Properties

Label 1519.4.a.h.1.20
Level $1519$
Weight $4$
Character 1519.1
Self dual yes
Analytic conductor $89.624$
Analytic rank $1$
Dimension $23$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1519,4,Mod(1,1519)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1519, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1519.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1519 = 7^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1519.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [23,5,-6,91,-40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.6239012987\)
Analytic rank: \(1\)
Dimension: \(23\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.20
Character \(\chi\) \(=\) 1519.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.77516 q^{2} +3.21029 q^{3} +14.8022 q^{4} -4.53317 q^{5} +15.3297 q^{6} +32.4816 q^{8} -16.6940 q^{9} -21.6466 q^{10} -42.1235 q^{11} +47.5194 q^{12} +36.9198 q^{13} -14.5528 q^{15} +36.6875 q^{16} -89.6498 q^{17} -79.7168 q^{18} -107.955 q^{19} -67.1009 q^{20} -201.146 q^{22} +102.456 q^{23} +104.275 q^{24} -104.450 q^{25} +176.298 q^{26} -140.271 q^{27} +169.760 q^{29} -69.4920 q^{30} -31.0000 q^{31} -84.6640 q^{32} -135.229 q^{33} -428.093 q^{34} -247.108 q^{36} +303.679 q^{37} -515.502 q^{38} +118.523 q^{39} -147.245 q^{40} -464.571 q^{41} +235.343 q^{43} -623.520 q^{44} +75.6769 q^{45} +489.242 q^{46} -530.532 q^{47} +117.778 q^{48} -498.768 q^{50} -287.802 q^{51} +546.495 q^{52} -354.534 q^{53} -669.815 q^{54} +190.953 q^{55} -346.566 q^{57} +810.632 q^{58} -531.716 q^{59} -215.413 q^{60} +98.2079 q^{61} -148.030 q^{62} -697.785 q^{64} -167.364 q^{65} -645.739 q^{66} +620.188 q^{67} -1327.01 q^{68} +328.912 q^{69} -397.571 q^{71} -542.250 q^{72} +865.656 q^{73} +1450.12 q^{74} -335.316 q^{75} -1597.97 q^{76} +565.969 q^{78} +630.131 q^{79} -166.311 q^{80} +0.429822 q^{81} -2218.40 q^{82} +904.487 q^{83} +406.398 q^{85} +1123.80 q^{86} +544.979 q^{87} -1368.24 q^{88} +209.978 q^{89} +361.370 q^{90} +1516.57 q^{92} -99.5190 q^{93} -2533.38 q^{94} +489.377 q^{95} -271.796 q^{96} +310.503 q^{97} +703.211 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 23 q + 5 q^{2} - 6 q^{3} + 91 q^{4} - 40 q^{5} - 36 q^{6} + 39 q^{8} + 211 q^{9} - 40 q^{10} + 44 q^{11} - 414 q^{12} + 20 q^{13} + 523 q^{16} - 306 q^{17} + 51 q^{18} - 296 q^{19} - 400 q^{20} - 326 q^{22}+ \cdots - 3456 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.77516 1.68828 0.844138 0.536126i \(-0.180113\pi\)
0.844138 + 0.536126i \(0.180113\pi\)
\(3\) 3.21029 0.617821 0.308910 0.951091i \(-0.400036\pi\)
0.308910 + 0.951091i \(0.400036\pi\)
\(4\) 14.8022 1.85028
\(5\) −4.53317 −0.405459 −0.202730 0.979235i \(-0.564981\pi\)
−0.202730 + 0.979235i \(0.564981\pi\)
