331i −0.00505588 0.00184019i
\(406\) 0 0
\(407\) 11.0201 19.0874i 0.546247 0.946127i
\(408\) 0 0
\(409\) −17.3137 + 14.5279i −0.856109 + 0.718361i −0.961126 0.276110i \(-0.910955\pi\)
0.105017 + 0.994470i \(0.466510\pi\)
\(410\) 0 0
\(411\) 11.1406 + 19.2961i 0.549527 + 0.951808i
\(412\) 0 0
\(413\) 2.14817 12.1829i 0.105705 0.599481i
\(414\) 0 0
\(415\) 9.75656 3.55110i 0.478931 0.174317i
\(416\) 0 0
\(417\) 32.1839 1.57605
\(418\) 0 0
\(419\) 25.7953 1.26018 0.630092 0.776520i \(-0.283017\pi\)
0.630092 + 0.776520i \(0.283017\pi\)
\(420\) 0 0
\(421\) 1.69142 0.615627i 0.0824349 0.0300038i −0.300474 0.953790i \(-0.597145\pi\)
0.382908 + 0.923786i \(0.374922\pi\)
\(422\) 0 0
\(423\) 2.27580 12.9067i 0.110653 0.627545i
\(424\) 0 0
\(425\) −0.135370 0.234468i −0.00656642 0.0113734i
\(426\) 0 0
\(427\) 7.68750 6.45058i 0.372024 0.312165i
\(428\) 0 0
\(429\) 27.9732 48.4510i 1.35056 2.33923i
\(430\) 0 0
\(431\) −30.0767 10.9470i −1.44875 0.527300i −0.506505 0.862237i \(-0.669063\pi\)
−0.942241 + 0.334936i \(0.891285\pi\)
\(432\) 0 0
\(433\) 4.30342 + 24.4059i 0.206809 + 1.17287i 0.894567 + 0.446933i \(0.147484\pi\)
−0.687758 + 0.725940i \(0.741405\pi\)
\(434\) 0 0
\(435\) −48.6286 40.8043i −2.33157 1.95642i
\(436\) 0 0
\(437\) 25.5914 17.3735i 1.22420 0.831088i
\(438\) 0 0
\(439\) 7.49608 + 6.28996i 0.357768 + 0.300203i 0.803901 0.594764i \(-0.202754\pi\)
−0.446132 + 0.894967i \(0.647199\pi\)
\(440\) 0 0
\(441\) −4.10149 23.2607i −0.195309 1.10765i
\(442\) 0 0
\(443\) −21.4777 7.81725i −1.02044 0.371409i −0.223005 0.974817i \(-0.571587\pi\)
−0.797432 + 0.603408i \(0.793809\pi\)
\(444\) 0 0
\(445\) 11.7411 20.3362i 0.556582 0.964029i
\(446\) 0 0
\(447\) −39.6589 + 33.2777i −1.87580 + 1.57398i
\(448\) 0 0
\(449\) 8.35395 + 14.4695i 0.394247 + 0.682856i 0.993005 0.118074i \(-0.0376720\pi\)
−0.598757 + 0.800930i \(0.704339\pi\)
\(450\) 0 0
\(451\) 8.80349 49.9271i 0.414540 2.35097i
\(452\) 0 0
\(453\) 28.9842 10.5494i 1.36180 0.495653i
\(454\) 0 0
\(455\) 15.3817 0.721103
\(456\) 0 0
\(457\) 26.8638 1.25663 0.628317 0.777957i \(-0.283744\pi\)
0.628317 + 0.777957i \(0.283744\pi\)
\(458\) 0 0
\(459\) −0.603630 + 0.219703i −0.0281750 + 0.0102549i
\(460\) 0 0
\(461\) 1.49638 8.48640i 0.0696934 0.395251i −0.929928 0.367741i \(-0.880131\pi\)
0.999622 0.0275097i \(-0.00875771\pi\)
\(462\) 0 0
\(463\) −2.61915 4.53651i −0.121722 0.210829i 0.798725 0.601697i \(-0.205508\pi\)
−0.920447 + 0.390867i \(0.872175\pi\)
\(464\) 0 0
\(465\) 35.6225 29.8908i 1.65195 1.38615i
\(466\) 0 0
\(467\) −1.56762 + 2.71519i −0.0725407 + 0.125644i −0.900014 0.435861i \(-0.856444\pi\)
0.827473 + 0.561505i \(0.189777\pi\)
\(468\) 0 0
\(469\) −13.1652 4.79175i −0.607913 0.221262i
\(470\) 0 0
\(471\) −3.81330 21.6263i −0.175707 0.996486i
\(472\) 0 0
\(473\) 5.89082 + 4.94298i 0.270860 + 0.227279i
\(474\) 0 0
\(475\) 0.696986 + 9.55535i 0.0319799 + 0.438430i
\(476\) 0 0
\(477\) −22.5005 18.8802i −1.03023 0.864464i
\(478\) 0 0
\(479\) 5.55924 + 31.5280i 0.254008 + 1.44055i 0.798606 + 0.601855i \(0.205571\pi\)
