Properties

Label 1519.4.a.h.1.8
Level $1519$
Weight $4$
Character 1519.1
Self dual yes
Analytic conductor $89.624$
Analytic rank $1$
Dimension $23$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1519,4,Mod(1,1519)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1519, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1519.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1519 = 7^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1519.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [23,5,-6,91,-40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.6239012987\)
Analytic rank: \(1\)
Dimension: \(23\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Character \(\chi\) \(=\) 1519.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.88515 q^{2} -5.49288 q^{3} -4.44620 q^{4} +9.32401 q^{5} +10.3549 q^{6} +23.4630 q^{8} +3.17171 q^{9} -17.5772 q^{10} -66.7201 q^{11} +24.4224 q^{12} +36.7478 q^{13} -51.2156 q^{15} -8.66168 q^{16} +13.0398 q^{17} -5.97915 q^{18} +72.1659 q^{19} -41.4564 q^{20} +125.777 q^{22} +2.75035 q^{23} -128.879 q^{24} -38.0629 q^{25} -69.2752 q^{26} +130.886 q^{27} -98.2040 q^{29} +96.5492 q^{30} -31.0000 q^{31} -171.375 q^{32} +366.485 q^{33} -24.5820 q^{34} -14.1020 q^{36} -192.099 q^{37} -136.044 q^{38} -201.851 q^{39} +218.769 q^{40} -133.653 q^{41} +511.611 q^{43} +296.651 q^{44} +29.5730 q^{45} -5.18483 q^{46} -392.730 q^{47} +47.5775 q^{48} +71.7544 q^{50} -71.6260 q^{51} -163.388 q^{52} -498.188 q^{53} -246.740 q^{54} -622.098 q^{55} -396.398 q^{57} +185.130 q^{58} +567.336 q^{59} +227.715 q^{60} +814.950 q^{61} +58.4397 q^{62} +392.362 q^{64} +342.637 q^{65} -690.880 q^{66} +676.291 q^{67} -57.9775 q^{68} -15.1073 q^{69} +517.685 q^{71} +74.4177 q^{72} +492.415 q^{73} +362.136 q^{74} +209.075 q^{75} -320.864 q^{76} +380.520 q^{78} -173.504 q^{79} -80.7615 q^{80} -804.576 q^{81} +251.955 q^{82} -891.483 q^{83} +121.583 q^{85} -964.464 q^{86} +539.423 q^{87} -1565.45 q^{88} -595.383 q^{89} -55.7496 q^{90} -12.2286 q^{92} +170.279 q^{93} +740.356 q^{94} +672.875 q^{95} +941.343 q^{96} +1855.96 q^{97} -211.616 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 23 q + 5 q^{2} - 6 q^{3} + 91 q^{4} - 40 q^{5} - 36 q^{6} + 39 q^{8} + 211 q^{9} - 40 q^{10} + 44 q^{11} - 414 q^{12} + 20 q^{13} + 523 q^{16} - 306 q^{17} + 51 q^{18} - 296 q^{19} - 400 q^{20} - 326 q^{22}+ \cdots - 3456 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.88515 −0.666502 −0.333251 0.942838i \(-0.608146\pi\)
−0.333251 + 0.942838i \(0.608146\pi\)
\(3\) −5.49288 −1.05710 −0.528552 0.848901i \(-0.677265\pi\)
−0.528552 + 0.848901i \(0.677265\pi\)
\(4\) −4.44620 −0.555775
\(5\) 9.32401 0.833964 0.416982 0.908915i \(-0.363088\pi\)
0.416982 + 0.908915i \(0.363088\pi\)
\(6\) 10.3549 0.704562
\(7\) 0 0
\(8\) 23.4630 1.03693
\(9\) 3.17171 0.117471
\(10\) −17.5772 −0.555839
\(11\) −66.7201 −1.82881 −0.914403 0.404806i \(-0.867339\pi\)
−0.914403 + 0.404806i \(0.867339\pi\)
\(12\) 24.4224 0.587513
\(13\) 36.7478 0.784001 0.392000 0.919965i \(-0.371783\pi\)
0.392000 + 0.919965i \(0.371783\pi\)
\(14\) 0 0
\(15\) −51.2156 −0.881588
\(16\) −8.66168 −0.135339
\(17\) 13.0398 0.186036 0.0930180 0.995664i \(-0.470349\pi\)
0.0930180 + 0.995664i \(0.470349\pi\)
\(18\) −5.97915 −0.0782944
\(19\) 72.1659 0.871368 0.435684 0.900100i \(-0.356507\pi\)
0.435684 + 0.900100i \(0.356507\pi\)
\(20\) −41.4564 −0.463497
\(21\) 0 0
\(22\) 125.777 1.21890
\(23\) 2.75035 0.0249342 0.0124671 0.999922i \(-0.496031\pi\)
0.0124671 + 0.999922i \(0.496031\pi\)
\(24\) −128.879 −1.09614
\(25\) −38.0629 −0.304503
\(26\) −69.2752 −0.522538
\(27\) 130.886 0.932926
\(28\) 0 0
\(29\) −98.2040 −0.628829 −0.314414 0.949286i \(-0.601808\pi\)
−0.314414 + 0.949286i \(0.601808\pi\)
\(30\) 96.5492 0.587580
\(31\) −31.0000 −0.179605
\(32\) −171.375 −0.946724
\(33\) 366.485 1.93324
\(34\) −24.5820 −0.123993
\(35\) 0 0
\(36\) −14.1020 −0.0652872
\(37\) −192.099 −0.853538 −0.426769 0.904361i \(-0.640348\pi\)
−0.426769 + 0.904361i \(0.640348\pi\)
\(38\) −136.044 −0.580768
\(39\) −201.851 −0.828771
\(40\) 218.769 0.864760
\(41\) −133.653 −0.509098 −0.254549 0.967060i \(-0.581927\pi\)
−0.254549 + 0.967060i \(0.581927\pi\)
\(42\) 0 0
\(43\) 511.611 1.81442 0.907208 0.420681i \(-0.138209\pi\)
0.907208 + 0.420681i \(0.138209\pi\)
\(44\) 296.651 1.01640
\(45\) 29.5730 0.0979663
\(46\) −5.18483 −0.0166187
\(47\) −392.730 −1.21884 −0.609421 0.792847i \(-0.708598\pi\)
−0.609421 + 0.792847i \(0.708598\pi\)
\(48\) 47.5775 0.143067
\(49\) 0 0
\(50\) 71.7544 0.202952
\(51\) −71.6260 −0.196660
\(52\) −163.388 −0.435728
\(53\) −498.188 −1.29116 −0.645579 0.763693i \(-0.723384\pi\)
−0.645579 + 0.763693i \(0.723384\pi\)
\(54\) −246.740 −0.621797
\(55\) −622.098 −1.52516
\(56\) 0 0
\(57\) −396.398 −0.921127
\(58\) 185.130 0.419116
\(59\) 567.336 1.25188 0.625939 0.779872i \(-0.284716\pi\)