\(6\) 15.3297 1.04305
\(7\) 0 0
\(8\) 32.4816 1.43550
\(9\) −16.6940 −0.618298
\(10\) −21.6466 −0.684527
\(11\) −42.1235 −1.15461 −0.577305 0.816529i \(-0.695895\pi\)
−0.577305 + 0.816529i \(0.695895\pi\)
\(12\) 47.5194 1.14314
\(13\) 36.9198 0.787671 0.393835 0.919181i \(-0.371148\pi\)
0.393835 + 0.919181i \(0.371148\pi\)
\(14\) 0 0
\(15\) −14.5528 −0.250501
\(16\) 36.6875 0.573243
\(17\) −89.6498 −1.27902 −0.639508 0.768784i \(-0.720862\pi\)
−0.639508 + 0.768784i \(0.720862\pi\)
\(18\) −79.7168 −1.04386
\(19\) −107.955 −1.30350 −0.651750 0.758434i \(-0.725965\pi\)
−0.651750 + 0.758434i \(0.725965\pi\)
\(20\) −67.1009 −0.750211
\(21\) 0 0
\(22\) −201.146 −1.94930
\(23\) 102.456 0.928846 0.464423 0.885613i \(-0.346262\pi\)
0.464423 + 0.885613i \(0.346262\pi\)
\(24\) 104.275 0.886881
\(25\) −104.450 −0.835603
\(26\) 176.298 1.32981
\(27\) −140.271 −0.999818
\(28\) 0 0
\(29\) 169.760 1.08702 0.543511 0.839402i \(-0.317095\pi\)
0.543511 + 0.839402i \(0.317095\pi\)
\(30\) −69.4920 −0.422915
\(31\) −31.0000 −0.179605
\(32\) −84.6640 −0.467707
\(33\) −135.229 −0.713341
\(34\) −428.093 −2.15933
\(35\) 0 0
\(36\) −247.108 −1.14402
\(37\) 303.679 1.34931 0.674656 0.738132i \(-0.264292\pi\)
0.674656 + 0.738132i \(0.264292\pi\)
\(38\) −515.502 −2.20067
\(39\) 118.523 0.486639
\(40\) −147.245 −0.582036
\(41\) −464.571 −1.76961 −0.884803 0.465966i \(-0.845707\pi\)
−0.884803 + 0.465966i \(0.845707\pi\)
\(42\) 0 0
\(43\) 235.343 0.834637 0.417319 0.908760i \(-0.362970\pi\)
0.417319 + 0.908760i \(0.362970\pi\)
\(44\) −623.520 −2.13634
\(45\) 75.6769 0.250694
\(46\) 489.242 1.56815
\(47\) −530.532 −1.64651 −0.823256 0.567670i \(-0.807845\pi\)
−0.823256 + 0.567670i \(0.807845\pi\)
\(48\) 117.778 0.354161
\(49\) 0 0
\(50\) −498.768 −1.41073
\(51\) −287.802 −0.790203
\(52\) 546.495 1.45741
\(53\) −354.534 −0.918850 −0.459425 0.888217i \(-0.651944\pi\)
−0.459425 + 0.888217i \(0.651944\pi\)
\(54\) −669.815 −1.68797
\(55\) 190.953 0.468147
\(56\) 0 0
\(57\) −346.566 −0.805330
\(58\) 810.632 1.83519
\(59\) −531.716 −1.17328 −0.586640 0.809848i \(-0.699550\pi\)
−0.586640 + 0.809848i \(0.699550\pi\)
\(60\) −215.413 −0.463496
\(61\) 98.2079 0.206135 0.103067 0.994674i \(-0.467134\pi\)
0.103067 + 0.994674i \(0.467134\pi\)
\(62\) −148.030 −0.303223
\(63\) 0 0
\(64\) −697.785 −1.36286
\(65\) −167.364 −0.319368
\(66\) −645.739 −1.20432
\(67\) 620.188 1.13087 0.565433 0.824794i \(-0.308709\pi\)
0.565433 + 0.824794i \(0.308709\pi\)
\(68\) −1327.01 −2.36653
\(69\) 328.912 0.573860
\(70\) 0 0
\(71\) −397.571 −0.664550 −0.332275 0.943183i \(-0.607816\pi\)
−0.332275 + 0.943183i \(0.607816\pi\)
\(72\) −542.250 −0.887566
\(73\) 865.656 1.38791 0.693955 0.720019i \(-0.255867\pi\)
0.693955 + 0.720019i \(0.255867\pi\)
\(74\) 1450.12 2.27801