−0.544597 + 0.838698i \(0.683317\pi\)
\(480\) 0 0
\(481\) −15.9405 5.80187i −0.726824 0.264542i
\(482\) 0 0
\(483\) −14.5522 + 25.2051i −0.662146 + 1.14687i
\(484\) 0 0
\(485\) −25.4944 + 21.3923i −1.15764 + 0.971376i
\(486\) 0 0
\(487\) 2.76183 + 4.78363i 0.125150 + 0.216767i 0.921792 0.387685i \(-0.126725\pi\)
−0.796641 + 0.604452i \(0.793392\pi\)
\(488\) 0 0
\(489\) 7.14152 40.5016i 0.322951 1.83155i
\(490\) 0 0
\(491\) 24.4207 8.88840i 1.10209 0.401128i 0.274004 0.961729i \(-0.411652\pi\)
0.828086 + 0.560601i \(0.189430\pi\)
\(492\) 0 0
\(493\) −1.03956 −0.0468195
\(494\) 0 0
\(495\) −66.3942 −2.98420
\(496\) 0 0
\(497\) 3.19262 1.16202i 0.143208 0.0521236i
\(498\) 0 0
\(499\) −3.07891 + 17.4614i −0.137831 + 0.781679i 0.835015 + 0.550227i \(0.185459\pi\)
−0.972846 + 0.231452i \(0.925652\pi\)
\(500\) 0 0
\(501\) 9.89430 + 17.1374i 0.442045 + 0.765644i
\(502\) 0 0
\(503\) −22.1391 + 18.5769i −0.987132 + 0.828302i −0.985150 0.171696i \(-0.945075\pi\)
−0.00198219 + 0.999998i \(0.500631\pi\)
\(504\) 0 0
\(505\) 0.196360 0.340106i 0.00873792 0.0151345i
\(506\) 0 0
\(507\) −6.21432 2.26183i −0.275987 0.100451i
\(508\) 0 0
\(509\) 6.01704 + 34.1243i 0.266701 + 1.51253i 0.764149 + 0.645040i \(0.223159\pi\)
−0.497448 + 0.867494i \(0.665729\pi\)
\(510\) 0 0
\(511\) 13.2595 + 11.1260i 0.586566 + 0.492187i
\(512\) 0 0
\(513\) 22.6141 + 2.30827i 0.998438 + 0.101913i
\(514\) 0 0
\(515\) −6.21435 5.21446i −0.273837 0.229777i
\(516\) 0 0
\(517\) −2.38433 13.5222i −0.104863 0.594706i
\(518\) 0 0
\(519\) 27.4819 + 10.0026i 1.20632 + 0.439066i
\(520\) 0 0
\(521\) −13.9128 + 24.0977i −0.609532 + 1.05574i 0.381785 + 0.924251i \(0.375309\pi\)
−0.991317 + 0.131490i \(0.958024\pi\)
\(522\) 0 0
\(523\) −25.6416 + 21.5159i −1.12123 + 0.940823i −0.998666 0.0516379i \(-0.983556\pi\)
−0.122563 + 0.992461i \(0.539111\pi\)
\(524\) 0 0
\(525\) −4.50739 7.80704i −0.196719 0.340727i
\(526\) 0 0
\(527\) 0.132237 0.749953i 0.00576033 0.0326684i
\(528\) 0 0
\(529\) −25.7059 + 9.35618i −1.11765 + 0.406790i
\(530\) 0 0
\(531\) 41.0985 1.78352
\(532\) 0 0
\(533\) −39.0198 −1.69013
\(534\) 0 0
\(535\) 17.3856 6.32783i 0.751644 0.273576i
\(536\) 0 0
\(537\) −6.55892 + 37.1975i −0.283038 + 1.60519i
\(538\) 0 0
\(539\) −12.3730 21.4306i −0.532942 0.923082i
\(540\) 0 0
\(541\) 28.9160 24.2634i 1.24320 1.04317i 0.245931 0.969287i \(-0.420906\pi\)
0.997267 0.0738796i \(-0.0235381\pi\)
\(542\) 0 0
\(543\) 0.0987020 0.170957i 0.00423571 0.00733646i
\(544\) 0 0
\(545\) 12.6702 + 4.61158i 0.542732 + 0.197538i
\(546\) 0 0
\(547\) −0.551474 3.12757i −0.0235793 0.133725i 0.970746 0.240110i \(-0.0771835\pi\)
−0.994325 + 0.106385i \(0.966072\pi\)
\(548\) 0 0
\(549\) 25.5395 + 21.4302i 1.09000 + 0.914618i
\(550\) 0 0
\(551\) 33.1123 + 16.0271i 1.41063 + 0.682779i
\(552\) 0 0
\(553\) −3.34315 2.80524i −0.142165 0.119291i
\(554\) 0 0
\(555\) 5.65362 + 32.0633i 0.239983 + 1.36101i
\(556\) 0 0
\(557\) −1.09576 0.398824i −0.0464289 0.0168987i 0.318701 0.947855i \(-0.396753\pi\)
−0.365130 + 0.930956i \(0.618976\pi\)
