Properties

Label 1519.4.a.h.1.5
Level $1519$
Weight $4$
Character 1519.1
Self dual yes
Analytic conductor $89.624$
Analytic rank $1$
Dimension $23$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1519,4,Mod(1,1519)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1519, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1519.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1519 = 7^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1519.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [23,5,-6,91,-40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.6239012987\)
Analytic rank: \(1\)
Dimension: \(23\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Character \(\chi\) \(=\) 1519.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.43344 q^{2} +7.14275 q^{3} +3.78854 q^{4} +20.1541 q^{5} -24.5242 q^{6} +14.4598 q^{8} +24.0189 q^{9} -69.1980 q^{10} -45.2815 q^{11} +27.0606 q^{12} -48.8977 q^{13} +143.956 q^{15} -79.9553 q^{16} -129.447 q^{17} -82.4675 q^{18} +7.66371 q^{19} +76.3546 q^{20} +155.472 q^{22} +75.5895 q^{23} +103.283 q^{24} +281.188 q^{25} +167.888 q^{26} -21.2934 q^{27} +122.016 q^{29} -494.264 q^{30} -31.0000 q^{31} +158.844 q^{32} -323.435 q^{33} +444.451 q^{34} +90.9965 q^{36} +38.0857 q^{37} -26.3129 q^{38} -349.264 q^{39} +291.424 q^{40} -459.195 q^{41} -162.854 q^{43} -171.551 q^{44} +484.079 q^{45} -259.532 q^{46} -463.507 q^{47} -571.101 q^{48} -965.442 q^{50} -924.611 q^{51} -185.251 q^{52} +411.623 q^{53} +73.1096 q^{54} -912.608 q^{55} +54.7400 q^{57} -418.937 q^{58} +658.985 q^{59} +545.382 q^{60} +46.8510 q^{61} +106.437 q^{62} +94.2618 q^{64} -985.490 q^{65} +1110.49 q^{66} +206.607 q^{67} -490.417 q^{68} +539.917 q^{69} -860.793 q^{71} +347.309 q^{72} -1151.60 q^{73} -130.765 q^{74} +2008.45 q^{75} +29.0343 q^{76} +1199.18 q^{78} -316.963 q^{79} -1611.43 q^{80} -800.603 q^{81} +1576.62 q^{82} -27.1396 q^{83} -2608.90 q^{85} +559.149 q^{86} +871.533 q^{87} -654.762 q^{88} -616.740 q^{89} -1662.06 q^{90} +286.374 q^{92} -221.425 q^{93} +1591.43 q^{94} +154.455 q^{95} +1134.58 q^{96} -898.006 q^{97} -1087.61 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 23 q + 5 q^{2} - 6 q^{3} + 91 q^{4} - 40 q^{5} - 36 q^{6} + 39 q^{8} + 211 q^{9} - 40 q^{10} + 44 q^{11} - 414 q^{12} + 20 q^{13} + 523 q^{16} - 306 q^{17} + 51 q^{18} - 296 q^{19} - 400 q^{20} - 326 q^{22}+ \cdots - 3456 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.43344 −1.21391 −0.606953 0.794738i \(-0.707608\pi\)
−0.606953 + 0.794738i \(0.707608\pi\)
\(3\) 7.14275 1.37462 0.687311 0.726363i \(-0.258791\pi\)
0.687311 + 0.726363i \(0.258791\pi\)
\(4\) 3.78854 0.473568
\(5\) 20.1541 1.80264 0.901319 0.433157i \(-0.142600\pi\)
0.901319 + 0.433157i \(0.142600\pi\)
\(6\) −24.5242 −1.66866
\(7\) 0 0
\(8\) 14.4598 0.639039
\(9\) 24.0189 0.889588
\(10\) −69.1980 −2.18823
\(11\) −45.2815 −1.24117 −0.620586 0.784139i \(-0.713105\pi\)
−0.620586 + 0.784139i \(0.713105\pi\)
\(12\) 27.0606 0.650977
\(13\) −48.8977 −1.04322 −0.521608 0.853186i \(-0.674667\pi\)
−0.521608 + 0.853186i \(0.674667\pi\)
\(14\) 0 0
\(15\) 143.956 2.47795
\(16\) −79.9553 −1.24930
\(17\) −129.447 −1.84680 −0.923400 0.383838i \(-0.874602\pi\)
−0.923400 + 0.383838i \(0.874602\pi\)
\(18\) −82.4675 −1.07988
\(19\) 7.66371 0.0925356 0.0462678 0.998929i \(-0.485267\pi\)
0.0462678 + 0.998929i \(0.485267\pi\)
\(20\) 76.3546 0.853671
\(21\) 0 0
\(22\) 155.472 1.50667
\(23\) 75.5895 0.685282 0.342641 0.939466i \(-0.388678\pi\)
0.342641 + 0.939466i \(0.388678\pi\)
\(24\) 103.283 0.878438
\(25\) 281.188 2.24950
\(26\) 167.888 1.26636
\(27\) −21.2934 −0.151774
\(28\) 0 0
\(29\) 122.016 0.781306 0.390653 0.920538i \(-0.372249\pi\)
0.390653 + 0.920538i \(0.372249\pi\)
\(30\) −494.264 −3.00799
\(31\) −31.0000 −0.179605
\(32\) 158.844 0.877495
\(33\) −323.435 −1.70614
\(34\) 444.451 2.24184
\(35\) 0 0
\(36\) 90.9965 0.421280
\(37\) 38.0857 0.169223 0.0846115 0.996414i \(-0.473035\pi\)
0.0846115 + 0.996414i \(0.473035\pi\)
\(38\) −26.3129 −0.112329
\(39\) −349.264 −1.43403
\(40\) 291.424 1.15196
\(41\) −459.195 −1.74913 −0.874564 0.484909i \(-0.838853\pi\)
−0.874564 + 0.484909i \(0.838853\pi\)
\(42\) 0 0
\(43\) −162.854 −0.577557 −0.288779 0.957396i \(-0.593249\pi\)
−0.288779 + 0.957396i \(0.593249\pi\)
\(44\) −171.551 −0.587779
\(45\) 484.079 1.60360
\(46\) −259.532 −0.831868
\(47\) −463.507 −1.43850 −0.719250 0.694752i \(-0.755514\pi\)
−0.719250 + 0.694752i \(0.755514\pi\)
\(48\) −571.101 −1.71732
\(49\) 0 0
\(50\) −965.442 −2.73068
\(51\) −924.611 −2.53865
\(52\) −185.251 −0.494033
\(53\) 411.623 1.06681 0.533404 0.845861i \(-0.320913\pi\)
0.533404 + 0.845861i \(0.320913\pi\)
\(54\) 73.1096 0.184240
\(55\) −912.608 −2.23738
\(56\) 0 0
\(57\) 54.7400 0.127202
\(58\) −418.937 −0.948432
\(59\) 658.985 1.45411 0.727055 0.686579i \(-0.240889\pi\)
0.727055 + 0.686579i \(0.240889\pi\)