0.625939 + 0.779872i \(0.284716\pi\)
\(60\) 227.715 0.489965
\(61\) 814.950 1.71055 0.855276 0.518173i \(-0.173388\pi\)
0.855276 + 0.518173i \(0.173388\pi\)
\(62\) 58.4397 0.119707
\(63\) 0 0
\(64\) 392.362 0.766332
\(65\) 342.637 0.653829
\(66\) −690.880 −1.28851
\(67\) 676.291 1.23317 0.616583 0.787290i \(-0.288516\pi\)
0.616583 + 0.787290i \(0.288516\pi\)
\(68\) −57.9775 −0.103394
\(69\) −15.1073 −0.0263581
\(70\) 0 0
\(71\) 517.685 0.865323 0.432661 0.901556i \(-0.357575\pi\)
0.432661 + 0.901556i \(0.357575\pi\)
\(72\) 74.4177 0.121808
\(73\) 492.415 0.789491 0.394746 0.918790i \(-0.370833\pi\)
0.394746 + 0.918790i \(0.370833\pi\)
\(74\) 362.136 0.568885
\(75\) 209.075 0.321892
\(76\) −320.864 −0.484285
\(77\) 0 0
\(78\) 380.520 0.552377
\(79\) −173.504 −0.247097 −0.123549 0.992339i \(-0.539427\pi\)
−0.123549 + 0.992339i \(0.539427\pi\)
\(80\) −80.7615 −0.112868
\(81\) −804.576 −1.10367
\(82\) 251.955 0.339315
\(83\) −891.483 −1.17895 −0.589475 0.807786i \(-0.700666\pi\)
−0.589475 + 0.807786i \(0.700666\pi\)
\(84\) 0 0
\(85\) 121.583 0.155147
\(86\) −964.464 −1.20931
\(87\) 539.423 0.664738
\(88\) −1565.45 −1.89634
\(89\) −595.383 −0.709107 −0.354553 0.935036i \(-0.615367\pi\)
−0.354553 + 0.935036i \(0.615367\pi\)
\(90\) −55.7496 −0.0652947
\(91\) 0 0
\(92\) −12.2286 −0.0138578
\(93\) 170.279 0.189862
\(94\) 740.356 0.812361
\(95\) 672.875 0.726690
\(96\) 941.343 1.00079
\(97\) 1855.96 1.94273 0.971364 0.237596i \(-0.0763596\pi\)
0.971364 + 0.237596i \(0.0763596\pi\)
\(98\) 0 0
\(99\) −211.616 −0.214831
\(100\) 169.235 0.169235
\(101\) 995.030 0.980289 0.490145 0.871641i \(-0.336944\pi\)
0.490145 + 0.871641i \(0.336944\pi\)
\(102\) 135.026 0.131074
\(103\) 425.212 0.406770 0.203385 0.979099i \(-0.434806\pi\)
0.203385 + 0.979099i \(0.434806\pi\)
\(104\) 862.213 0.812952
\(105\) 0 0
\(106\) 939.160 0.860559
\(107\) 181.535 0.164016 0.0820078 0.996632i \(-0.473867\pi\)
0.0820078 + 0.996632i \(0.473867\pi\)
\(108\) −581.945 −0.518497
\(109\) 460.949 0.405054 0.202527 0.979277i \(-0.435085\pi\)
0.202527 + 0.979277i \(0.435085\pi\)
\(110\) 1172.75 1.01652
\(111\) 1055.18 0.902279
\(112\) 0 0
\(113\) 209.552 0.174451 0.0872256 0.996189i \(-0.472200\pi\)
0.0872256 + 0.996189i \(0.472200\pi\)
\(114\) 747.271 0.613933
\(115\) 25.6443 0.0207943
\(116\) 436.635 0.349487
\(117\) 116.553 0.0920970
\(118\) −1069.51 −0.834379
\(119\) 0 0
\(120\) −1201.67 −0.914142
\(121\) 3120.57 2.34453
\(122\) −1536.30 −1.14009
\(123\) 734.137 0.538170
\(124\) 137.832 0.0998202
\(125\) −1520.40 −1.08791
\(126\) 0 0
\(127\) 722.469 0.504793 0.252397 0.967624i \(-0.418781\pi\)
0.252397 + 0.967624i \(0.418781\pi\)
\(128\) 631.340 0.435962
\(129\) −2810.22 −1.91803
\(130\) −645.922 −0.435778
\(131\) 1959.74 1.30705 0.653525 0.756905i \(-0.273289\pi\)
0.653525 + 0.756905i \(0.273289\pi\)
\(132\) −1629.47 −1.07445
\(133\) 0 0
\(134\) −1274.91 −0.821908
\(135\) 1220.38 0.778027
\(136\) 305.952 0.192906
\(137\) 226.311 0.141132 0.0705660 0.997507i \(-0.477519\pi\)
0.0705660 + 0.997507i \(0.477519\pi\)
\(138\) 28.4796 0.0175677
\(139\) −2927.74 −1.78653 −0.893265 0.449531i \(-0.851591\pi\)
−0.893265 + 0.449531i \(0.851591\pi\)
\(140\) 0 0
\(141\) 2157.22 1.28844
\(142\) −975.915 −0.576739
\(143\) −2451.82 −1.43378
\(144\) −27.4723 −0.0158983
\(145\) −915.655 −0.524421
\(146\) −928.278 −0.526197
\(147\) 0 0
\(148\) 854.112 0.474375
\(149\) −1863.95 −1.02484 −0.512419 0.858736i \(-0.671250\pi\)
−0.512419 + 0.858736i \(0.671250\pi\)
\(150\) −394.138 −0.214542
\(151\) 1135.32 0.611862 0.305931 0.952054i \(-0.401032\pi\)
0.305931 + 0.952054i \(0.401032\pi\)
\(152\) 1693.23 0.903545
\(153\) 41.3584 0.0218538
\(154\) 0 0
\(155\) −289.044 −0.149784
\(156\) 897.471 0.460610
\(157\) −1325.81 −0.673954 −0.336977 0.941513i \(-0.609405\pi\)
−0.336977 + 0.941513i \(0.609405\pi\)
\(158\) 327.081 0.164691
\(159\) 2736.49 1.36489
\(160\) −1597.90 −0.789534
\(161\) 0 0
\(162\) 1516.75 0.735599
\(163\) −2827.27 −1.35858 −0.679292 0.733868i \(-0.737713\pi\)
−0.679292 + 0.733868i \(0.737713\pi\)
\(164\) 594.246 0.282944
\(165\) 3417.11 1.61225
\(166\) 1680.58 0.785773
\(167\) −858.549 −0.397824 −0.198912 0.980017i \(-0.563741\pi\)
−0.198912 + 0.980017i \(0.563741\pi\)
\(168\) 0 0
\(169\) −846.599 −0.385343
\(170\) −229.203 −0.103406
\(171\) 228.889 0.102360
\(172\) −2274.73 −1.00841
\(173\) −1486.81 −0.653411 −0.326705 0.945126i \(-0.605939\pi\)
−0.326705 + 0.945126i \(0.605939\pi\)
\(174\) −1016.89 −0.443049
\(175\) 0 0
\(176\) 577.908 0.247508
\(177\) −3116.31 −1.32337
\(178\) 1122.39 0.472621
\(179\) 1847.83 0.771584 0.385792 0.922586i \(-0.373928\pi\)
0.385792 + 0.922586i \(0.373928\pi\)
\(180\) −131.488 −0.0544472
\(181\) −4676.40 −1.92041 −0.960205 0.279296i \(-0.909899\pi\)
−0.960205 + 0.279296i \(0.909899\pi\)
\(182\) 0 0
\(183\) −4476.42 −1.80823
\(184\) 64.5314 0.0258550
\(185\) −1791.13 −0.711820
\(186\) −321.002 −0.126543