\(558\) 0 0
\(559\) 2.95932 5.12569i 0.125166 0.216794i
\(560\) 0 0
\(561\) −1.34703 + 1.13029i −0.0568718 + 0.0477211i
\(562\) 0 0
\(563\) −8.13224 14.0854i −0.342733 0.593631i 0.642206 0.766532i \(-0.278019\pi\)
−0.984939 + 0.172901i \(0.944686\pi\)
\(564\) 0 0
\(565\) 5.10017 28.9245i 0.214566 1.21686i
\(566\) 0 0
\(567\) −0.0554802 + 0.0201932i −0.00232995 + 0.000848033i
\(568\) 0 0
\(569\) −1.77172 −0.0742742 −0.0371371 0.999310i \(-0.511824\pi\)
−0.0371371 + 0.999310i \(0.511824\pi\)
\(570\) 0 0
\(571\) 17.7171 0.741436 0.370718 0.928745i \(-0.379112\pi\)
0.370718 + 0.928745i \(0.379112\pi\)
\(572\) 0 0
\(573\) −14.7698 + 5.37577i −0.617018 + 0.224576i
\(574\) 0 0
\(575\) 2.70842 15.3602i 0.112949 0.640566i
\(576\) 0 0
\(577\) −2.64778 4.58609i −0.110229 0.190921i 0.805634 0.592414i \(-0.201825\pi\)
−0.915862 + 0.401492i \(0.868492\pi\)
\(578\) 0 0
\(579\) −41.0657 + 34.4582i −1.70663 + 1.43204i
\(580\) 0 0
\(581\) 2.83071 4.90293i 0.117438 0.203408i
\(582\) 0 0
\(583\) −28.9172 10.5250i −1.19763 0.435901i
\(584\) 0 0
\(585\) 8.87361 + 50.3248i 0.366879 + 2.08067i
\(586\) 0 0
\(587\) −19.0477 15.9829i −0.786183 0.659686i 0.158615 0.987341i \(-0.449297\pi\)
−0.944797 + 0.327655i \(0.893742\pi\)
\(588\) 0 0
\(589\) −15.7742 + 21.8489i −0.649965 + 0.900268i
\(590\) 0 0
\(591\) 29.9054 + 25.0936i 1.23015 + 1.03221i
\(592\) 0 0
\(593\) 3.38821 + 19.2155i 0.139137 + 0.789085i 0.971889 + 0.235439i \(0.0756527\pi\)
−0.832752 + 0.553646i \(0.813236\pi\)
\(594\) 0 0
\(595\) −0.454298 0.165351i −0.0186244 0.00677873i
\(596\) 0 0
\(597\) 6.52638 11.3040i 0.267107 0.462643i
\(598\) 0 0
\(599\) 8.75592 7.34709i 0.357757 0.300194i −0.446139 0.894964i \(-0.647201\pi\)
0.803896 + 0.594770i \(0.202757\pi\)
\(600\) 0 0
\(601\) 4.31755 + 7.47822i 0.176117 + 0.305043i 0.940547 0.339663i \(-0.110313\pi\)
−0.764430 + 0.644706i \(0.776980\pi\)
\(602\) 0 0
\(603\) 8.08239 45.8375i 0.329140 1.86665i
\(604\) 0 0
\(605\) −37.6333 + 13.6974i −1.53001 + 0.556878i
\(606\) 0 0
\(607\) 8.95791 0.363591 0.181795 0.983336i \(-0.441809\pi\)
0.181795 + 0.983336i \(0.441809\pi\)
\(608\) 0 0
\(609\) −34.6140 −1.40263
\(610\) 0 0
\(611\) −9.93075 + 3.61450i −0.401755 + 0.146227i
\(612\) 0 0
\(613\) 1.46237 8.29349i 0.0590644 0.334971i −0.940929 0.338604i \(-0.890045\pi\)
0.999993 + 0.00363302i \(0.00115643\pi\)
\(614\) 0 0
\(615\) 37.4452 + 64.8569i 1.50993 + 2.61528i
\(616\) 0 0
\(617\) 12.4542 10.4503i 0.501387 0.420713i −0.356700 0.934219i \(-0.616098\pi\)
0.858086 + 0.513506i \(0.171654\pi\)
\(618\) 0 0
\(619\) −0.853509 + 1.47832i −0.0343054 + 0.0594187i −0.882668 0.469996i \(-0.844255\pi\)
0.848363 + 0.529415i \(0.177589\pi\)
\(620\) 0 0
\(621\) −34.7747 12.6570i −1.39546 0.507906i
\(622\) 0 0
\(623\) −2.22343 12.6097i −0.0890799 0.505197i
\(624\) 0 0
\(625\) −23.8690 20.0285i −0.954760 0.801139i
\(626\) 0 0
\(627\) 60.3319 15.2348i 2.40942 0.608420i
\(628\) 0 0
\(629\) 0.408434 + 0.342717i 0.0162853 + 0.0136650i
\(630\) 0 0
\(631\) −8.45638 47.9585i −0.336643 1.90920i −0.410371 0.911919i \(-0.634601\pi\)