\(60\) 545.382 1.17348
\(61\) 46.8510 0.0983386 0.0491693 0.998790i \(-0.484343\pi\)
0.0491693 + 0.998790i \(0.484343\pi\)
\(62\) 106.437 0.218024
\(63\) 0 0
\(64\) 94.2618 0.184105
\(65\) −985.490 −1.88054
\(66\) 1110.49 2.07110
\(67\) 206.607 0.376733 0.188366 0.982099i \(-0.439681\pi\)
0.188366 + 0.982099i \(0.439681\pi\)
\(68\) −490.417 −0.874585
\(69\) 539.917 0.942005
\(70\) 0 0
\(71\) −860.793 −1.43883 −0.719417 0.694578i \(-0.755591\pi\)
−0.719417 + 0.694578i \(0.755591\pi\)
\(72\) 347.309 0.568482
\(73\) −1151.60 −1.84637 −0.923185 0.384356i \(-0.874424\pi\)
−0.923185 + 0.384356i \(0.874424\pi\)
\(74\) −130.765 −0.205421
\(75\) 2008.45 3.09221
\(76\) 29.0343 0.0438219
\(77\) 0 0
\(78\) 1199.18 1.74077
\(79\) −316.963 −0.451407 −0.225704 0.974196i \(-0.572468\pi\)
−0.225704 + 0.974196i \(0.572468\pi\)
\(80\) −1611.43 −2.25204
\(81\) −800.603 −1.09822
\(82\) 1576.62 2.12328
\(83\) −27.1396 −0.0358910 −0.0179455 0.999839i \(-0.505713\pi\)
−0.0179455 + 0.999839i \(0.505713\pi\)
\(84\) 0 0
\(85\) −2608.90 −3.32911
\(86\) 559.149 0.701100
\(87\) 871.533 1.07400
\(88\) −654.762 −0.793158
\(89\) −616.740 −0.734543 −0.367272 0.930114i \(-0.619708\pi\)
−0.367272 + 0.930114i \(0.619708\pi\)
\(90\) −1662.06 −1.94663
\(91\) 0 0
\(92\) 286.374 0.324528
\(93\) −221.425 −0.246890
\(94\) 1591.43 1.74620
\(95\) 154.455 0.166808
\(96\) 1134.58 1.20622
\(97\) −898.006 −0.939986 −0.469993 0.882670i \(-0.655744\pi\)
−0.469993 + 0.882670i \(0.655744\pi\)
\(98\) 0 0
\(99\) −1087.61 −1.10413
\(100\) 1065.29 1.06529
\(101\) −102.450 −0.100932 −0.0504661 0.998726i \(-0.516071\pi\)
−0.0504661 + 0.998726i \(0.516071\pi\)
\(102\) 3174.60 3.08169
\(103\) 781.745 0.747841 0.373921 0.927461i \(-0.378013\pi\)
0.373921 + 0.927461i \(0.378013\pi\)
\(104\) −707.052 −0.666655
\(105\) 0 0
\(106\) −1413.29 −1.29500
\(107\) 636.318 0.574909 0.287454 0.957794i \(-0.407191\pi\)
0.287454 + 0.957794i \(0.407191\pi\)
\(108\) −80.6708 −0.0718755
\(109\) −1841.67 −1.61835 −0.809174 0.587569i \(-0.800085\pi\)
−0.809174 + 0.587569i \(0.800085\pi\)
\(110\) 3133.39 2.71597
\(111\) 272.037 0.232618
\(112\) 0 0
\(113\) 2017.48 1.67955 0.839774 0.542936i \(-0.182688\pi\)
0.839774 + 0.542936i \(0.182688\pi\)
\(114\) −187.947 −0.154411
\(115\) 1523.44 1.23532
\(116\) 462.264 0.370001
\(117\) −1174.47 −0.928032
\(118\) −2262.59 −1.76515
\(119\) 0 0
\(120\) 2081.57 1.58351
\(121\) 719.415 0.540507
\(122\) −160.860 −0.119374
\(123\) −3279.92 −2.40439
\(124\) −117.445 −0.0850553
\(125\) 3147.82 2.25240
\(126\) 0 0
\(127\) −1811.68 −1.26583 −0.632916 0.774220i \(-0.718142\pi\)
−0.632916 + 0.774220i \(0.718142\pi\)
\(128\) −1594.39 −1.10098
\(129\) −1163.22 −0.793923
\(130\) 3383.62 2.28280
\(131\) −1871.87 −1.24845 −0.624223 0.781246i \(-0.714584\pi\)
−0.624223 + 0.781246i \(0.714584\pi\)
\(132\) −1225.34 −0.807974
\(133\) 0 0
\(134\) −709.375 −0.457318
\(135\) −429.148 −0.273594
\(136\) −1871.79 −1.18018
\(137\) 1147.41 0.715549 0.357775 0.933808i \(-0.383536\pi\)
0.357775 + 0.933808i \(0.383536\pi\)
\(138\) −1853.77 −1.14351
\(139\) −1158.56 −0.706960 −0.353480 0.935442i \(-0.615002\pi\)
−0.353480 + 0.935442i \(0.615002\pi\)
\(140\) 0 0
\(141\) −3310.72 −1.97739
\(142\) 2955.48 1.74661
\(143\) 2214.16 1.29481
\(144\) −1920.44 −1.11136
\(145\) 2459.13 1.40841
\(146\) 3953.97 2.24132
\(147\) 0 0
\(148\) 144.289 0.0801386
\(149\) 2994.34 1.64635 0.823173 0.567790i \(-0.192201\pi\)
0.823173 + 0.567790i \(0.192201\pi\)
\(150\) −6895.91 −3.75366
\(151\) 1318.63 0.710653 0.355327 0.934742i \(-0.384370\pi\)
0.355327 + 0.934742i \(0.384370\pi\)
\(152\) 110.816 0.0591339
\(153\) −3109.18 −1.64289
\(154\) 0 0
\(155\) −624.777 −0.323763
\(156\) −1323.20 −0.679109
\(157\) −266.197 −0.135317 −0.0676586 0.997709i \(-0.521553\pi\)
−0.0676586 + 0.997709i \(0.521553\pi\)
\(158\) 1088.28 0.547966
\(159\) 2940.12 1.46646
\(160\) 3201.35 1.58180
\(161\) 0 0
\(162\) 2748.83 1.33314
\(163\) −1658.19 −0.796807 −0.398403 0.917210i \(-0.630436\pi\)
−0.398403 + 0.917210i \(0.630436\pi\)
\(164\) −1739.68 −0.828331
\(165\) −6518.53 −3.07556
\(166\) 93.1822 0.0435683
\(167\) −1905.59 −0.882989 −0.441494 0.897264i \(-0.645551\pi\)
−0.441494 + 0.897264i \(0.645551\pi\)
\(168\) 0 0
\(169\) 193.990 0.0882976
\(170\) 8957.50 4.04123
\(171\) 184.074 0.0823186
\(172\) −616.978 −0.273512
\(173\) −1720.26 −0.756006 −0.378003 0.925804i \(-0.623389\pi\)
−0.378003 + 0.925804i \(0.623389\pi\)
\(174\) −2992.36 −1.30374
\(175\) 0 0
\(176\) 3620.50 1.55060
\(177\) 4706.96 1.99885
\(178\) 2117.54 0.891667
\(179\) 1163.37 0.485780 0.242890 0.970054i \(-0.421905\pi\)
0.242890 + 0.970054i \(0.421905\pi\)
\(180\) 1833.95 0.759415
\(181\) 1340.88 0.550647 0.275323 0.961352i \(-0.411215\pi\)
0.275323 + 0.961352i \(0.411215\pi\)
\(182\) 0 0
\(183\) 334.645 0.135178
\(184\) 1093.01 0.437923
\(185\) 767.583 0.305048