\(75\) −335.316 −0.516253
\(76\) −1597.97 −2.41183
\(77\) 0 0
\(78\) 565.969 0.821581
\(79\) 630.131 0.897409 0.448704 0.893680i \(-0.351886\pi\)
0.448704 + 0.893680i \(0.351886\pi\)
\(80\) −166.311 −0.232427
\(81\) 0.429822 0.000589605 0
\(82\) −2218.40 −2.98758
\(83\) 904.487 1.19615 0.598075 0.801440i \(-0.295933\pi\)
0.598075 + 0.801440i \(0.295933\pi\)
\(84\) 0 0
\(85\) 406.398 0.518589
\(86\) 1123.80 1.40910
\(87\) 544.979 0.671585
\(88\) −1368.24 −1.65744
\(89\) 209.978 0.250086 0.125043 0.992151i \(-0.460093\pi\)
0.125043 + 0.992151i \(0.460093\pi\)
\(90\) 361.370 0.423241
\(91\) 0 0
\(92\) 1516.57 1.71862
\(93\) −99.5190 −0.110964
\(94\) −2533.38 −2.77977
\(95\) 489.377 0.528516
\(96\) −271.796 −0.288959
\(97\) 310.503 0.325019 0.162509 0.986707i \(-0.448041\pi\)
0.162509 + 0.986707i \(0.448041\pi\)
\(98\) 0 0
\(99\) 703.211 0.713892
\(100\) −1546.10 −1.54610
\(101\) −1209.38 −1.19146 −0.595732 0.803183i \(-0.703138\pi\)
−0.595732 + 0.803183i \(0.703138\pi\)
\(102\) −1374.30 −1.33408
\(103\) −318.757 −0.304932 −0.152466 0.988309i \(-0.548722\pi\)
−0.152466 + 0.988309i \(0.548722\pi\)
\(104\) 1199.22 1.13070
\(105\) 0 0
\(106\) −1692.96 −1.55127
\(107\) −1186.78 −1.07225 −0.536124 0.844139i \(-0.680112\pi\)
−0.536124 + 0.844139i \(0.680112\pi\)
\(108\) −2076.31 −1.84994
\(109\) −401.940 −0.353200 −0.176600 0.984283i \(-0.556510\pi\)
−0.176600 + 0.984283i \(0.556510\pi\)
\(110\) 911.831 0.790361
\(111\) 974.899 0.833633
\(112\) 0 0
\(113\) −1275.58 −1.06191 −0.530957 0.847399i \(-0.678167\pi\)
−0.530957 + 0.847399i \(0.678167\pi\)
\(114\) −1654.91 −1.35962
\(115\) −464.449 −0.376609
\(116\) 2512.82 2.01129
\(117\) −616.341 −0.487015
\(118\) −2539.03 −1.98082
\(119\) 0 0
\(120\) −472.699 −0.359594
\(121\) 443.386 0.333122
\(122\) 468.959 0.348013
\(123\) −1491.41 −1.09330
\(124\) −458.868 −0.332319
\(125\) 1040.14 0.744262
\(126\) 0 0
\(127\) −186.457 −0.130278 −0.0651391 0.997876i \(-0.520749\pi\)
−0.0651391 + 0.997876i \(0.520749\pi\)
\(128\) −2654.73 −1.83318
\(129\) 755.518 0.515656
\(130\) −799.190 −0.539182
\(131\) 2737.22 1.82559 0.912793 0.408423i \(-0.133921\pi\)
0.912793 + 0.408423i \(0.133921\pi\)
\(132\) −2001.68 −1.31988
\(133\) 0 0
\(134\) 2961.50 1.90921
\(135\) 635.870 0.405385
\(136\) −2911.97 −1.83603
\(137\) 512.517 0.319615 0.159808 0.987148i \(-0.448913\pi\)
0.159808 + 0.987148i \(0.448913\pi\)
\(138\) 1570.61 0.968835
\(139\) −235.108 −0.143465 −0.0717323 0.997424i \(-0.522853\pi\)
−0.0717323 + 0.997424i \(0.522853\pi\)
\(140\) 0 0
\(141\) −1703.16 −1.01725
\(142\) −1898.47 −1.12194
\(143\) −1555.19 −0.909452
\(144\) −612.463 −0.354435
\(145\) −769.551 −0.440743
\(146\) 4133.65 2.34317
\(147\) 0 0
\(148\) 4495.12 2.49660
\(149\) 2962.89 1.62906 0.814529 0.580122i \(-0.196995\pi\)