0.0737277 0.997278i \(-0.476510\pi\)
\(632\) 0 0
\(633\) 26.8855 + 9.78551i 1.06860 + 0.388939i
\(634\) 0 0
\(635\) 12.0866 20.9346i 0.479641 0.830762i
\(636\) 0 0
\(637\) −14.5901 + 12.2425i −0.578081 + 0.485067i
\(638\) 0 0
\(639\) 5.64363 + 9.77505i 0.223258 + 0.386695i
\(640\) 0 0
\(641\) −2.70651 + 15.3494i −0.106901 + 0.606263i 0.883544 + 0.468349i \(0.155151\pi\)
−0.990444 + 0.137914i \(0.955960\pi\)
\(642\) 0 0
\(643\) −20.5197 + 7.46857i −0.809219 + 0.294532i −0.713301 0.700858i \(-0.752801\pi\)
−0.0959178 + 0.995389i \(0.530579\pi\)
\(644\) 0 0
\(645\) −11.3596 −0.447283
\(646\) 0 0
\(647\) 10.9347 0.429887 0.214944 0.976626i \(-0.431043\pi\)
0.214944 + 0.976626i \(0.431043\pi\)
\(648\) 0 0
\(649\) 40.4617 14.7269i 1.58826 0.578080i
\(650\) 0 0
\(651\) 4.40306 24.9710i 0.172570 0.978691i
\(652\) 0 0
\(653\) 20.2871 + 35.1383i 0.793896 + 1.37507i 0.923538 + 0.383508i \(0.125284\pi\)
−0.129641 + 0.991561i \(0.541382\pi\)
\(654\) 0 0
\(655\) 29.0982 24.4163i 1.13696 0.954023i
\(656\) 0 0
\(657\) −28.7522 + 49.8002i −1.12173 + 1.94289i
\(658\) 0 0
\(659\) −21.1558 7.70009i −0.824114 0.299953i −0.104673 0.994507i \(-0.533380\pi\)
−0.719441 + 0.694554i \(0.755602\pi\)
\(660\) 0 0
\(661\) −5.81544 32.9810i −0.226195 1.28281i −0.860388 0.509639i \(-0.829779\pi\)
0.634194 0.773174i \(-0.281332\pi\)
\(662\) 0 0
\(663\) 1.03676 + 0.869945i 0.0402644 + 0.0337859i
\(664\) 0 0
\(665\) 11.9211 + 12.2708i 0.462282 + 0.475842i
\(666\) 0 0
\(667\) −45.8772 38.4955i −1.77637 1.49055i
\(668\) 0 0
\(669\) 3.17221 + 17.9905i 0.122645 + 0.695553i
\(670\) 0 0
\(671\) 32.8229 + 11.9465i 1.26711 + 0.461191i
\(672\) 0 0
\(673\) 0.883145 1.52965i 0.0340427 0.0589637i −0.848502 0.529192i \(-0.822495\pi\)
0.882545 + 0.470228i \(0.155828\pi\)
\(674\) 0 0
\(675\) 8.78071 7.36789i 0.337970 0.283590i
\(676\) 0 0
\(677\) −4.98696 8.63767i −0.191665 0.331973i 0.754137 0.656717i \(-0.228055\pi\)
−0.945802 + 0.324744i \(0.894722\pi\)
\(678\) 0 0
\(679\) −3.15119 + 17.8713i −0.120932 + 0.685837i
\(680\) 0 0
\(681\) 28.5293 10.3838i 1.09324 0.397908i
\(682\) 0 0
\(683\) 26.9258 1.03029 0.515144 0.857104i \(-0.327738\pi\)
0.515144 + 0.857104i \(0.327738\pi\)
\(684\) 0 0
\(685\) −21.3221 −0.814676
\(686\) 0 0
\(687\) −49.7188 + 18.0962i −1.89689 + 0.690412i
\(688\) 0 0
\(689\) −4.11283 + 23.3250i −0.156686 + 0.888613i
\(690\) 0 0
\(691\) −4.45054 7.70857i −0.169307 0.293248i 0.768870 0.639406i \(-0.220820\pi\)
−0.938176 + 0.346158i \(0.887486\pi\)
\(692\) 0 0
\(693\) −27.7331 + 23.2708i −1.05349 + 0.883985i
\(694\) 0 0
\(695\) −15.3992 + 26.6722i −0.584126 + 1.01174i
\(696\) 0 0
\(697\) 1.15245 + 0.419458i 0.0436523 + 0.0158881i
\(698\) 0 0
\(699\) 2.12226 + 12.0359i 0.0802711 + 0.455240i
\(700\) 0 0
\(701\) −20.6325 17.3127i −0.779277 0.653891i 0.163789 0.986495i \(-0.447628\pi\)
−0.943067 + 0.332604i \(0.892073\pi\)
\(702\) 0 0
\(703\) −7.72577 17.2132i −0.291383 0.649208i
\(704\) 0 0
\(705\) 15.5378 + 13.0378i 0.585189 + 0.491032i
\(706\) 0 0