\(187\) −870.016 −0.340224
\(188\) 1746.16 0.677403
\(189\) 0 0
\(190\) −1268.47 −0.484340
\(191\) 2962.03 1.12212 0.561060 0.827775i \(-0.310394\pi\)
0.561060 + 0.827775i \(0.310394\pi\)
\(192\) −2155.20 −0.810093
\(193\) −543.711 −0.202783 −0.101392 0.994847i \(-0.532330\pi\)
−0.101392 + 0.994847i \(0.532330\pi\)
\(194\) −3498.77 −1.29483
\(195\) −1882.06 −0.691165
\(196\) 0 0
\(197\) −2923.14 −1.05718 −0.528592 0.848876i \(-0.677280\pi\)
−0.528592 + 0.848876i \(0.677280\pi\)
\(198\) 398.929 0.143185
\(199\) 2340.43 0.833712 0.416856 0.908973i \(-0.363132\pi\)
0.416856 + 0.908973i \(0.363132\pi\)
\(200\) −893.070 −0.315748
\(201\) −3714.79 −1.30359
\(202\) −1875.78 −0.653365
\(203\) 0 0
\(204\) 318.464 0.109299
\(205\) −1246.18 −0.424570
\(206\) −801.589 −0.271113
\(207\) 8.72330 0.00292904
\(208\) −318.298 −0.106106
\(209\) −4814.91 −1.59356
\(210\) 0 0
\(211\) −5129.22 −1.67351 −0.836754 0.547579i \(-0.815550\pi\)
−0.836754 + 0.547579i \(0.815550\pi\)
\(212\) 2215.04 0.717594
\(213\) −2843.58 −0.914737
\(214\) −342.221 −0.109317
\(215\) 4770.26 1.51316
\(216\) 3070.97 0.967376
\(217\) 0 0
\(218\) −868.959 −0.269970
\(219\) −2704.78 −0.834575
\(220\) 2765.97 0.847645
\(221\) 479.184 0.145852
\(222\) −1989.17 −0.601371
\(223\) −1440.31 −0.432514 −0.216257 0.976337i \(-0.569385\pi\)
−0.216257 + 0.976337i \(0.569385\pi\)
\(224\) 0 0
\(225\) −120.724 −0.0357702
\(226\) −395.037 −0.116272
\(227\) −3749.47 −1.09631 −0.548153 0.836378i \(-0.684669\pi\)
−0.548153 + 0.836378i \(0.684669\pi\)
\(228\) 1762.47 0.511940
\(229\) 2418.83 0.697996 0.348998 0.937124i \(-0.386522\pi\)
0.348998 + 0.937124i \(0.386522\pi\)
\(230\) −48.3434 −0.0138594
\(231\) 0 0
\(232\) −2304.16 −0.652050
\(233\) −4328.92 −1.21716 −0.608578 0.793494i \(-0.708260\pi\)
−0.608578 + 0.793494i \(0.708260\pi\)
\(234\) −219.721 −0.0613828
\(235\) −3661.82 −1.01647
\(236\) −2522.49 −0.695763
\(237\) 953.034 0.261208
\(238\) 0 0
\(239\) 1509.57 0.408562 0.204281 0.978912i \(-0.434514\pi\)
0.204281 + 0.978912i \(0.434514\pi\)
\(240\) 443.613 0.119313
\(241\) 2231.17 0.596357 0.298179 0.954510i \(-0.403621\pi\)
0.298179 + 0.954510i \(0.403621\pi\)
\(242\) −5882.74 −1.56263
\(243\) 885.520 0.233770
\(244\) −3623.43 −0.950682
\(245\) 0 0
\(246\) −1383.96 −0.358691
\(247\) 2651.94 0.683153
\(248\) −727.352 −0.186238
\(249\) 4896.80 1.24627
\(250\) 2866.18 0.725094
\(251\) 2232.89 0.561509 0.280755 0.959780i \(-0.409415\pi\)
0.280755 + 0.959780i \(0.409415\pi\)
\(252\) 0 0
\(253\) −183.504 −0.0455999
\(254\) −1361.96 −0.336446
\(255\) −667.841 −0.164007
\(256\) −4329.07 −1.05690
\(257\) −2578.99 −0.625964 −0.312982 0.949759i \(-0.601328\pi\)
−0.312982 + 0.949759i \(0.601328\pi\)
\(258\) 5297.68 1.27837
\(259\) 0 0
\(260\) −1523.43 −0.363382
\(261\) −311.474 −0.0738689
\(262\) −3694.41 −0.871151
\(263\) 5906.18 1.38476 0.692378 0.721535i \(-0.256563\pi\)
0.692378 + 0.721535i \(0.256563\pi\)
\(264\) 8598.83 2.00463
\(265\) −4645.11 −1.07678
\(266\) 0 0
\(267\) 3270.37 0.749600
\(268\) −3006.93 −0.685363
\(269\) −4279.83 −0.970059 −0.485030 0.874498i \(-0.661191\pi\)
−0.485030 + 0.874498i \(0.661191\pi\)
\(270\) −2300.60 −0.518557
\(271\) −594.378 −0.133232 −0.0666160 0.997779i \(-0.521220\pi\)
−0.0666160 + 0.997779i \(0.521220\pi\)
\(272\) −112.946 −0.0251779
\(273\) 0 0
\(274\) −426.631 −0.0940647
\(275\) 2539.56 0.556877
\(276\) 67.1703 0.0146492
\(277\) −1771.31 −0.384216 −0.192108 0.981374i \(-0.561532\pi\)
−0.192108 + 0.981374i \(0.561532\pi\)
\(278\) 5519.23 1.19073
\(279\) −98.3229 −0.0210983
\(280\) 0 0
\(281\) 2818.49 0.598352 0.299176 0.954198i \(-0.403288\pi\)
0.299176 + 0.954198i \(0.403288\pi\)
\(282\) −4066.69 −0.858751
\(283\) −8933.66 −1.87651 −0.938253 0.345950i \(-0.887557\pi\)
−0.938253 + 0.345950i \(0.887557\pi\)
\(284\) −2301.73 −0.480925
\(285\) −3696.02 −0.768187
\(286\) 4622.05 0.955620
\(287\) 0 0
\(288\) −543.552 −0.111212
\(289\) −4742.96 −0.965391
\(290\) 1726.15 0.349527
\(291\) −10194.6 −2.05367
\(292\) −2189.38 −0.438780
\(293\) 148.819 0.0296727 0.0148364 0.999890i \(-0.495277\pi\)
0.0148364 + 0.999890i \(0.495277\pi\)
\(294\) 0 0
\(295\) 5289.84 1.04402
\(296\) −4507.22 −0.885057
\(297\) −8732.72 −1.70614
\(298\) 3513.83 0.683056
\(299\) 101.069 0.0195485
\(300\) −929.590 −0.178900
\(301\) 0 0
\(302\) −2140.25 −0.407807
\(303\) −5465.58 −1.03627
\(304\) −625.078 −0.117930
\(305\) 7598.60 1.42654
\(306\) −77.9668 −0.0145656
\(307\) 5511.71 1.02466 0.512329 0.858789i \(-0.328783\pi\)
0.512329 + 0.858789i \(0.328783\pi\)
\(308\) 0 0
\(309\) −2335.64 −0.429999
\(310\) 544.892 0.0998316
\(311\) −1046.04 −0.190725 −0.0953627 0.995443i \(-0.530401\pi\)
−0.0953627 + 0.995443i \(0.530401\pi\)
\(312\) −4736.03 −0.859375
\(313\) −5805.52 −1.04839 −0.524197 0.851597i \(-0.675634\pi\)
−0.524197 + 0.851597i \(0.675634\pi\)
\(314\) 2499.35 0.449192
\(315\) 0 0