\(186\) 760.251 0.299701
\(187\) 5861.58 2.29220
\(188\) −1756.02 −0.681227
\(189\) 0 0
\(190\) −530.313 −0.202489
\(191\) −1727.63 −0.654487 −0.327243 0.944940i \(-0.606120\pi\)
−0.327243 + 0.944940i \(0.606120\pi\)
\(192\) 673.288 0.253075
\(193\) 3142.56 1.17205 0.586027 0.810291i \(-0.300691\pi\)
0.586027 + 0.810291i \(0.300691\pi\)
\(194\) 3083.25 1.14105
\(195\) −7039.11 −2.58503
\(196\) 0 0
\(197\) 592.207 0.214178 0.107089 0.994249i \(-0.465847\pi\)
0.107089 + 0.994249i \(0.465847\pi\)
\(198\) 3734.25 1.34031
\(199\) 3234.34 1.15214 0.576072 0.817399i \(-0.304585\pi\)
0.576072 + 0.817399i \(0.304585\pi\)
\(200\) 4065.92 1.43752
\(201\) 1475.74 0.517866
\(202\) 351.756 0.122522
\(203\) 0 0
\(204\) −3502.93 −1.20222
\(205\) −9254.67 −3.15304
\(206\) −2684.08 −0.907809
\(207\) 1815.58 0.609619
\(208\) 3909.63 1.30329
\(209\) −347.024 −0.114853
\(210\) 0 0
\(211\) 685.823 0.223763 0.111881 0.993722i \(-0.464312\pi\)
0.111881 + 0.993722i \(0.464312\pi\)
\(212\) 1559.45 0.505206
\(213\) −6148.43 −1.97786
\(214\) −2184.76 −0.697885
\(215\) −3282.17 −1.04113
\(216\) −307.898 −0.0969898
\(217\) 0 0
\(218\) 6323.27 1.96452
\(219\) −8225.62 −2.53806
\(220\) −3457.45 −1.05955
\(221\) 6329.69 1.92661
\(222\) −934.023 −0.282376
\(223\) −3511.63 −1.05451 −0.527257 0.849706i \(-0.676779\pi\)
−0.527257 + 0.849706i \(0.676779\pi\)
\(224\) 0 0
\(225\) 6753.81 2.00113
\(226\) −6926.92 −2.03881
\(227\) −1339.76 −0.391730 −0.195865 0.980631i \(-0.562752\pi\)
−0.195865 + 0.980631i \(0.562752\pi\)
\(228\) 207.385 0.0602385
\(229\) −1381.53 −0.398664 −0.199332 0.979932i \(-0.563877\pi\)
−0.199332 + 0.979932i \(0.563877\pi\)
\(230\) −5230.64 −1.49956
\(231\) 0 0
\(232\) 1764.33 0.499285
\(233\) 1264.99 0.355676 0.177838 0.984060i \(-0.443090\pi\)
0.177838 + 0.984060i \(0.443090\pi\)
\(234\) 4032.48 1.12654
\(235\) −9341.57 −2.59309
\(236\) 2496.59 0.688619
\(237\) −2263.99 −0.620514
\(238\) 0 0
\(239\) 1778.75 0.481412 0.240706 0.970598i \(-0.422621\pi\)
0.240706 + 0.970598i \(0.422621\pi\)
\(240\) −11510.0 −3.09570
\(241\) −4920.45 −1.31516 −0.657582 0.753383i \(-0.728421\pi\)
−0.657582 + 0.753383i \(0.728421\pi\)
\(242\) −2470.07 −0.656125
\(243\) −5143.59 −1.35787
\(244\) 177.497 0.0465700
\(245\) 0 0
\(246\) 11261.4 2.91871
\(247\) −374.738 −0.0965345
\(248\) −448.254 −0.114775
\(249\) −193.851 −0.0493366
\(250\) −10807.9 −2.73420
\(251\) −5897.79 −1.48313 −0.741565 0.670881i \(-0.765916\pi\)
−0.741565 + 0.670881i \(0.765916\pi\)
\(252\) 0 0
\(253\) −3422.81 −0.850553
\(254\) 6220.31 1.53660
\(255\) −18634.7 −4.57627
\(256\) 4720.16 1.15238
\(257\) 6593.02 1.60024 0.800120 0.599841i \(-0.204769\pi\)
0.800120 + 0.599841i \(0.204769\pi\)
\(258\) 3993.86 0.963748
\(259\) 0 0
\(260\) −3733.57 −0.890562
\(261\) 2930.70 0.695041
\(262\) 6426.98 1.51550
\(263\) 111.057 0.0260383 0.0130191 0.999915i \(-0.495856\pi\)
0.0130191 + 0.999915i \(0.495856\pi\)
\(264\) −4676.80 −1.09029
\(265\) 8295.90 1.92307
\(266\) 0 0
\(267\) −4405.22 −1.00972
\(268\) 782.741 0.178409
\(269\) 4754.87 1.07773 0.538865 0.842392i \(-0.318853\pi\)
0.538865 + 0.842392i \(0.318853\pi\)
\(270\) 1473.46 0.332118
\(271\) −1084.76 −0.243154 −0.121577 0.992582i \(-0.538795\pi\)
−0.121577 + 0.992582i \(0.538795\pi\)
\(272\) 10350.0 2.30721
\(273\) 0 0
\(274\) −3939.58 −0.868610
\(275\) −12732.6 −2.79202
\(276\) 2045.50 0.446103
\(277\) −111.129 −0.0241050 −0.0120525 0.999927i \(-0.503837\pi\)
−0.0120525 + 0.999927i \(0.503837\pi\)
\(278\) 3977.84 0.858183
\(279\) −744.585 −0.159775
\(280\) 0 0
\(281\) −6678.95 −1.41791 −0.708955 0.705254i \(-0.750833\pi\)
−0.708955 + 0.705254i \(0.750833\pi\)
\(282\) 11367.2 2.40037
\(283\) 7132.95 1.49827 0.749135 0.662418i \(-0.230470\pi\)
0.749135 + 0.662418i \(0.230470\pi\)
\(284\) −3261.15 −0.681386
\(285\) 1103.23 0.229298
\(286\) −7602.21 −1.57178
\(287\) 0 0
\(288\) 3815.24 0.780609
\(289\) 11843.6 2.41067
\(290\) −8443.29 −1.70968
\(291\) −6414.23 −1.29213
\(292\) −4362.90 −0.874381
\(293\) −1089.85 −0.217303 −0.108652 0.994080i \(-0.534653\pi\)
−0.108652 + 0.994080i \(0.534653\pi\)
\(294\) 0 0
\(295\) 13281.2 2.62123
\(296\) 550.712 0.108140
\(297\) 964.196 0.188378
\(298\) −10280.9 −1.99851
\(299\) −3696.16 −0.714897
\(300\) 7609.10 1.46437
\(301\) 0 0
\(302\) −4527.44 −0.862666
\(303\) −731.774 −0.138744
\(304\) −612.754 −0.115605
\(305\) 944.239 0.177269
\(306\) 10675.2 1.99432
\(307\) 1800.98 0.334812 0.167406 0.985888i \(-0.446461\pi\)
0.167406 + 0.985888i \(0.446461\pi\)
\(308\) 0 0
\(309\) 5583.81 1.02800
\(310\) 2145.14 0.393018
\(311\) −2437.50 −0.444431 −0.222215 0.974998i \(-0.571329\pi\)
−0.222215 + 0.974998i \(0.571329\pi\)
\(312\) −5050.30 −0.916400
\(313\) −393.707 −0.0710978 −0.0355489 0.999368i \(-0.511318\pi\)
−0.0355489 + 0.999368i \(0.511318\pi\)
\(314\) 913.971 0.164262
\(315\) 0 0
\(316\) −1200.83 −0.213772