\(707\) −0.0371850 0.210887i −0.00139849 0.00793121i
\(708\) 0 0
\(709\) −32.5792 11.8578i −1.22354 0.445331i −0.352157 0.935941i \(-0.614552\pi\)
−0.871379 + 0.490610i \(0.836774\pi\)
\(710\) 0 0
\(711\) 7.24935 12.5562i 0.271872 0.470896i
\(712\) 0 0
\(713\) 33.6070 28.1996i 1.25859 1.05608i
\(714\) 0 0
\(715\) 26.7690 + 46.3653i 1.00110 + 1.73396i
\(716\) 0 0
\(717\) −1.57841 + 8.95159i −0.0589467 + 0.334303i
\(718\) 0 0
\(719\) 18.0472 6.56864i 0.673047 0.244969i 0.0171876 0.999852i \(-0.494529\pi\)
0.655859 + 0.754883i \(0.272307\pi\)
\(720\) 0 0
\(721\) −4.42340 −0.164736
\(722\) 0 0
\(723\) 12.8474 0.477800
\(724\) 0 0
\(725\) 17.4312 6.34443i 0.647378 0.235626i
\(726\) 0 0
\(727\) −5.74663 + 32.5907i −0.213131 + 1.20872i 0.670990 + 0.741466i \(0.265869\pi\)
−0.884121 + 0.467258i \(0.845242\pi\)
\(728\) 0 0
\(729\) 21.8330 + 37.8158i 0.808629 + 1.40059i
\(730\) 0 0
\(731\) −0.142504 + 0.119575i −0.00527071 + 0.00442265i
\(732\) 0 0
\(733\) −5.25284 + 9.09818i −0.194018 + 0.336049i −0.946578 0.322474i \(-0.895485\pi\)
0.752560 + 0.658523i \(0.228819\pi\)
\(734\) 0 0
\(735\) 34.3503 + 12.5025i 1.26703 + 0.461161i
\(736\) 0 0
\(737\) −8.46783 48.0234i −0.311916 1.76897i
\(738\) 0 0
\(739\) −41.1543 34.5325i −1.51388 1.27030i −0.855738 0.517409i \(-0.826897\pi\)
−0.658146 0.752891i \(-0.728659\pi\)
\(740\) 0 0
\(741\) −19.6109 43.6936i −0.720425 1.60512i
\(742\) 0 0
\(743\) −19.8285 16.6381i −0.727436 0.610391i 0.201995 0.979386i \(-0.435257\pi\)
−0.929431 + 0.368995i \(0.879702\pi\)
\(744\) 0 0
\(745\) −8.60294 48.7897i −0.315188 1.78752i
\(746\) 0 0
\(747\) 17.6741 + 6.43286i 0.646663 + 0.235366i
\(748\) 0 0
\(749\) 5.04414 8.73671i 0.184309 0.319232i
\(750\) 0 0
\(751\) 29.6103 24.8460i 1.08049 0.906642i 0.0845321 0.996421i \(-0.473060\pi\)
0.995962 + 0.0897788i \(0.0286160\pi\)
\(752\) 0 0
\(753\) −21.9849 38.0790i −0.801175 1.38768i
\(754\) 0 0
\(755\) −5.12550 + 29.0681i −0.186536 + 1.05790i
\(756\) 0 0
\(757\) 48.0462 17.4874i 1.74627 0.635589i 0.746705 0.665156i \(-0.231635\pi\)
0.999563 + 0.0295665i \(0.00941269\pi\)
\(758\) 0 0
\(759\) −101.302 −3.67702
\(760\) 0 0
\(761\) −12.3013 −0.445923 −0.222961 0.974827i \(-0.571572\pi\)
−0.222961 + 0.974827i \(0.571572\pi\)
\(762\) 0 0
\(763\) 6.90873 2.51457i 0.250113 0.0910336i
\(764\) 0 0
\(765\) 0.278903 1.58174i 0.0100837 0.0571878i
\(766\) 0 0
\(767\) −16.5702 28.7005i −0.598317 1.03631i
\(768\) 0 0
\(769\) −21.6923 + 18.2020i −0.782246 + 0.656382i −0.943813 0.330479i \(-0.892790\pi\)
0.161567 + 0.986862i \(0.448345\pi\)
\(770\) 0 0
\(771\) 2.16287 3.74621i 0.0778940 0.134916i
\(772\) 0 0
\(773\) 25.4219 + 9.25281i 0.914361 + 0.332800i 0.755993 0.654580i \(-0.227154\pi\)
0.158368 + 0.987380i \(0.449377\pi\)
\(774\) 0 0
\(775\) 2.35963 + 13.3821i 0.0847603 + 0.480700i
\(776\) 0 0
\(777\) 13.5996 + 11.4114i 0.487881 + 0.409381i
\(778\) 0 0
\(779\) −30.2412 31.1283i −1.08350 1.11529i
\(780\) 0 0
\(781\) 9.05888 + 7.60130i 0.324152 + 0.271996i
\(782\) 0 0
\(783\) −7.64263 43.3435i −0.273125 1.54897i
\(784\) 0 0