\(316\) 771.432 0.137330
\(317\) −4488.12 −0.795198 −0.397599 0.917559i \(-0.630156\pi\)
−0.397599 + 0.917559i \(0.630156\pi\)
\(318\) −5158.69 −0.909701
\(319\) 6552.18 1.15001
\(320\) 3658.38 0.639093
\(321\) −997.150 −0.173382
\(322\) 0 0
\(323\) 941.028 0.162106
\(324\) 3577.31 0.613393
\(325\) −1398.73 −0.238731
\(326\) 5329.84 0.905499
\(327\) −2531.94 −0.428185
\(328\) −3135.89 −0.527898
\(329\) 0 0
\(330\) −6441.77 −1.07457
\(331\) 2287.24 0.379812 0.189906 0.981802i \(-0.439182\pi\)
0.189906 + 0.981802i \(0.439182\pi\)
\(332\) 3963.71 0.655232
\(333\) −609.282 −0.100266
\(334\) 1618.50 0.265150
\(335\) 6305.74 1.02842
\(336\) 0 0
\(337\) 2177.51 0.351977 0.175989 0.984392i \(-0.443688\pi\)
0.175989 + 0.984392i \(0.443688\pi\)
\(338\) 1595.97 0.256832
\(339\) −1151.04 −0.184413
\(340\) −540.583 −0.0862271
\(341\) 2068.32 0.328463
\(342\) −431.490 −0.0682232
\(343\) 0 0
\(344\) 12003.9 1.88142
\(345\) −140.861 −0.0219817
\(346\) 2802.86 0.435500
\(347\) 160.321 0.0248025 0.0124013 0.999923i \(-0.496052\pi\)
0.0124013 + 0.999923i \(0.496052\pi\)
\(348\) −2398.38 −0.369445
\(349\) 6482.45 0.994263 0.497131 0.867675i \(-0.334387\pi\)
0.497131 + 0.867675i \(0.334387\pi\)
\(350\) 0 0
\(351\) 4809.77 0.731415
\(352\) 11434.2 1.73137
\(353\) −5168.68 −0.779323 −0.389662 0.920958i \(-0.627408\pi\)
−0.389662 + 0.920958i \(0.627408\pi\)
\(354\) 5874.71 0.882026
\(355\) 4826.90 0.721648
\(356\) 2647.19 0.394104
\(357\) 0 0
\(358\) −3483.45 −0.514263
\(359\) 5121.82 0.752978 0.376489 0.926421i \(-0.377131\pi\)
0.376489 + 0.926421i \(0.377131\pi\)
\(360\) 693.871 0.101584
\(361\) −1651.09 −0.240718
\(362\) 8815.73 1.27996
\(363\) −17140.9 −2.47841
\(364\) 0 0
\(365\) 4591.28 0.658408
\(366\) 8438.73 1.20519
\(367\) 5110.55 0.726890 0.363445 0.931616i \(-0.381601\pi\)
0.363445 + 0.931616i \(0.381601\pi\)
\(368\) −23.8226 −0.00337457
\(369\) −423.907 −0.0598041
\(370\) 3376.56 0.474430
\(371\) 0 0
\(372\) −757.096 −0.105520
\(373\) 7291.31 1.01214 0.506072 0.862491i \(-0.331097\pi\)
0.506072 + 0.862491i \(0.331097\pi\)
\(374\) 1640.11 0.226760
\(375\) 8351.37 1.15003
\(376\) −9214.63 −1.26385
\(377\) −3608.78 −0.493002
\(378\) 0 0
\(379\) 1889.91 0.256143 0.128072 0.991765i \(-0.459121\pi\)
0.128072 + 0.991765i \(0.459121\pi\)
\(380\) −2991.74 −0.403876
\(381\) −3968.43 −0.533620
\(382\) −5583.88 −0.747895
\(383\) −8656.98 −1.15496 −0.577482 0.816403i \(-0.695965\pi\)
−0.577482 + 0.816403i \(0.695965\pi\)
\(384\) −3467.88 −0.460858
\(385\) 0 0
\(386\) 1024.98 0.135155
\(387\) 1622.68 0.213141
\(388\) −8251.99 −1.07972
\(389\) −7406.14 −0.965311 −0.482656 0.875810i \(-0.660328\pi\)
−0.482656 + 0.875810i \(0.660328\pi\)
\(390\) 3547.97 0.460663
\(391\) 35.8640 0.00463867
\(392\) 0 0
\(393\) −10764.6 −1.38169
\(394\) 5510.57 0.704616
\(395\) −1617.75 −0.206070
\(396\) 940.889 0.119398
\(397\) −12868.1 −1.62678 −0.813392 0.581717i \(-0.802381\pi\)
−0.813392 + 0.581717i \(0.802381\pi\)
\(398\) −4412.07 −0.555671
\(399\) 0 0
\(400\) 329.689 0.0412111
\(401\) −13935.1 −1.73538 −0.867689 0.497108i \(-0.834395\pi\)
−0.867689 + 0.497108i \(0.834395\pi\)
\(402\) 7002.94 0.868842
\(403\) −1139.18 −0.140811
\(404\) −4424.11 −0.544820
\(405\) −7501.87 −0.920423
\(406\) 0 0
\(407\) 12816.9 1.56096
\(408\) −1680.56 −0.203922
\(409\) −4223.15 −0.510566 −0.255283 0.966866i \(-0.582169\pi\)
−0.255283 + 0.966866i \(0.582169\pi\)
\(410\) 2349.23 0.282977
\(411\) −1243.10 −0.149191
\(412\) −1890.58 −0.226073
\(413\) 0 0
\(414\) −16.4448 −0.00195221
\(415\) −8312.19 −0.983203
\(416\) −6297.67 −0.742232
\(417\) 16081.7 1.88855
\(418\) 9076.84 1.06211
\(419\) 1123.83 0.131032 0.0655162 0.997852i \(-0.479131\pi\)
0.0655162 + 0.997852i \(0.479131\pi\)
\(420\) 0 0
\(421\) −5863.73 −0.678814 −0.339407 0.940640i \(-0.610226\pi\)
−0.339407 + 0.940640i \(0.610226\pi\)
\(422\) 9669.36 1.11540
\(423\) −1245.63 −0.143178
\(424\) −11689.0 −1.33884
\(425\) −496.333 −0.0566486
\(426\) 5360.58 0.609674
\(427\) 0 0
\(428\) −807.142 −0.0911558
\(429\) 13467.5 1.51566
\(430\) −8992.67 −1.00852
\(431\) 5529.78 0.618005 0.309002 0.951061i \(-0.400005\pi\)
0.309002 + 0.951061i \(0.400005\pi\)
\(432\) −1133.69 −0.126261
\(433\) −2712.93 −0.301097 −0.150549 0.988603i \(-0.548104\pi\)
−0.150549 + 0.988603i \(0.548104\pi\)
\(434\) 0 0
\(435\) 5029.58 0.554368
\(436\) −2049.47 −0.225119
\(437\) 198.481 0.0217269
\(438\) 5098.92 0.556246
\(439\) −2828.22 −0.307479 −0.153740 0.988111i \(-0.549132\pi\)
−0.153740 + 0.988111i \(0.549132\pi\)
\(440\) −14596.3 −1.58148
\(441\) 0 0
\(442\) −903.334 −0.0972109
\(443\) 5580.20 0.598473 0.299236 0.954179i \(-0.403268\pi\)
0.299236 + 0.954179i \(0.403268\pi\)
\(444\) −4691.53 −0.501465
\(445\) −5551.36 −0.591370
\(446\) 2715.21 0.288271
\(447\) 10238.5 1.08336
\(448\) 0 0
\(449\) 14118.7 1.48397 0.741985 0.670417i \(-0.233885\pi\)
0.741985 + 0.670417i \(0.233885\pi\)