\(317\) −10858.2 −1.92383 −0.961916 0.273344i \(-0.911870\pi\)
−0.961916 + 0.273344i \(0.911870\pi\)
\(318\) −10094.8 −1.78014
\(319\) −5525.09 −0.969735
\(320\) 1899.76 0.331875
\(321\) 4545.06 0.790283
\(322\) 0 0
\(323\) −992.048 −0.170895
\(324\) −3033.12 −0.520082
\(325\) −13749.4 −2.34671
\(326\) 5693.31 0.967249
\(327\) −13154.6 −2.22462
\(328\) −6639.88 −1.11776
\(329\) 0 0
\(330\) 22381.0 3.73344
\(331\) 6793.88 1.12817 0.564086 0.825716i \(-0.309228\pi\)
0.564086 + 0.825716i \(0.309228\pi\)
\(332\) −102.819 −0.0169968
\(333\) 914.776 0.150539
\(334\) 6542.74 1.07187
\(335\) 4163.98 0.679113
\(336\) 0 0
\(337\) 1194.77 0.193126 0.0965630 0.995327i \(-0.469215\pi\)
0.0965630 + 0.995327i \(0.469215\pi\)
\(338\) −666.053 −0.107185
\(339\) 14410.4 2.30874
\(340\) −9883.91 −1.57656
\(341\) 1403.73 0.222921
\(342\) −632.007 −0.0999270
\(343\) 0 0
\(344\) −2354.83 −0.369082
\(345\) 10881.5 1.69809
\(346\) 5906.42 0.917721
\(347\) 8195.06 1.26782 0.633910 0.773407i \(-0.281449\pi\)
0.633910 + 0.773407i \(0.281449\pi\)
\(348\) 3301.84 0.508612
\(349\) −176.910 −0.0271341 −0.0135670 0.999908i \(-0.504319\pi\)
−0.0135670 + 0.999908i \(0.504319\pi\)
\(350\) 0 0
\(351\) 1041.20 0.158333
\(352\) −7192.68 −1.08912
\(353\) −7535.84 −1.13624 −0.568120 0.822946i \(-0.692329\pi\)
−0.568120 + 0.822946i \(0.692329\pi\)
\(354\) −16161.1 −2.42642
\(355\) −17348.5 −2.59370
\(356\) −2336.55 −0.347856
\(357\) 0 0
\(358\) −3994.38 −0.589691
\(359\) 11893.9 1.74857 0.874287 0.485409i \(-0.161329\pi\)
0.874287 + 0.485409i \(0.161329\pi\)
\(360\) 6999.69 1.02477
\(361\) −6800.27 −0.991437
\(362\) −4603.85 −0.668433
\(363\) 5138.60 0.742994
\(364\) 0 0
\(365\) −23209.5 −3.32833
\(366\) −1148.98 −0.164094
\(367\) −32.1253 −0.00456928 −0.00228464 0.999997i \(-0.500727\pi\)
−0.00228464 + 0.999997i \(0.500727\pi\)
\(368\) −6043.78 −0.856124
\(369\) −11029.4 −1.55600
\(370\) −2635.45 −0.370299
\(371\) 0 0
\(372\) −838.879 −0.116919
\(373\) 9694.12 1.34569 0.672845 0.739783i \(-0.265072\pi\)
0.672845 + 0.739783i \(0.265072\pi\)
\(374\) −20125.4 −2.78251
\(375\) 22484.1 3.09619
\(376\) −6702.23 −0.919258
\(377\) −5966.33 −0.815070
\(378\) 0 0
\(379\) 1157.26 0.156846 0.0784229 0.996920i \(-0.475012\pi\)
0.0784229 + 0.996920i \(0.475012\pi\)
\(380\) 585.160 0.0789949
\(381\) −12940.4 −1.74004
\(382\) 5931.73 0.794485
\(383\) −9682.74 −1.29181 −0.645907 0.763416i \(-0.723521\pi\)
−0.645907 + 0.763416i \(0.723521\pi\)
\(384\) −11388.3 −1.51343
\(385\) 0 0
\(386\) −10789.8 −1.42276
\(387\) −3911.56 −0.513788
\(388\) −3402.13 −0.445147
\(389\) −3160.32 −0.411914 −0.205957 0.978561i \(-0.566031\pi\)
−0.205957 + 0.978561i \(0.566031\pi\)
\(390\) 24168.4 3.13798
\(391\) −9784.86 −1.26558
\(392\) 0 0
\(393\) −13370.3 −1.71614
\(394\) −2033.31 −0.259992
\(395\) −6388.11 −0.813723
\(396\) −4120.46 −0.522881
\(397\) −12660.0 −1.60047 −0.800236 0.599685i \(-0.795292\pi\)
−0.800236 + 0.599685i \(0.795292\pi\)
\(398\) −11104.9 −1.39859
\(399\) 0 0
\(400\) −22482.4 −2.81030
\(401\) 7200.69 0.896721 0.448360 0.893853i \(-0.352008\pi\)
0.448360 + 0.893853i \(0.352008\pi\)
\(402\) −5066.89 −0.628640
\(403\) 1515.83 0.187367
\(404\) −388.136 −0.0477982
\(405\) −16135.4 −1.97969
\(406\) 0 0
\(407\) −1724.58 −0.210035
\(408\) −13369.7 −1.62230
\(409\) 5732.94 0.693094 0.346547 0.938033i \(-0.387354\pi\)
0.346547 + 0.938033i \(0.387354\pi\)
\(410\) 31775.4 3.82750
\(411\) 8195.70 0.983610
\(412\) 2961.67 0.354154
\(413\) 0 0
\(414\) −6233.68 −0.740021
\(415\) −546.973 −0.0646985
\(416\) −7767.09 −0.915416
\(417\) −8275.28 −0.971804
\(418\) 1191.49 0.139420
\(419\) −6793.44 −0.792080 −0.396040 0.918233i \(-0.629616\pi\)
−0.396040 + 0.918233i \(0.629616\pi\)
\(420\) 0 0
\(421\) −16394.5 −1.89791 −0.948956 0.315409i \(-0.897858\pi\)
−0.948956 + 0.315409i \(0.897858\pi\)
\(422\) −2354.73 −0.271627
\(423\) −11132.9 −1.27967
\(424\) 5952.00 0.681732
\(425\) −36399.0 −4.15438
\(426\) 21110.3 2.40093
\(427\) 0 0
\(428\) 2410.72 0.272258
\(429\) 15815.2 1.77987
\(430\) 11269.1 1.26383
\(431\) 7563.78 0.845324 0.422662 0.906287i \(-0.361096\pi\)
0.422662 + 0.906287i \(0.361096\pi\)
\(432\) 1702.52 0.189612
\(433\) 5214.40 0.578725 0.289362 0.957220i \(-0.406557\pi\)
0.289362 + 0.957220i \(0.406557\pi\)
\(434\) 0 0
\(435\) 17565.0 1.93603
\(436\) −6977.24 −0.766397
\(437\) 579.296 0.0634130
\(438\) 28242.2 3.08097
\(439\) 10204.0 1.10937 0.554683 0.832062i \(-0.312839\pi\)
0.554683 + 0.832062i \(0.312839\pi\)
\(440\) −13196.1 −1.42978
\(441\) 0 0
\(442\) −21732.6 −2.33872
\(443\) −10816.9 −1.16011 −0.580053 0.814578i \(-0.696968\pi\)
−0.580053 + 0.814578i \(0.696968\pi\)
\(444\) 1030.62 0.110160
\(445\) −12429.8 −1.32412
\(446\) 12057.0 1.28008
\(447\) 21387.8 2.26311
\(448\) 0 0
\(449\) −10060.4 −1.05742 −0.528708 0.848804i \(-0.677323\pi\)
−0.528708 + 0.848804i \(0.677323\pi\)
\(450\) −23188.8 −2.42918