\(785\) 19.7473 + 7.18742i 0.704810 + 0.256530i
\(786\) 0 0
\(787\) −2.23045 + 3.86326i −0.0795071 + 0.137710i −0.903037 0.429562i \(-0.858668\pi\)
0.823530 + 0.567272i \(0.192001\pi\)
\(788\) 0 0
\(789\) 4.76129 3.99520i 0.169507 0.142233i
\(790\) 0 0
\(791\) −8.00753 13.8695i −0.284715 0.493141i
\(792\) 0 0
\(793\) 4.66833 26.4754i 0.165777 0.940169i
\(794\) 0 0
\(795\) 42.7167 15.5476i 1.51500 0.551416i
\(796\) 0 0
\(797\) −12.6875 −0.449415 −0.224707 0.974426i \(-0.572143\pi\)
−0.224707 + 0.974426i \(0.572143\pi\)
\(798\) 0 0
\(799\) 0.332161 0.0117510
\(800\) 0 0
\(801\) 39.9730 14.5490i 1.41238 0.514063i
\(802\) 0 0
\(803\) −10.4617 + 59.3313i −0.369186 + 2.09376i
\(804\) 0 0
\(805\) −13.9257 24.1201i −0.490818 0.850121i
\(806\) 0 0
\(807\) 49.6678 41.6762i 1.74839 1.46707i
\(808\) 0 0
\(809\) −4.94628 + 8.56721i −0.173902 + 0.301207i −0.939781 0.341778i \(-0.888971\pi\)
0.765879 + 0.642985i \(0.222304\pi\)
\(810\) 0 0
\(811\) −8.24203 2.99985i −0.289417 0.105339i 0.193232 0.981153i \(-0.438103\pi\)
−0.482649 + 0.875814i \(0.660325\pi\)
\(812\) 0 0
\(813\) −0.301386 1.70925i −0.0105701 0.0599459i
\(814\) 0 0
\(815\) 30.1485 + 25.2976i 1.05605 + 0.886135i
\(816\) 0 0
\(817\) 6.38259 1.61171i 0.223299 0.0563866i
\(818\) 0 0
\(819\) 21.3451 + 17.9107i 0.745858 + 0.625849i
\(820\) 0 0
\(821\) 3.73825 + 21.2006i 0.130466 + 0.739908i 0.977910 + 0.209024i \(0.0670287\pi\)
−0.847445 + 0.530883i \(0.821860\pi\)
\(822\) 0 0
\(823\) −34.2122 12.4522i −1.19256 0.434057i −0.331939 0.943301i \(-0.607703\pi\)
−0.860622 + 0.509244i \(0.829925\pi\)
\(824\) 0 0
\(825\) 15.6886 27.1735i 0.546208 0.946060i
\(826\) 0 0
\(827\) 14.9279 12.5260i 0.519095 0.435572i −0.345221 0.938521i \(-0.612196\pi\)
0.864316 + 0.502949i \(0.167752\pi\)
\(828\) 0 0
\(829\) 21.6104 + 37.4303i 0.750560 + 1.30001i 0.947552 + 0.319602i \(0.103549\pi\)
−0.196992 + 0.980405i \(0.563117\pi\)
\(830\) 0 0
\(831\) 4.85926 27.5582i 0.168566 0.955984i
\(832\) 0 0
\(833\) 0.562526 0.204743i 0.0194904 0.00709391i
\(834\) 0 0
\(835\) −18.9368 −0.655334
\(836\) 0 0
\(837\) 32.2407 1.11440
\(838\) 0 0
\(839\) −11.7088 + 4.26167i −0.404234 + 0.147129i −0.536132 0.844134i \(-0.680115\pi\)
0.131898 + 0.991263i \(0.457893\pi\)
\(840\) 0 0
\(841\) 7.33244 41.5843i 0.252843 1.43394i
\(842\) 0 0
\(843\) −3.18426 5.51530i −0.109672 0.189957i
\(844\) 0 0
\(845\) 4.84788 4.06786i 0.166772 0.139939i
\(846\) 0 0
\(847\) −10.9187 + 18.9117i −0.375171 + 0.649815i
\(848\) 0 0
\(849\) −34.1411 12.4263i −1.17172 0.426470i
\(850\) 0 0
\(851\) 5.33374 + 30.2491i 0.182838 + 1.03693i
\(852\) 0 0
\(853\) 16.8546 + 14.1427i 0.577090 + 0.484236i 0.883990 0.467506i \(-0.154847\pi\)
−0.306900 + 0.951742i \(0.599292\pi\)
\(854\) 0 0
\(855\) −33.2696 + 46.0818i −1.13780 + 1.57596i
\(856\) 0 0
\(857\) −22.3475 18.7518i −0.763376 0.640549i 0.175627 0.984457i \(-0.443805\pi\)
−0.939003 + 0.343908i \(0.888249\pi\)
\(858\) 0 0
\(859\) 5.26555 + 29.8624i 0.179658 + 1.01889i 0.932629 + 0.360837i \(0.117509\pi\)
−0.752971 + 0.658054i \(0.771380\pi\)