\(450\) 227.584 0.0238409
\(451\) 8917.31 0.931041
\(452\) −931.710 −0.0969556
\(453\) −6236.18 −0.646802
\(454\) 7068.33 0.730690
\(455\) 0 0
\(456\) −9300.69 −0.955142
\(457\) −6171.35 −0.631693 −0.315846 0.948810i \(-0.602288\pi\)
−0.315846 + 0.948810i \(0.602288\pi\)
\(458\) −4559.87 −0.465215
\(459\) 1706.72 0.173558
\(460\) −114.020 −0.0115569
\(461\) 3884.02 0.392401 0.196200 0.980564i \(-0.437140\pi\)
0.196200 + 0.980564i \(0.437140\pi\)
\(462\) 0 0
\(463\) 8129.30 0.815984 0.407992 0.912986i \(-0.366229\pi\)
0.407992 + 0.912986i \(0.366229\pi\)
\(464\) 850.612 0.0851049
\(465\) 1587.68 0.158338
\(466\) 8160.68 0.811236
\(467\) 2181.77 0.216189 0.108094 0.994141i \(-0.465525\pi\)
0.108094 + 0.994141i \(0.465525\pi\)
\(468\) −518.219 −0.0511852
\(469\) 0 0
\(470\) 6903.09 0.677480
\(471\) 7282.49 0.712440
\(472\) 13311.4 1.29811
\(473\) −34134.7 −3.31822
\(474\) −1796.61 −0.174095
\(475\) −2746.84 −0.265334
\(476\) 0 0
\(477\) −1580.11 −0.151673
\(478\) −2845.78 −0.272307
\(479\) 13772.5 1.31374 0.656871 0.754003i \(-0.271879\pi\)
0.656871 + 0.754003i \(0.271879\pi\)
\(480\) 8777.09 0.834620
\(481\) −7059.23 −0.669175
\(482\) −4206.09 −0.397473
\(483\) 0 0
\(484\) −13874.7 −1.30303
\(485\) 17305.0 1.62017
\(486\) −1669.34 −0.155808
\(487\) −13043.6 −1.21368 −0.606838 0.794825i \(-0.707562\pi\)
−0.606838 + 0.794825i \(0.707562\pi\)
\(488\) 19121.2 1.77372
\(489\) 15529.9 1.43617
\(490\) 0 0
\(491\) −12846.0 −1.18072 −0.590358 0.807141i \(-0.701014\pi\)
−0.590358 + 0.807141i \(0.701014\pi\)
\(492\) −3264.12 −0.299102
\(493\) −1280.56 −0.116985
\(494\) −4999.31 −0.455323
\(495\) −1973.11 −0.179161
\(496\) 268.512 0.0243076
\(497\) 0 0
\(498\) −9231.22 −0.830644
\(499\) −11056.3 −0.991884 −0.495942 0.868356i \(-0.665177\pi\)
−0.495942 + 0.868356i \(0.665177\pi\)
\(500\) 6760.00 0.604633
\(501\) 4715.91 0.420541
\(502\) −4209.34 −0.374247
\(503\) −8979.36 −0.795964 −0.397982 0.917393i \(-0.630289\pi\)
−0.397982 + 0.917393i \(0.630289\pi\)
\(504\) 0 0
\(505\) 9277.67 0.817526
\(506\) 345.932 0.0303924
\(507\) 4650.26 0.407348
\(508\) −3212.24 −0.280552
\(509\) −13284.8 −1.15685 −0.578426 0.815735i \(-0.696333\pi\)
−0.578426 + 0.815735i \(0.696333\pi\)
\(510\) 1258.98 0.109311
\(511\) 0 0
\(512\) 3110.23 0.268465
\(513\) 9445.50 0.812922
\(514\) 4861.78 0.417206
\(515\) 3964.68 0.339232
\(516\) 12494.8 1.06599
\(517\) 26203.0 2.22903
\(518\) 0 0
\(519\) 8166.87 0.690724
\(520\) 8039.28 0.677973
\(521\) 16425.2 1.38119 0.690596 0.723241i \(-0.257348\pi\)
0.690596 + 0.723241i \(0.257348\pi\)
\(522\) 587.176 0.0492337
\(523\) 1965.90 0.164365 0.0821826 0.996617i \(-0.473811\pi\)
0.0821826 + 0.996617i \(0.473811\pi\)
\(524\) −8713.41 −0.726426
\(525\) 0 0
\(526\) −11134.0 −0.922942
\(527\) −404.233 −0.0334131
\(528\) −3174.38 −0.261642
\(529\) −12159.4 −0.999378
\(530\) 8756.73 0.717676
\(531\) 1799.42 0.147059
\(532\) 0 0
\(533\) −4911.44 −0.399133
\(534\) −6165.14 −0.499610
\(535\) 1692.63 0.136783
\(536\) 15867.8 1.27870
\(537\) −10149.9 −0.815646
\(538\) 8068.13 0.646546
\(539\) 0 0
\(540\) −5426.06 −0.432408
\(541\) −10258.1 −0.815214 −0.407607 0.913157i \(-0.633637\pi\)
−0.407607 + 0.913157i \(0.633637\pi\)
\(542\) 1120.49 0.0887994
\(543\) 25686.9 2.03007
\(544\) −2234.70 −0.176125
\(545\) 4297.89 0.337801
\(546\) 0 0
\(547\) 19483.8 1.52298 0.761488 0.648179i \(-0.224469\pi\)
0.761488 + 0.648179i \(0.224469\pi\)
\(548\) −1006.23 −0.0784376
\(549\) 2584.78 0.200939
\(550\) −4787.46 −0.371160
\(551\) −7086.98 −0.547941
\(552\) −354.463 −0.0273314
\(553\) 0 0
\(554\) 3339.19 0.256080
\(555\) 9838.48 0.752469
\(556\) 13017.3 0.992909
\(557\) −22287.0 −1.69539 −0.847695 0.530485i \(-0.822010\pi\)
−0.847695 + 0.530485i \(0.822010\pi\)
\(558\) 185.354 0.0140621
\(559\) 18800.6 1.42250
\(560\) 0 0
\(561\) 4778.89 0.359652
\(562\) −5313.28 −0.398802
\(563\) −6643.41 −0.497312 −0.248656 0.968592i \(-0.579989\pi\)
−0.248656 + 0.968592i \(0.579989\pi\)
\(564\) −9591.43 −0.716086
\(565\) 1953.86 0.145486
\(566\) 16841.3 1.25069
\(567\) 0 0
\(568\) 12146.4 0.897277
\(569\) −6014.51 −0.443131 −0.221565 0.975146i \(-0.571117\pi\)
−0.221565 + 0.975146i \(0.571117\pi\)
\(570\) 6967.56 0.511998
\(571\) −17862.5 −1.30915 −0.654574 0.755998i \(-0.727152\pi\)
−0.654574 + 0.755998i \(0.727152\pi\)
\(572\) 10901.3 0.796862
\(573\) −16270.1 −1.18620
\(574\) 0 0
\(575\) −104.686 −0.00759256
\(576\) 1244.46 0.0900214
\(577\) −23123.4 −1.66835 −0.834177 0.551497i \(-0.814057\pi\)
−0.834177 + 0.551497i \(0.814057\pi\)
\(578\) 8941.21 0.643435
\(579\) 2986.54 0.214363
\(580\) 4071.19 0.291460
\(581\) 0 0
\(582\) 19218.3 1.36877
\(583\) 33239.1 2.36128
\(584\) 11553.5 0.818645
\(585\) 1086.74 0.0768056
\(586\) −280.547 −0.0197769
\(587\) −24310.2 −1.70935 −0.854676 0.519161i \(-0.826244\pi\)
−0.854676 + 0.519161i \(0.826244\pi\)
\(588\) 0 0
\(589\) −2237.14 −0.156502
\(590\) −9972.15 −0.695842