\(451\) 20793.1 2.17097
\(452\) 7643.32 0.795379
\(453\) 9418.65 0.976880
\(454\) 4599.98 0.475524
\(455\) 0 0
\(456\) 791.530 0.0812868
\(457\) 13568.3 1.38883 0.694417 0.719573i \(-0.255662\pi\)
0.694417 + 0.719573i \(0.255662\pi\)
\(458\) 4743.40 0.483940
\(459\) 2756.37 0.280297
\(460\) 5771.61 0.585005
\(461\) 2265.96 0.228929 0.114465 0.993427i \(-0.463485\pi\)
0.114465 + 0.993427i \(0.463485\pi\)
\(462\) 0 0
\(463\) −15276.2 −1.53336 −0.766678 0.642031i \(-0.778092\pi\)
−0.766678 + 0.642031i \(0.778092\pi\)
\(464\) −9755.86 −0.976087
\(465\) −4462.63 −0.445052
\(466\) −4343.28 −0.431757
\(467\) 9287.49 0.920287 0.460143 0.887845i \(-0.347798\pi\)
0.460143 + 0.887845i \(0.347798\pi\)
\(468\) −4449.53 −0.439486
\(469\) 0 0
\(470\) 32073.8 3.14777
\(471\) −1901.38 −0.186010
\(472\) 9528.79 0.929233
\(473\) 7374.26 0.716848
\(474\) 7773.28 0.753246
\(475\) 2154.94 0.208159
\(476\) 0 0
\(477\) 9886.74 0.949020
\(478\) −6107.22 −0.584389
\(479\) 1181.38 0.112690 0.0563451 0.998411i \(-0.482055\pi\)
0.0563451 + 0.998411i \(0.482055\pi\)
\(480\) 22866.4 2.17439
\(481\) −1862.31 −0.176536
\(482\) 16894.1 1.59648
\(483\) 0 0
\(484\) 2725.53 0.255967
\(485\) −18098.5 −1.69445
\(486\) 17660.2 1.64832
\(487\) −12878.9 −1.19835 −0.599176 0.800618i \(-0.704505\pi\)
−0.599176 + 0.800618i \(0.704505\pi\)
\(488\) 677.456 0.0628422
\(489\) −11844.0 −1.09531
\(490\) 0 0
\(491\) −4684.26 −0.430545 −0.215273 0.976554i \(-0.569064\pi\)
−0.215273 + 0.976554i \(0.569064\pi\)
\(492\) −12426.1 −1.13864
\(493\) −15794.7 −1.44292
\(494\) 1286.64 0.117184
\(495\) −21919.8 −1.99035
\(496\) 2478.61 0.224381
\(497\) 0 0
\(498\) 665.577 0.0598900
\(499\) 20385.2 1.82879 0.914394 0.404826i \(-0.132668\pi\)
0.914394 + 0.404826i \(0.132668\pi\)
\(500\) 11925.6 1.06666
\(501\) −13611.2 −1.21378
\(502\) 20249.7 1.80038
\(503\) 6735.74 0.597081 0.298540 0.954397i \(-0.403500\pi\)
0.298540 + 0.954397i \(0.403500\pi\)
\(504\) 0 0
\(505\) −2064.79 −0.181944
\(506\) 11752.0 1.03249
\(507\) 1385.62 0.121376
\(508\) −6863.63 −0.599457
\(509\) 9255.00 0.805934 0.402967 0.915214i \(-0.367979\pi\)
0.402967 + 0.915214i \(0.367979\pi\)
\(510\) 63981.2 5.55517
\(511\) 0 0
\(512\) −3451.28 −0.297903
\(513\) −163.186 −0.0140445
\(514\) −22636.8 −1.94254
\(515\) 15755.4 1.34809
\(516\) −4406.92 −0.375976
\(517\) 20988.3 1.78542
\(518\) 0 0
\(519\) −12287.4 −1.03922
\(520\) −14250.0 −1.20174
\(521\) 22973.1 1.93180 0.965900 0.258916i \(-0.0833652\pi\)
0.965900 + 0.258916i \(0.0833652\pi\)
\(522\) −10062.4 −0.843714
\(523\) −18656.5 −1.55983 −0.779915 0.625885i \(-0.784738\pi\)
−0.779915 + 0.625885i \(0.784738\pi\)
\(524\) −7091.67 −0.591224
\(525\) 0 0
\(526\) −381.308 −0.0316080
\(527\) 4012.87 0.331695
\(528\) 25860.3 2.13149
\(529\) −6453.23 −0.530388
\(530\) −28483.5 −2.33442
\(531\) 15828.1 1.29356
\(532\) 0 0
\(533\) 22453.6 1.82472
\(534\) 15125.1 1.22571
\(535\) 12824.4 1.03635
\(536\) 2987.50 0.240747
\(537\) 8309.68 0.667764
\(538\) −16325.6 −1.30826
\(539\) 0 0
\(540\) −1625.85 −0.129565
\(541\) −10162.5 −0.807614 −0.403807 0.914844i \(-0.632313\pi\)
−0.403807 + 0.914844i \(0.632313\pi\)
\(542\) 3724.48 0.295166
\(543\) 9577.59 0.756931
\(544\) −20561.9 −1.62056
\(545\) −37117.2 −2.91729
\(546\) 0 0
\(547\) −10318.7 −0.806570 −0.403285 0.915074i \(-0.632132\pi\)
−0.403285 + 0.915074i \(0.632132\pi\)
\(548\) 4347.03 0.338861
\(549\) 1125.31 0.0874808
\(550\) 43716.7 3.38924
\(551\) 935.099 0.0722986
\(552\) 7807.10 0.601978
\(553\) 0 0
\(554\) 381.555 0.0292613
\(555\) 5482.65 0.419326
\(556\) −4389.24 −0.334793
\(557\) −16895.5 −1.28525 −0.642624 0.766182i \(-0.722154\pi\)
−0.642624 + 0.766182i \(0.722154\pi\)
\(558\) 2556.49 0.193952
\(559\) 7963.18 0.602516
\(560\) 0 0
\(561\) 41867.8 3.15091
\(562\) 22931.8 1.72121
\(563\) 11013.2 0.824423 0.412211 0.911088i \(-0.364757\pi\)
0.412211 + 0.911088i \(0.364757\pi\)
\(564\) −12542.8 −0.936430
\(565\) 40660.6 3.02761
\(566\) −24490.6 −1.81876
\(567\) 0 0
\(568\) −12446.9 −0.919472
\(569\) 5014.70 0.369468 0.184734 0.982789i \(-0.440858\pi\)
0.184734 + 0.982789i \(0.440858\pi\)
\(570\) −3787.90 −0.278346
\(571\) 9669.39 0.708671 0.354336 0.935118i \(-0.384707\pi\)
0.354336 + 0.935118i \(0.384707\pi\)
\(572\) 8388.45 0.613180
\(573\) −12340.0 −0.899673
\(574\) 0 0
\(575\) 21254.8 1.54154
\(576\) 2264.06 0.163778
\(577\) 18084.1 1.30477 0.652383 0.757889i \(-0.273769\pi\)
0.652383 + 0.757889i \(0.273769\pi\)
\(578\) −40664.5 −2.92633
\(579\) 22446.5 1.61113
\(580\) 9316.52 0.666978
\(581\) 0 0
\(582\) 22022.9 1.56852
\(583\) −18638.9 −1.32409
\(584\) −16652.0 −1.17990
\(585\) −23670.4 −1.67290
\(586\) 3741.95 0.263786
\(587\) 17325.8 1.21825 0.609125 0.793074i \(-0.291521\pi\)
0.609125 + 0.793074i \(0.291521\pi\)
\(588\) 0 0
\(589\) −237.575 −0.0166199
\(590\) −45600.4 −3.18193
\(591\) 4229.99 0.294414
\(592\) −3045.15 −0.211411