\(860\) 0 0
\(861\) 38.3730 + 13.9666i 1.30775 + 0.475981i
\(862\) 0 0
\(863\) 26.0836 45.1782i 0.887897 1.53788i 0.0455403 0.998963i \(-0.485499\pi\)
0.842357 0.538920i \(-0.181168\pi\)
\(864\) 0 0
\(865\) −21.4391 + 17.9895i −0.728951 + 0.611662i
\(866\) 0 0
\(867\) 23.8092 + 41.2388i 0.808604 + 1.40054i
\(868\) 0 0
\(869\) 2.63774 14.9594i 0.0894791 0.507461i
\(870\) 0 0
\(871\) −35.2686 + 12.8367i −1.19503 + 0.434955i
\(872\) 0 0
\(873\) −60.2881 −2.04044
\(874\) 0 0
\(875\) −10.9976 −0.371786
\(876\) 0 0
\(877\) −25.5648 + 9.30484i −0.863264 + 0.314202i −0.735436 0.677594i \(-0.763023\pi\)
−0.127828 + 0.991796i \(0.540800\pi\)
\(878\) 0 0
\(879\) 6.52281 36.9927i 0.220009 1.24773i
\(880\) 0 0
\(881\) 21.7951 + 37.7502i 0.734294 + 1.27183i 0.955032 + 0.296502i \(0.0958201\pi\)
−0.220738 + 0.975333i \(0.570847\pi\)
\(882\) 0 0
\(883\) −10.0387 + 8.42343i −0.337828 + 0.283471i −0.795880 0.605454i \(-0.792992\pi\)
0.458053 + 0.888925i \(0.348547\pi\)
\(884\) 0 0
\(885\) −31.8031 + 55.0846i −1.06905 + 1.85165i
\(886\) 0 0
\(887\) 30.8003 + 11.2104i 1.03417 + 0.376409i 0.802669 0.596425i \(-0.203413\pi\)
0.231505 + 0.972834i \(0.425635\pi\)
\(888\) 0 0
\(889\) −2.28885 12.9807i −0.0767656 0.435359i
\(890\) 0 0
\(891\) −0.157422 0.132093i −0.00527384 0.00442528i
\(892\) 0 0
\(893\) −10.5800 5.12100i −0.354048 0.171368i
\(894\) 0 0
\(895\) −27.6890 23.2338i −0.925541 0.776621i
\(896\) 0 0
\(897\) 13.5390 + 76.7836i 0.452055 + 2.56373i
\(898\) 0 0
\(899\) 49.0293 + 17.8452i 1.63522 + 0.595171i
\(900\) 0 0
\(901\) 0.372214 0.644694i 0.0124003 0.0214779i
\(902\) 0 0
\(903\) −4.74494 + 3.98147i −0.157902 + 0.132495i
\(904\) 0 0
\(905\) 0.0944532 + 0.163598i 0.00313973 + 0.00543817i
\(906\) 0 0
\(907\) −0.185960 + 1.05463i −0.00617470 + 0.0350185i −0.987739 0.156111i \(-0.950104\pi\)
0.981565 + 0.191130i \(0.0612152\pi\)
\(908\) 0 0
\(909\) 0.668515 0.243319i 0.0221732 0.00807040i
\(910\) 0 0
\(911\) −38.0199 −1.25966 −0.629828 0.776734i \(-0.716875\pi\)
−0.629828 + 0.776734i \(0.716875\pi\)
\(912\) 0 0
\(913\) 19.7054 0.652153
\(914\) 0 0
\(915\) −48.4861 + 17.6475i −1.60290 + 0.583408i
\(916\) 0 0
\(917\) 3.59663 20.3975i 0.118771 0.673585i
\(918\) 0 0
\(919\) 18.9095 + 32.7523i 0.623768 + 1.08040i 0.988778 + 0.149395i \(0.0477325\pi\)
−0.365009 + 0.931004i \(0.618934\pi\)
\(920\) 0 0
\(921\) −68.8688 + 57.7878i −2.26930 + 1.90417i
\(922\) 0 0
\(923\) 4.55083 7.88227i 0.149792 0.259448i
\(924\) 0 0
\(925\) −8.94016 3.25395i −0.293951 0.106989i
\(926\) 0 0
\(927\) −2.55184 14.4722i −0.0838134 0.475329i
\(928\) 0 0
\(929\) 11.3219 + 9.50017i 0.371458 + 0.311690i 0.809338 0.587343i \(-0.199826\pi\)
−0.437880 + 0.899033i \(0.644271\pi\)
\(930\) 0 0
\(931\) −21.0742 2.15109i −0.690680 0.0704992i
\(932\) 0 0
\(933\) 7.39861 + 6.20817i 0.242220 + 0.203246i
\(934\) 0 0
\(935\) −0.292203 1.65717i −0.00955607 0.0541952i
\(936\) 0 0
\(937\) 27.4882 + 10.0049i 0.898001 + 0.326846i 0.749451 0.662059i \(-0.230317\pi\)
0.148549 + 0.988905i \(0.452540\pi\)
\(938\) 0 0