\(591\) 16056.5 1.11756
\(592\) 1663.90 0.115517
\(593\) 704.620 0.0487948 0.0243974 0.999702i \(-0.492233\pi\)
0.0243974 + 0.999702i \(0.492233\pi\)
\(594\) 16462.5 1.13715
\(595\) 0 0
\(596\) 8287.50 0.569579
\(597\) −12855.7 −0.881321
\(598\) −190.531 −0.0130291
\(599\) −9704.05 −0.661931 −0.330966 0.943643i \(-0.607374\pi\)
−0.330966 + 0.943643i \(0.607374\pi\)
\(600\) 4905.52 0.333779
\(601\) 13971.7 0.948282 0.474141 0.880449i \(-0.342759\pi\)
0.474141 + 0.880449i \(0.342759\pi\)
\(602\) 0 0
\(603\) 2145.00 0.144861
\(604\) −5047.86 −0.340057
\(605\) 29096.2 1.95525
\(606\) 10303.4 0.690675
\(607\) −16249.2 −1.08655 −0.543273 0.839556i \(-0.682815\pi\)
−0.543273 + 0.839556i \(0.682815\pi\)
\(608\) −12367.4 −0.824944
\(609\) 0 0
\(610\) −14324.5 −0.950791
\(611\) −14432.0 −0.955573
\(612\) −183.888 −0.0121458
\(613\) 9193.37 0.605737 0.302868 0.953032i \(-0.402056\pi\)
0.302868 + 0.953032i \(0.402056\pi\)
\(614\) −10390.4 −0.682937
\(615\) 6845.10 0.448815
\(616\) 0 0
\(617\) −12376.3 −0.807537 −0.403768 0.914861i \(-0.632300\pi\)
−0.403768 + 0.914861i \(0.632300\pi\)
\(618\) 4403.03 0.286595
\(619\) −5981.48 −0.388394 −0.194197 0.980963i \(-0.562210\pi\)
−0.194197 + 0.980963i \(0.562210\pi\)
\(620\) 1285.15 0.0832465
\(621\) 359.982 0.0232618
\(622\) 1971.95 0.127119
\(623\) 0 0
\(624\) 1748.37 0.112165
\(625\) −9418.35 −0.602774
\(626\) 10944.3 0.698756
\(627\) 26447.7 1.68456
\(628\) 5894.80 0.374567
\(629\) −2504.93 −0.158789
\(630\) 0 0
\(631\) −26330.5 −1.66117 −0.830586 0.556891i \(-0.811994\pi\)
−0.830586 + 0.556891i \(0.811994\pi\)
\(632\) −4070.91 −0.256222
\(633\) 28174.2 1.76907
\(634\) 8460.78 0.530001
\(635\) 6736.31 0.420980
\(636\) −12167.0 −0.758572
\(637\) 0 0
\(638\) −12351.9 −0.766481
\(639\) 1641.94 0.101650
\(640\) 5886.62 0.363577
\(641\) −30520.0 −1.88061 −0.940303 0.340338i \(-0.889459\pi\)
−0.940303 + 0.340338i \(0.889459\pi\)
\(642\) 1879.78 0.115559
\(643\) 26976.4 1.65450 0.827250 0.561834i \(-0.189904\pi\)
0.827250 + 0.561834i \(0.189904\pi\)
\(644\) 0 0
\(645\) −26202.5 −1.59957
\(646\) −1773.98 −0.108044
\(647\) 32125.5 1.95206 0.976030 0.217636i \(-0.0698346\pi\)
0.976030 + 0.217636i \(0.0698346\pi\)
\(648\) −18877.8 −1.14443
\(649\) −37852.7 −2.28944
\(650\) 2636.82 0.159115
\(651\) 0 0
\(652\) 12570.6 0.755067
\(653\) 9507.76 0.569782 0.284891 0.958560i \(-0.408043\pi\)
0.284891 + 0.958560i \(0.408043\pi\)
\(654\) 4773.09 0.285386
\(655\) 18272.7 1.09003
\(656\) 1157.66 0.0689007
\(657\) 1561.80 0.0927420
\(658\) 0 0
\(659\) 357.324 0.0211220 0.0105610 0.999944i \(-0.496638\pi\)
0.0105610 + 0.999944i \(0.496638\pi\)
\(660\) −15193.2 −0.896050
\(661\) 16790.4 0.988007 0.494004 0.869460i \(-0.335533\pi\)
0.494004 + 0.869460i \(0.335533\pi\)
\(662\) −4311.79 −0.253146
\(663\) −2632.10 −0.154181
\(664\) −20916.8 −1.22249
\(665\) 0 0
\(666\) 1148.59 0.0668272
\(667\) −270.096 −0.0156794
\(668\) 3817.28 0.221100
\(669\) 7911.47 0.457212
\(670\) −11887.3 −0.685442
\(671\) −54373.5 −3.12826
\(672\) 0 0
\(673\) 15476.0 0.886413 0.443207 0.896419i \(-0.353841\pi\)
0.443207 + 0.896419i \(0.353841\pi\)
\(674\) −4104.93 −0.234593
\(675\) −4981.90 −0.284079
\(676\) 3764.15 0.214164
\(677\) 6617.54 0.375676 0.187838 0.982200i \(-0.439852\pi\)
0.187838 + 0.982200i \(0.439852\pi\)
\(678\) 2169.89 0.122912
\(679\) 0 0
\(680\) 2852.70 0.160877
\(681\) 20595.4 1.15891
\(682\) −3899.10 −0.218921
\(683\) 29533.9 1.65459 0.827293 0.561770i \(-0.189880\pi\)
0.827293 + 0.561770i \(0.189880\pi\)
\(684\) −1017.69 −0.0568892
\(685\) 2110.13 0.117699
\(686\) 0 0
\(687\) −13286.4 −0.737855
\(688\) −4431.41 −0.245561
\(689\) −18307.3 −1.01227
\(690\) 265.544 0.0146509
\(691\) 12828.8 0.706270 0.353135 0.935572i \(-0.385116\pi\)
0.353135 + 0.935572i \(0.385116\pi\)
\(692\) 6610.66 0.363150
\(693\) 0 0
\(694\) −302.229 −0.0165309
\(695\) −27298.3 −1.48990
\(696\) 12656.5 0.689285
\(697\) −1742.80 −0.0947106
\(698\) −12220.4 −0.662678
\(699\) 23778.2 1.28666
\(700\) 0 0
\(701\) −5929.11 −0.319457 −0.159729 0.987161i \(-0.551062\pi\)
−0.159729 + 0.987161i \(0.551062\pi\)
\(702\) −9067.15 −0.487489
\(703\) −13863.0 −0.743746
\(704\) −26178.4 −1.40147
\(705\) 20113.9 1.07452
\(706\) 9743.75 0.519420
\(707\) 0 0
\(708\) 13855.7 0.735494
\(709\) 1817.66 0.0962817 0.0481409 0.998841i \(-0.484670\pi\)
0.0481409 + 0.998841i \(0.484670\pi\)
\(710\) −9099.44 −0.480980
\(711\) −550.302 −0.0290266
\(712\) −13969.5 −0.735292
\(713\) −85.2609 −0.00447832
\(714\) 0 0
\(715\) −22860.7 −1.19573
\(716\) −8215.84 −0.428828
\(717\) −8291.91 −0.431892
\(718\) −9655.41 −0.501862
\(719\) −32965.9 −1.70990 −0.854951 0.518708i \(-0.826413\pi\)
−0.854951 + 0.518708i \(0.826413\pi\)
\(720\) −256.152 −0.0132586
\(721\) 0 0
\(722\) 3112.55 0.160439
\(723\) −12255.5 −0.630412
\(724\) 20792.2 1.06732
\(725\) 3737.93 0.191481
\(726\) 32313.2 1.65187