\(593\) 3261.52 0.225860 0.112930 0.993603i \(-0.463976\pi\)
0.112930 + 0.993603i \(0.463976\pi\)
\(594\) −3310.51 −0.228673
\(595\) 0 0
\(596\) 11344.2 0.779656
\(597\) 23102.1 1.58376
\(598\) 12690.5 0.867818
\(599\) 1032.57 0.0704332 0.0352166 0.999380i \(-0.488788\pi\)
0.0352166 + 0.999380i \(0.488788\pi\)
\(600\) 29041.8 1.97605
\(601\) 17047.4 1.15703 0.578516 0.815671i \(-0.303632\pi\)
0.578516 + 0.815671i \(0.303632\pi\)
\(602\) 0 0
\(603\) 4962.48 0.335137
\(604\) 4995.68 0.336542
\(605\) 14499.2 0.974338
\(606\) 2512.51 0.168422
\(607\) 16096.1 1.07631 0.538154 0.842847i \(-0.319122\pi\)
0.538154 + 0.842847i \(0.319122\pi\)
\(608\) 1217.33 0.0811995
\(609\) 0 0
\(610\) −3241.99 −0.215188
\(611\) 22664.5 1.50066
\(612\) −11779.3 −0.778021
\(613\) 16465.1 1.08486 0.542431 0.840100i \(-0.317504\pi\)
0.542431 + 0.840100i \(0.317504\pi\)
\(614\) −6183.57 −0.406431
\(615\) −66103.8 −4.33425
\(616\) 0 0
\(617\) −7750.51 −0.505711 −0.252856 0.967504i \(-0.581370\pi\)
−0.252856 + 0.967504i \(0.581370\pi\)
\(618\) −19171.7 −1.24790
\(619\) 20355.8 1.32176 0.660878 0.750493i \(-0.270184\pi\)
0.660878 + 0.750493i \(0.270184\pi\)
\(620\) −2366.99 −0.153324
\(621\) −1609.55 −0.104008
\(622\) 8369.02 0.539497
\(623\) 0 0
\(624\) 27925.5 1.79153
\(625\) 28293.0 1.81075
\(626\) 1351.77 0.0863060
\(627\) −2478.71 −0.157879
\(628\) −1008.50 −0.0640818
\(629\) −4930.10 −0.312521
\(630\) 0 0
\(631\) 23215.4 1.46465 0.732323 0.680958i \(-0.238436\pi\)
0.732323 + 0.680958i \(0.238436\pi\)
\(632\) −4583.23 −0.288467
\(633\) 4898.66 0.307590
\(634\) 37280.9 2.33535
\(635\) −36512.8 −2.28184
\(636\) 11138.8 0.694467
\(637\) 0 0
\(638\) 18970.1 1.17717
\(639\) −20675.3 −1.27997
\(640\) −32133.5 −1.98467
\(641\) −14526.8 −0.895124 −0.447562 0.894253i \(-0.647708\pi\)
−0.447562 + 0.894253i \(0.647708\pi\)
\(642\) −15605.2 −0.959329
\(643\) 28240.2 1.73201 0.866007 0.500031i \(-0.166678\pi\)
0.866007 + 0.500031i \(0.166678\pi\)
\(644\) 0 0
\(645\) −23443.7 −1.43116
\(646\) 3406.14 0.207450
\(647\) −19897.9 −1.20907 −0.604534 0.796579i \(-0.706641\pi\)
−0.604534 + 0.796579i \(0.706641\pi\)
\(648\) −11576.6 −0.701806
\(649\) −29839.8 −1.80480
\(650\) 47207.9 2.84869
\(651\) 0 0
\(652\) −6282.12 −0.377342
\(653\) 6834.90 0.409602 0.204801 0.978804i \(-0.434345\pi\)
0.204801 + 0.978804i \(0.434345\pi\)
\(654\) 45165.5 2.70048
\(655\) −37725.9 −2.25049
\(656\) 36715.1 2.18519
\(657\) −27660.2 −1.64251
\(658\) 0 0
\(659\) −25450.7 −1.50443 −0.752215 0.658918i \(-0.771015\pi\)
−0.752215 + 0.658918i \(0.771015\pi\)
\(660\) −24695.7 −1.45648
\(661\) 5696.97 0.335229 0.167615 0.985853i \(-0.446394\pi\)
0.167615 + 0.985853i \(0.446394\pi\)
\(662\) −23326.4 −1.36950
\(663\) 45211.4 2.64836
\(664\) −392.433 −0.0229358
\(665\) 0 0
\(666\) −3140.83 −0.182740
\(667\) 9223.16 0.535416
\(668\) −7219.41 −0.418155
\(669\) −25082.7 −1.44956
\(670\) −14296.8 −0.824379
\(671\) −2121.48 −0.122055
\(672\) 0 0
\(673\) −1003.65 −0.0574855 −0.0287427 0.999587i \(-0.509150\pi\)
−0.0287427 + 0.999587i \(0.509150\pi\)
\(674\) −4102.19 −0.234437
\(675\) −5987.43 −0.341417
\(676\) 734.938 0.0418149
\(677\) −7108.38 −0.403541 −0.201770 0.979433i \(-0.564670\pi\)
−0.201770 + 0.979433i \(0.564670\pi\)
\(678\) −49477.2 −2.80260
\(679\) 0 0
\(680\) −37724.1 −2.12743
\(681\) −9569.55 −0.538482
\(682\) −4819.62 −0.270605
\(683\) 5410.24 0.303100 0.151550 0.988450i \(-0.451574\pi\)
0.151550 + 0.988450i \(0.451574\pi\)
\(684\) 697.371 0.0389834
\(685\) 23125.1 1.28988
\(686\) 0 0
\(687\) −9867.91 −0.548012
\(688\) 13021.0 0.721543
\(689\) −20127.5 −1.11291
\(690\) −37361.1 −2.06133
\(691\) 12652.6 0.696565 0.348282 0.937390i \(-0.386765\pi\)
0.348282 + 0.937390i \(0.386765\pi\)
\(692\) −6517.28 −0.358020
\(693\) 0 0
\(694\) −28137.3 −1.53902
\(695\) −23349.7 −1.27439
\(696\) 12602.2 0.686329
\(697\) 59441.7 3.23029
\(698\) 607.411 0.0329382
\(699\) 9035.52 0.488920
\(700\) 0 0
\(701\) 13078.1 0.704640 0.352320 0.935880i \(-0.385393\pi\)
0.352320 + 0.935880i \(0.385393\pi\)
\(702\) −3574.89 −0.192202
\(703\) 291.878 0.0156592
\(704\) −4268.32 −0.228506
\(705\) −66724.5 −3.56452
\(706\) 25873.9 1.37929
\(707\) 0 0
\(708\) 17832.5 0.946592
\(709\) −1757.47 −0.0930935 −0.0465467 0.998916i \(-0.514822\pi\)
−0.0465467 + 0.998916i \(0.514822\pi\)
\(710\) 59565.1 3.14850
\(711\) −7613.10 −0.401566
\(712\) −8917.95 −0.469402
\(713\) −2343.27 −0.123080
\(714\) 0 0
\(715\) 44624.5 2.33407
\(716\) 4407.49 0.230050
\(717\) 12705.1 0.661760
\(718\) −40837.2 −2.12260
\(719\) −20874.1 −1.08271 −0.541357 0.840793i \(-0.682089\pi\)
−0.541357 + 0.840793i \(0.682089\pi\)
\(720\) −38704.7 −2.00339
\(721\) 0 0
\(722\) 23348.3 1.20351
\(723\) −35145.6 −1.80785
\(724\) 5079.99 0.260768
\(725\) 34309.5 1.75755
\(726\) −17643.1 −0.901924
\(727\) 424.484 0.0216551 0.0108275 0.999941i \(-0.496553\pi\)