\(939\) −34.1281 + 59.1116i −1.11373 + 1.92903i
\(940\) 0 0
\(941\) −3.88121 + 3.25672i −0.126524 + 0.106166i −0.703854 0.710345i \(-0.748539\pi\)
0.577330 + 0.816511i \(0.304095\pi\)
\(942\) 0 0
\(943\) 35.3265 + 61.1872i 1.15039 + 1.99253i
\(944\) 0 0
\(945\) 3.55425 20.1572i 0.115620 0.655712i
\(946\) 0 0
\(947\) 15.9231 5.79554i 0.517432 0.188330i −0.0700860 0.997541i \(-0.522327\pi\)
0.587518 + 0.809211i \(0.300105\pi\)
\(948\) 0 0
\(949\) 46.3695 1.50522
\(950\) 0 0
\(951\) −50.3975 −1.63425
\(952\) 0 0
\(953\) 12.9760 4.72288i 0.420334 0.152989i −0.123189 0.992383i \(-0.539312\pi\)
0.543523 + 0.839394i \(0.317090\pi\)
\(954\) 0 0
\(955\) 2.61186 14.8126i 0.0845178 0.479324i
\(956\) 0 0
\(957\) −60.2396 104.338i −1.94727 3.37277i
\(958\) 0 0
\(959\) −8.90632 + 7.47329i −0.287600 + 0.241325i
\(960\) 0 0
\(961\) −3.61052 + 6.25360i −0.116468 + 0.201729i
\(962\) 0 0
\(963\) 31.4942 + 11.4629i 1.01489 + 0.369388i
\(964\) 0 0
\(965\) −8.90813 50.5205i −0.286763 1.62631i
\(966\) 0 0
\(967\) 36.6756 + 30.7745i 1.17941 + 0.989640i 0.999983 + 0.00586825i \(0.00186793\pi\)
0.179424 + 0.983772i \(0.442577\pi\)
\(968\) 0 0
\(969\) 0.109508 + 1.50131i 0.00351792 + 0.0482290i
\(970\) 0 0
\(971\) 18.8315 + 15.8015i 0.604333 + 0.507095i 0.892835 0.450384i \(-0.148713\pi\)
−0.288502 + 0.957479i \(0.593157\pi\)
\(972\) 0 0
\(973\) 2.91617 + 16.5384i 0.0934882 + 0.530198i
\(974\) 0 0
\(975\) −22.6935 8.25975i −0.726773 0.264524i
\(976\) 0 0
\(977\) −15.0455 + 26.0596i −0.481348 + 0.833719i −0.999771 0.0214050i \(-0.993186\pi\)
0.518423 + 0.855124i \(0.326519\pi\)
\(978\) 0 0
\(979\) 34.1403 28.6471i 1.09113 0.915565i
\(980\) 0 0
\(981\) 12.2126 + 21.1529i 0.389920 + 0.675361i
\(982\) 0 0
\(983\) −3.63321 + 20.6049i −0.115881 + 0.657196i 0.870429 + 0.492294i \(0.163842\pi\)
−0.986310 + 0.164901i \(0.947269\pi\)
\(984\) 0 0
\(985\) −35.1053 + 12.7773i −1.11855 + 0.407118i
\(986\) 0 0
\(987\) 11.0599 0.352040
\(988\) 0 0
\(989\) −10.7168 −0.340776
\(990\) 0 0
\(991\) −5.66225 + 2.06089i −0.179867 + 0.0654663i −0.430384 0.902646i \(-0.641622\pi\)
0.250517 + 0.968112i \(0.419400\pi\)
\(992\) 0 0
\(993\) 12.8443 72.8439i 0.407603 2.31163i
\(994\) 0 0
\(995\) 6.24544 + 10.8174i 0.197994 + 0.342935i
\(996\) 0 0
\(997\) 16.4637 13.8147i 0.521411 0.437516i −0.343712 0.939075i \(-0.611685\pi\)
0.865123 + 0.501559i \(0.167240\pi\)
\(998\) 0 0
\(999\) −11.2865 + 19.5489i −0.357090 + 0.618499i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 152.2.q.c.73.1 yes 18
4.3 odd 2 304.2.u.f.225.3 18
19.5 even 9 2888.2.a.y.1.9 9
19.6 even 9 inner 152.2.q.c.25.1 18
19.14 odd 18 2888.2.a.x.1.1 9
76.43 odd 18 5776.2.a.cd.1.1 9
76.63 odd 18 304.2.u.f.177.3 18
76.71 even 18 5776.2.a.ce.1.9 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.q.c.25.1 18 19.6 even 9 inner
152.2.q.c.73.1 yes 18 1.1 even 1 trivial
304.2.u.f.177.3 18 76.63 odd 18
304.2.u.f.225.3 18 4.3 odd 2
2888.2.a.x.1.1 9 19.14 odd 18
2888.2.a.y.1.9 9 19.5 even 9
5776.2.a.cd.1.1 9 76.43 odd 18
5776.2.a.ce.1.9 9 76.71 even 18