\(727\) 10984.0 0.560352 0.280176 0.959949i \(-0.409607\pi\)
0.280176 + 0.959949i \(0.409607\pi\)
\(728\) 0 0
\(729\) 16859.5 0.856552
\(730\) −8655.27 −0.438830
\(731\) 6671.30 0.337547
\(732\) 19903.1 1.00497
\(733\) 36249.7 1.82662 0.913312 0.407261i \(-0.133516\pi\)
0.913312 + 0.407261i \(0.133516\pi\)
\(734\) −9634.16 −0.484473
\(735\) 0 0
\(736\) −471.342 −0.0236058
\(737\) −45122.2 −2.25522
\(738\) 799.128 0.0398595
\(739\) −23770.5 −1.18324 −0.591619 0.806218i \(-0.701511\pi\)
−0.591619 + 0.806218i \(0.701511\pi\)
\(740\) 7963.74 0.395612
\(741\) −14566.8 −0.722164
\(742\) 0 0
\(743\) −8381.03 −0.413823 −0.206911 0.978360i \(-0.566341\pi\)
−0.206911 + 0.978360i \(0.566341\pi\)
\(744\) 3995.26 0.196873
\(745\) −17379.5 −0.854678
\(746\) −13745.2 −0.674596
\(747\) −2827.52 −0.138492
\(748\) 3868.26 0.189088
\(749\) 0 0
\(750\) −15743.6 −0.766500
\(751\) −25231.4 −1.22597 −0.612987 0.790093i \(-0.710032\pi\)
−0.612987 + 0.790093i \(0.710032\pi\)
\(752\) 3401.70 0.164957
\(753\) −12265.0 −0.593574
\(754\) 6803.11 0.328587
\(755\) 10585.7 0.510271
\(756\) 0 0
\(757\) 407.684 0.0195740 0.00978700 0.999952i \(-0.496885\pi\)
0.00978700 + 0.999952i \(0.496885\pi\)
\(758\) −3562.77 −0.170720
\(759\) 1007.96 0.0482039
\(760\) 15787.7 0.753524
\(761\) 12070.6 0.574980 0.287490 0.957784i \(-0.407179\pi\)
0.287490 + 0.957784i \(0.407179\pi\)
\(762\) 7481.10 0.355658
\(763\) 0 0
\(764\) −13169.8 −0.623647
\(765\) 385.626 0.0182253
\(766\) 16319.7 0.769786
\(767\) 20848.3 0.981473
\(768\) 23779.0 1.11726
\(769\) −12595.5 −0.590646 −0.295323 0.955397i \(-0.595427\pi\)
−0.295323 + 0.955397i \(0.595427\pi\)
\(770\) 0 0
\(771\) 14166.1 0.661709
\(772\) 2417.45 0.112702
\(773\) 8785.12 0.408770 0.204385 0.978891i \(-0.434481\pi\)
0.204385 + 0.978891i \(0.434481\pi\)
\(774\) −3059.00 −0.142059
\(775\) 1179.95 0.0546904
\(776\) 43546.5 2.01447
\(777\) 0 0
\(778\) 13961.7 0.643382
\(779\) −9645.15 −0.443612
\(780\) 8368.03 0.384133
\(781\) −34540.0 −1.58251
\(782\) −67.6091 −0.00309168
\(783\) −12853.5 −0.586651
\(784\) 0 0
\(785\) −12361.8 −0.562054
\(786\) 20293.0 0.920898
\(787\) −38765.3 −1.75582 −0.877912 0.478823i \(-0.841064\pi\)
−0.877912 + 0.478823i \(0.841064\pi\)
\(788\) 12996.9 0.587557
\(789\) −32441.9 −1.46383
\(790\) 3049.70 0.137346
\(791\) 0 0
\(792\) −4965.15 −0.222764
\(793\) 29947.6 1.34107
\(794\) 24258.4 1.08425
\(795\) 25515.0 1.13827
\(796\) −10406.0 −0.463357
\(797\) 13331.9 0.592524 0.296262 0.955107i \(-0.404260\pi\)
0.296262 + 0.955107i \(0.404260\pi\)
\(798\) 0 0
\(799\) −5121.12 −0.226749
\(800\) 6523.04 0.288281
\(801\) −1888.38 −0.0832992
\(802\) 26269.8 1.15663
\(803\) −32854.0 −1.44383
\(804\) 16516.7 0.724501
\(805\) 0 0
\(806\) 2147.53 0.0938506
\(807\) 23508.6 1.02545
\(808\) 23346.4 1.01649
\(809\) 21033.9 0.914105 0.457052 0.889440i \(-0.348905\pi\)
0.457052 + 0.889440i \(0.348905\pi\)
\(810\) 14142.2 0.613463
\(811\) 37012.7 1.60258 0.801290 0.598276i \(-0.204147\pi\)
0.801290 + 0.598276i \(0.204147\pi\)
\(812\) 0 0
\(813\) 3264.84 0.140840
\(814\) −24161.8 −1.04038
\(815\) −26361.5 −1.13301
\(816\) 620.401 0.0266157
\(817\) 36920.8 1.58102
\(818\) 7961.29 0.340293
\(819\) 0 0
\(820\) 5540.76 0.235965
\(821\) 35840.7 1.52357 0.761785 0.647830i \(-0.224323\pi\)
0.761785 + 0.647830i \(0.224323\pi\)
\(822\) 2343.43 0.0994363
\(823\) 36223.9 1.53425 0.767123 0.641500i \(-0.221688\pi\)
0.767123 + 0.641500i \(0.221688\pi\)
\(824\) 9976.73 0.421791
\(825\) −13949.5 −0.588678
\(826\) 0 0
\(827\) 3151.66 0.132520 0.0662600 0.997802i \(-0.478893\pi\)
0.0662600 + 0.997802i \(0.478893\pi\)
\(828\) −38.7856 −0.00162789
\(829\) 24737.2 1.03638 0.518189 0.855266i \(-0.326606\pi\)
0.518189 + 0.855266i \(0.326606\pi\)
\(830\) 15669.7 0.655307
\(831\) 9729.59 0.406156
\(832\) 14418.4 0.600805
\(833\) 0 0
\(834\) −30316.5 −1.25872
\(835\) −8005.12 −0.331771
\(836\) 21408.1 0.885662
\(837\) −4057.46 −0.167558
\(838\) −2118.59 −0.0873333
\(839\) −10665.8 −0.438883 −0.219441 0.975626i \(-0.570424\pi\)
−0.219441 + 0.975626i \(0.570424\pi\)
\(840\) 0 0
\(841\) −14745.0 −0.604574
\(842\) 11054.0 0.452431
\(843\) −15481.6 −0.632520
\(844\) 22805.6 0.930094
\(845\) −7893.69 −0.321362
\(846\) 2348.19 0.0954285
\(847\) 0 0
\(848\) 4315.14 0.174744
\(849\) 49071.5 1.98366
\(850\) 935.662 0.0377564
\(851\) −528.340 −0.0212823
\(852\) 12643.1 0.508388
\(853\) 16402.1 0.658377 0.329189 0.944264i \(-0.393225\pi\)
0.329189 + 0.944264i \(0.393225\pi\)
\(854\) 0 0
\(855\) 2134.16 0.0853647
\(856\) 4259.36 0.170072
\(857\) −22835.5 −0.910203 −0.455102 0.890439i \(-0.650397\pi\)
−0.455102 + 0.890439i \(0.650397\pi\)
\(858\) −25388.3 −1.01019
\(859\) 21492.0 0.853662 0.426831 0.904331i \(-0.359630\pi\)
0.426831 + 0.904331i \(0.359630\pi\)
\(860\) −21209.5 −0.840976
\(861\) 0 0
\(862\) −10424.5 −0.411901
\(863\) −22420.9 −0.884376 −0.442188 0.896922i \(-0.645798\pi\)