0.0108275 + 0.999941i \(0.496553\pi\)
\(728\) 0 0
\(729\) −15123.1 −0.768332
\(730\) 79688.6 4.04029
\(731\) 21081.0 1.06663
\(732\) 1267.82 0.0640161
\(733\) −20852.7 −1.05077 −0.525384 0.850865i \(-0.676078\pi\)
−0.525384 + 0.850865i \(0.676078\pi\)
\(734\) 110.300 0.00554667
\(735\) 0 0
\(736\) 12006.9 0.601332
\(737\) −9355.49 −0.467590
\(738\) 37868.7 1.88884
\(739\) −3608.77 −0.179636 −0.0898178 0.995958i \(-0.528628\pi\)
−0.0898178 + 0.995958i \(0.528628\pi\)
\(740\) 2908.02 0.144461
\(741\) −2676.66 −0.132699
\(742\) 0 0
\(743\) 23195.7 1.14531 0.572656 0.819796i \(-0.305913\pi\)
0.572656 + 0.819796i \(0.305913\pi\)
\(744\) −3201.77 −0.157772
\(745\) 60348.2 2.96777
\(746\) −33284.2 −1.63354
\(747\) −651.862 −0.0319282
\(748\) 22206.8 1.08551
\(749\) 0 0
\(750\) −77197.8 −3.75849
\(751\) 14566.2 0.707761 0.353881 0.935291i \(-0.384862\pi\)
0.353881 + 0.935291i \(0.384862\pi\)
\(752\) 37059.8 1.79712
\(753\) −42126.5 −2.03874
\(754\) 20485.1 0.989419
\(755\) 26575.8 1.28105
\(756\) 0 0
\(757\) −15259.8 −0.732664 −0.366332 0.930484i \(-0.619387\pi\)
−0.366332 + 0.930484i \(0.619387\pi\)
\(758\) −3973.40 −0.190396
\(759\) −24448.2 −1.16919
\(760\) 2233.39 0.106597
\(761\) −22098.8 −1.05267 −0.526334 0.850278i \(-0.676434\pi\)
−0.526334 + 0.850278i \(0.676434\pi\)
\(762\) 44430.1 2.11225
\(763\) 0 0
\(764\) −6545.20 −0.309944
\(765\) −62662.8 −2.96154
\(766\) 33245.1 1.56814
\(767\) −32222.9 −1.51695
\(768\) 33714.9 1.58409
\(769\) 22359.3 1.04850 0.524251 0.851564i \(-0.324345\pi\)
0.524251 + 0.851564i \(0.324345\pi\)
\(770\) 0 0
\(771\) 47092.3 2.19973
\(772\) 11905.7 0.555047
\(773\) −4262.45 −0.198331 −0.0991654 0.995071i \(-0.531617\pi\)
−0.0991654 + 0.995071i \(0.531617\pi\)
\(774\) 13430.1 0.623690
\(775\) −8716.81 −0.404022
\(776\) −12985.0 −0.600688
\(777\) 0 0
\(778\) 10850.8 0.500025
\(779\) −3519.14 −0.161857
\(780\) −26668.0 −1.22419
\(781\) 38978.0 1.78584
\(782\) 33595.8 1.53630
\(783\) −2598.14 −0.118582
\(784\) 0 0
\(785\) −5364.95 −0.243928
\(786\) 45906.3 2.08324
\(787\) −30196.6 −1.36772 −0.683858 0.729615i \(-0.739699\pi\)
−0.683858 + 0.729615i \(0.739699\pi\)
\(788\) 2243.60 0.101428
\(789\) 793.253 0.0357928
\(790\) 21933.2 0.987783
\(791\) 0 0
\(792\) −15726.7 −0.705584
\(793\) −2290.91 −0.102588
\(794\) 43467.4 1.94282
\(795\) 59255.5 2.64349
\(796\) 12253.4 0.545618
\(797\) −15172.7 −0.674335 −0.337167 0.941445i \(-0.609469\pi\)
−0.337167 + 0.941445i \(0.609469\pi\)
\(798\) 0 0
\(799\) 59999.8 2.65662
\(800\) 44664.8 1.97393
\(801\) −14813.4 −0.653441
\(802\) −24723.2 −1.08853
\(803\) 52146.3 2.29166
\(804\) 5590.92 0.245244
\(805\) 0 0
\(806\) −5204.52 −0.227446
\(807\) 33962.9 1.48147
\(808\) −1481.41 −0.0644996
\(809\) 22827.9 0.992071 0.496036 0.868302i \(-0.334789\pi\)
0.496036 + 0.868302i \(0.334789\pi\)
\(810\) 55400.1 2.40316
\(811\) −2583.24 −0.111849 −0.0559247 0.998435i \(-0.517811\pi\)
−0.0559247 + 0.998435i \(0.517811\pi\)
\(812\) 0 0
\(813\) −7748.21 −0.334245
\(814\) 5921.25 0.254963
\(815\) −33419.3 −1.43635
\(816\) 73927.5 3.17154
\(817\) −1248.06 −0.0534446
\(818\) −19683.7 −0.841351
\(819\) 0 0
\(820\) −35061.7 −1.49318
\(821\) −24183.3 −1.02802 −0.514009 0.857785i \(-0.671840\pi\)
−0.514009 + 0.857785i \(0.671840\pi\)
\(822\) −28139.5 −1.19401
\(823\) −44461.0 −1.88313 −0.941563 0.336838i \(-0.890643\pi\)
−0.941563 + 0.336838i \(0.890643\pi\)
\(824\) 11303.9 0.477900
\(825\) −90945.8 −3.83797
\(826\) 0 0
\(827\) −5900.10 −0.248085 −0.124043 0.992277i \(-0.539586\pi\)
−0.124043 + 0.992277i \(0.539586\pi\)
\(828\) 6878.38 0.288696
\(829\) −16755.6 −0.701984 −0.350992 0.936378i \(-0.614156\pi\)
−0.350992 + 0.936378i \(0.614156\pi\)
\(830\) 1878.00 0.0785378
\(831\) −793.767 −0.0331354
\(832\) −4609.19 −0.192061
\(833\) 0 0
\(834\) 28412.7 1.17968
\(835\) −38405.5 −1.59171
\(836\) −1314.72 −0.0543904
\(837\) 660.094 0.0272595
\(838\) 23324.9 0.961510
\(839\) −24739.5 −1.01800 −0.509000 0.860766i \(-0.669985\pi\)
−0.509000 + 0.860766i \(0.669985\pi\)
\(840\) 0 0
\(841\) −9500.99 −0.389561
\(842\) 56289.7 2.30389
\(843\) −47706.0 −1.94909
\(844\) 2598.27 0.105967
\(845\) 3909.69 0.159169
\(846\) 38224.3 1.55340
\(847\) 0 0
\(848\) −32911.5 −1.33276
\(849\) 50948.9 2.05956
\(850\) 124974. 5.04303
\(851\) 2878.88 0.115966
\(852\) −23293.6 −0.936648
\(853\) −14922.0 −0.598969 −0.299485 0.954101i \(-0.596815\pi\)
−0.299485 + 0.954101i \(0.596815\pi\)
\(854\) 0 0
\(855\) 3709.84 0.148391
\(856\) 9201.04 0.367389
\(857\) −42423.2 −1.69096 −0.845478 0.534010i \(-0.820685\pi\)
−0.845478 + 0.534010i \(0.820685\pi\)
\(858\) −54300.7 −2.16060
\(859\) −21763.6 −0.864450 −0.432225 0.901766i \(-0.642271\pi\)
−0.432225 + 0.901766i \(0.642271\pi\)
\(860\) −12434.6 −0.493044
\(861\) 0 0
\(862\) −25969.8 −1.02614
\(863\) −16069.6 −0.633853 −0.316926 0.948450i \(-0.602651\pi\)
−0.316926 + 0.948450i \(0.602651\pi\)