−0.442188 + 0.896922i \(0.645798\pi\)
\(864\) −22430.6 −0.883223
\(865\) −13863.0 −0.544921
\(866\) 5114.29 0.200682
\(867\) 26052.5 1.02052
\(868\) 0 0
\(869\) 11576.2 0.451892
\(870\) −9481.53 −0.369487
\(871\) 24852.2 0.966803
\(872\) 10815.2 0.420012
\(873\) 5886.57 0.228213
\(874\) −374.168 −0.0144810
\(875\) 0 0
\(876\) 12026.0 0.463836
\(877\) −37647.2 −1.44955 −0.724774 0.688986i \(-0.758056\pi\)
−0.724774 + 0.688986i \(0.758056\pi\)
\(878\) 5331.62 0.204936
\(879\) −817.446 −0.0313672
\(880\) 5388.41 0.206413
\(881\) −7657.11 −0.292820 −0.146410 0.989224i \(-0.546772\pi\)
−0.146410 + 0.989224i \(0.546772\pi\)
\(882\) 0 0
\(883\) −14662.7 −0.558823 −0.279411 0.960171i \(-0.590139\pi\)
−0.279411 + 0.960171i \(0.590139\pi\)
\(884\) −2130.55 −0.0810612
\(885\) −29056.4 −1.10364
\(886\) −10519.5 −0.398883
\(887\) −47147.8 −1.78475 −0.892373 0.451299i \(-0.850961\pi\)
−0.892373 + 0.451299i \(0.850961\pi\)
\(888\) 24757.6 0.935598
\(889\) 0 0
\(890\) 10465.1 0.394149
\(891\) 53681.4 2.01840
\(892\) 6403.93 0.240380
\(893\) −28341.7 −1.06206
\(894\) −19301.0 −0.722062
\(895\) 17229.2 0.643474
\(896\) 0 0
\(897\) −555.162 −0.0206648
\(898\) −26615.9 −0.989069
\(899\) 3044.33 0.112941
\(900\) 536.765 0.0198802
\(901\) −6496.27 −0.240202
\(902\) −16810.5 −0.620541
\(903\) 0 0
\(904\) 4916.71 0.180893
\(905\) −43602.8 −1.60155
\(906\) 11756.1 0.431095
\(907\) 6170.87 0.225910 0.112955 0.993600i \(-0.463968\pi\)
0.112955 + 0.993600i \(0.463968\pi\)
\(908\) 16670.9 0.609299
\(909\) 3155.94 0.115155
\(910\) 0 0
\(911\) −50242.3 −1.82722 −0.913612 0.406586i \(-0.866719\pi\)
−0.913612 + 0.406586i \(0.866719\pi\)
\(912\) 3433.47 0.124664
\(913\) 59479.8 2.15607
\(914\) 11633.9 0.421024
\(915\) −41738.2 −1.50800
\(916\) −10754.6 −0.387929
\(917\) 0 0
\(918\) −3217.44 −0.115677
\(919\) 24844.1 0.891764 0.445882 0.895092i \(-0.352890\pi\)
0.445882 + 0.895092i \(0.352890\pi\)
\(920\) 601.691 0.0215621
\(921\) −30275.2 −1.08317
\(922\) −7321.96 −0.261536
\(923\) 19023.8 0.678414
\(924\) 0 0
\(925\) 7311.86 0.259905
\(926\) −15325.0 −0.543855
\(927\) 1348.65 0.0477835
\(928\) 16829.7 0.595327
\(929\) 24340.8 0.859630 0.429815 0.902917i \(-0.358579\pi\)
0.429815 + 0.902917i \(0.358579\pi\)
\(930\) −2993.03 −0.105532
\(931\) 0 0
\(932\) 19247.3 0.676465
\(933\) 5745.78 0.201617
\(934\) −4112.96 −0.144090
\(935\) −8112.03 −0.283734
\(936\) 2734.69 0.0954979
\(937\) 52000.2 1.81299 0.906496 0.422215i \(-0.138747\pi\)
0.906496 + 0.422215i \(0.138747\pi\)
\(938\) 0 0
\(939\) 31889.0 1.10826
\(940\) 16281.2 0.564930
\(941\) −806.468 −0.0279385 −0.0139692 0.999902i \(-0.504447\pi\)
−0.0139692 + 0.999902i \(0.504447\pi\)
\(942\) −13728.6 −0.474843
\(943\) −367.591 −0.0126940
\(944\) −4914.08 −0.169428
\(945\) 0 0
\(946\) 64349.1 2.21160
\(947\) 46422.7 1.59296 0.796481 0.604664i \(-0.206693\pi\)
0.796481 + 0.604664i \(0.206693\pi\)
\(948\) −4237.38 −0.145173
\(949\) 18095.2 0.618962
\(950\) 5178.22 0.176846
\(951\) 24652.7 0.840607
\(952\) 0 0
\(953\) −21564.0 −0.732975 −0.366487 0.930423i \(-0.619440\pi\)
−0.366487 + 0.930423i \(0.619440\pi\)
\(954\) 2978.74 0.101090
\(955\) 27618.0 0.935808
\(956\) −6711.87 −0.227068
\(957\) −35990.3 −1.21568
\(958\) −25963.3 −0.875612
\(959\) 0 0
\(960\) −20095.1 −0.675589
\(961\) 961.000 0.0322581
\(962\) 13307.7 0.446006
\(963\) 575.776 0.0192670
\(964\) −9920.22 −0.331441
\(965\) −5069.56 −0.169114
\(966\) 0 0
\(967\) 1603.40 0.0533216 0.0266608 0.999645i \(-0.491513\pi\)
0.0266608 + 0.999645i \(0.491513\pi\)
\(968\) 73217.8 2.43110
\(969\) −5168.95 −0.171363
\(970\) −32622.6 −1.07984
\(971\) 14645.9 0.484046 0.242023 0.970271i \(-0.422189\pi\)
0.242023 + 0.970271i \(0.422189\pi\)
\(972\) −3937.20 −0.129924
\(973\) 0 0
\(974\) 24589.1 0.808918
\(975\) 7683.05 0.252364
\(976\) −7058.83 −0.231504
\(977\) 26865.9 0.879750 0.439875 0.898059i \(-0.355023\pi\)
0.439875 + 0.898059i \(0.355023\pi\)
\(978\) −29276.2 −0.957207
\(979\) 39724.0 1.29682
\(980\) 0 0
\(981\) 1462.00 0.0475820
\(982\) 24216.7 0.786950
\(983\) −28969.3 −0.939956 −0.469978 0.882678i \(-0.655738\pi\)
−0.469978 + 0.882678i \(0.655738\pi\)
\(984\) 17225.0 0.558043
\(985\) −27255.4 −0.881655
\(986\) 2414.05 0.0779706
\(987\) 0 0
\(988\) −11791.0 −0.379679
\(989\) 1407.11 0.0452411
\(990\) 3719.62 0.119411
\(991\) −50226.1 −1.60997 −0.804986 0.593293i \(-0.797827\pi\)
−0.804986 + 0.593293i \(0.797827\pi\)
\(992\) 5312.63 0.170037
\(993\) −12563.5 −0.401501
\(994\) 0 0
\(995\) 21822.2 0.695286
\(996\) −21772.2 −0.692649
\(997\) 24320.5 0.772555 0.386278 0.922383i \(-0.373761\pi\)
0.386278 + 0.922383i \(0.373761\pi\)
\(998\) 20842.9 0.661092
\(999\) −25143.1 −0.796288
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1519.4.a.h.1.8 23
7.6 odd 2 1519.4.a.i.1.8 yes 23
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1519.4.a.h.1.8 23 1.1 even 1 trivial
1519.4.a.i.1.8 yes 23 7.6 odd 2