\(864\) −3382.31 −0.133181
\(865\) −34670.3 −1.36281
\(866\) −17903.3 −0.702518
\(867\) 84596.1 3.31377
\(868\) 0 0
\(869\) 14352.6 0.560274
\(870\) −60308.3 −2.35016
\(871\) −10102.6 −0.393013
\(872\) −26630.2 −1.03419
\(873\) −21569.1 −0.836201
\(874\) −1988.98 −0.0769774
\(875\) 0 0
\(876\) −31163.1 −1.20194
\(877\) 18778.4 0.723034 0.361517 0.932365i \(-0.382259\pi\)
0.361517 + 0.932365i \(0.382259\pi\)
\(878\) −35035.0 −1.34667
\(879\) −7784.55 −0.298710
\(880\) 72967.8 2.79516
\(881\) 28981.8 1.10831 0.554155 0.832414i \(-0.313042\pi\)
0.554155 + 0.832414i \(0.313042\pi\)
\(882\) 0 0
\(883\) 30172.4 1.14992 0.574962 0.818180i \(-0.305017\pi\)
0.574962 + 0.818180i \(0.305017\pi\)
\(884\) 23980.3 0.912380
\(885\) 94864.6 3.60321
\(886\) 37139.3 1.40826
\(887\) 8572.71 0.324514 0.162257 0.986749i \(-0.448123\pi\)
0.162257 + 0.986749i \(0.448123\pi\)
\(888\) 3933.60 0.148652
\(889\) 0 0
\(890\) 42677.2 1.60735
\(891\) 36252.5 1.36308
\(892\) −13304.0 −0.499383
\(893\) −3552.19 −0.133112
\(894\) −73433.8 −2.74720
\(895\) 23446.7 0.875685
\(896\) 0 0
\(897\) −26400.7 −0.982714
\(898\) 34541.8 1.28360
\(899\) −3782.51 −0.140327
\(900\) 25587.1 0.947670
\(901\) −53283.6 −1.97018
\(902\) −71391.8 −2.63535
\(903\) 0 0
\(904\) 29172.4 1.07330
\(905\) 27024.3 0.992616
\(906\) −32338.4 −1.18584
\(907\) 2936.66 0.107508 0.0537542 0.998554i \(-0.482881\pi\)
0.0537542 + 0.998554i \(0.482881\pi\)
\(908\) −5075.72 −0.185511
\(909\) −2460.73 −0.0897881
\(910\) 0 0
\(911\) −7759.84 −0.282212 −0.141106 0.989995i \(-0.545066\pi\)
−0.141106 + 0.989995i \(0.545066\pi\)
\(912\) −4376.75 −0.158913
\(913\) 1228.92 0.0445469
\(914\) −46585.9 −1.68591
\(915\) 6744.46 0.243678
\(916\) −5233.98 −0.188794
\(917\) 0 0
\(918\) −9463.85 −0.340254
\(919\) −6009.88 −0.215721 −0.107861 0.994166i \(-0.534400\pi\)
−0.107861 + 0.994166i \(0.534400\pi\)
\(920\) 22028.6 0.789415
\(921\) 12864.0 0.460241
\(922\) −7780.05 −0.277898
\(923\) 42090.8 1.50101
\(924\) 0 0
\(925\) 10709.2 0.380667
\(926\) 52449.9 1.86135
\(927\) 18776.7 0.665271
\(928\) 19381.5 0.685592
\(929\) 3369.07 0.118983 0.0594917 0.998229i \(-0.481052\pi\)
0.0594917 + 0.998229i \(0.481052\pi\)
\(930\) 15322.2 0.540252
\(931\) 0 0
\(932\) 4792.47 0.168436
\(933\) −17410.5 −0.610925
\(934\) −31888.1 −1.11714
\(935\) 118135. 4.13200
\(936\) −16982.6 −0.593049
\(937\) −393.560 −0.0137215 −0.00686076 0.999976i \(-0.502184\pi\)
−0.00686076 + 0.999976i \(0.502184\pi\)
\(938\) 0 0
\(939\) −2812.15 −0.0977327
\(940\) −35390.9 −1.22800
\(941\) −13063.5 −0.452560 −0.226280 0.974062i \(-0.572656\pi\)
−0.226280 + 0.974062i \(0.572656\pi\)
\(942\) 6528.27 0.225799
\(943\) −34710.3 −1.19865
\(944\) −52689.3 −1.81662
\(945\) 0 0
\(946\) −25319.1 −0.870186
\(947\) 8946.95 0.307008 0.153504 0.988148i \(-0.450944\pi\)
0.153504 + 0.988148i \(0.450944\pi\)
\(948\) −8577.22 −0.293856
\(949\) 56310.8 1.92616
\(950\) −7398.87 −0.252685
\(951\) −77557.1 −2.64454
\(952\) 0 0
\(953\) −53087.3 −1.80448 −0.902238 0.431239i \(-0.858076\pi\)
−0.902238 + 0.431239i \(0.858076\pi\)
\(954\) −33945.6 −1.15202
\(955\) −34818.8 −1.17980
\(956\) 6738.85 0.227981
\(957\) −39464.3 −1.33302
\(958\) −4056.20 −0.136795
\(959\) 0 0
\(960\) 13569.5 0.456202
\(961\) 961.000 0.0322581
\(962\) 6394.12 0.214298
\(963\) 15283.7 0.511432
\(964\) −18641.3 −0.622819
\(965\) 63335.5 2.11279
\(966\) 0 0
\(967\) 500.465 0.0166431 0.00832154 0.999965i \(-0.497351\pi\)
0.00832154 + 0.999965i \(0.497351\pi\)
\(968\) 10402.6 0.345405
\(969\) −7085.95 −0.234916
\(970\) 62140.2 2.05691
\(971\) −52229.7 −1.72619 −0.863095 0.505041i \(-0.831477\pi\)
−0.863095 + 0.505041i \(0.831477\pi\)
\(972\) −19486.7 −0.643041
\(973\) 0 0
\(974\) 44218.9 1.45469
\(975\) −98208.8 −3.22584
\(976\) −3745.98 −0.122854
\(977\) 12340.5 0.404103 0.202051 0.979375i \(-0.435239\pi\)
0.202051 + 0.979375i \(0.435239\pi\)
\(978\) 40665.9 1.32960
\(979\) 27926.9 0.911694
\(980\) 0 0
\(981\) −44234.9 −1.43966
\(982\) 16083.2 0.522641
\(983\) −5979.47 −0.194014 −0.0970068 0.995284i \(-0.530927\pi\)
−0.0970068 + 0.995284i \(0.530927\pi\)
\(984\) −47427.0 −1.53650
\(985\) 11935.4 0.386085
\(986\) 54230.3 1.75157
\(987\) 0 0
\(988\) −1419.71 −0.0457156
\(989\) −12310.0 −0.395790
\(990\) 75260.5 2.41610
\(991\) 46918.4 1.50395 0.751974 0.659193i \(-0.229102\pi\)
0.751974 + 0.659193i \(0.229102\pi\)
\(992\) −4924.15 −0.157603
\(993\) 48527.0 1.55081
\(994\) 0 0
\(995\) 65185.3 2.07690
\(996\) −734.413 −0.0233642
\(997\) −28526.2 −0.906153 −0.453076 0.891472i \(-0.649674\pi\)
−0.453076 + 0.891472i \(0.649674\pi\)
\(998\) −69991.3 −2.21998
\(999\) −810.973 −0.0256837
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1519.4.a.h.1.5 23
7.6 odd 2 1519.4.a.i.1.5 yes 23
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1519.4.a.h.1.5 23 1.1 even 1 trivial
1519.4.a.i.1.5 yes 23 7.6 odd 2