0.814529 + 0.580122i \(0.196995\pi\)
\(150\) −1601.19 −0.871577
\(151\) −322.954 −0.174051 −0.0870253 0.996206i \(-0.527736\pi\)
−0.0870253 + 0.996206i \(0.527736\pi\)
\(152\) −3506.55 −1.87117
\(153\) 1496.62 0.790813
\(154\) 0 0
\(155\) 140.528 0.0728226
\(156\) 1754.41 0.900416
\(157\) −2545.93 −1.29419 −0.647093 0.762411i \(-0.724016\pi\)
−0.647093 + 0.762411i \(0.724016\pi\)
\(158\) 3008.98 1.51507
\(159\) −1138.16 −0.567684
\(160\) 383.796 0.189636
\(161\) 0 0
\(162\) 2.05247 0.000995415 0
\(163\) 1522.29 0.731502 0.365751 0.930713i \(-0.380812\pi\)
0.365751 + 0.930713i \(0.380812\pi\)
\(164\) −6876.68 −3.27426
\(165\) 613.014 0.289231
\(166\) 4319.08 2.01943
\(167\) 1259.72 0.583712 0.291856 0.956462i \(-0.405727\pi\)
0.291856 + 0.956462i \(0.405727\pi\)
\(168\) 0 0
\(169\) −833.927 −0.379575
\(170\) 1940.62 0.875521
\(171\) 1802.20 0.805951
\(172\) 3483.59 1.54431
\(173\) 137.299 0.0603389 0.0301694 0.999545i \(-0.490395\pi\)
0.0301694 + 0.999545i \(0.490395\pi\)
\(174\) 2602.36 1.13382
\(175\) 0 0
\(176\) −1545.41 −0.661871
\(177\) −1706.96 −0.724876
\(178\) 1002.68 0.422213
\(179\) −3589.96 −1.49903 −0.749515 0.661988i \(-0.769713\pi\)
−0.749515 + 0.661988i \(0.769713\pi\)
\(180\) 1120.18 0.463854
\(181\) −2124.54 −0.872465 −0.436233 0.899834i \(-0.643687\pi\)
−0.436233 + 0.899834i \(0.643687\pi\)
\(182\) 0 0
\(183\) 315.276 0.127354
\(184\) 3327.92 1.33336
\(185\) −1376.63 −0.547091
\(186\) −475.220 −0.187338
\(187\) 3776.36 1.47676
\(188\) −7853.04 −3.04650
\(189\) 0 0
\(190\) 2336.86 0.892281
\(191\) −483.797 −0.183279 −0.0916395 0.995792i \(-0.529211\pi\)
−0.0916395 + 0.995792i \(0.529211\pi\)
\(192\) −2240.09 −0.842004
\(193\) 5247.65 1.95717 0.978586 0.205836i \(-0.0659915\pi\)
0.978586 + 0.205836i \(0.0659915\pi\)
\(194\) 1482.70 0.548721
\(195\) −537.287 −0.197312
\(196\) 0 0
\(197\) −2639.11 −0.954460 −0.477230 0.878779i \(-0.658359\pi\)
−0.477230 + 0.878779i \(0.658359\pi\)
\(198\) 3357.95 1.20525
\(199\) −4472.22 −1.59310 −0.796551 0.604572i \(-0.793344\pi\)
−0.796551 + 0.604572i \(0.793344\pi\)
\(200\) −3392.72 −1.19951
\(201\) 1990.98 0.698672
\(202\) −5774.99 −2.01152
\(203\) 0 0
\(204\) −4260.10 −1.46209
\(205\) 2105.98 0.717503
\(206\) −1522.12 −0.514810
\(207\) −1710.40 −0.574304
\(208\) 1354.50 0.451526
\(209\) 4547.43 1.50503
\(210\) 0 0
\(211\) 3388.07 1.10542 0.552711 0.833373i \(-0.313593\pi\)
0.552711 + 0.833373i \(0.313593\pi\)
\(212\) −5247.89 −1.70013
\(213\) −1276.32 −0.410573
\(214\) −5667.08 −1.81025
\(215\) −1066.85 −0.338411
\(216\) −4556.22 −1.43524
\(217\) 0 0
\(218\) −1919.33 −0.596300
\(219\) 2779.01 0.857479
\(220\) 2826.52 0.866200
\(221\) −3309.86 −1.00744
\(222\) 4655.30 1.40740
\(223\) 3850.41 1.15625 0.578123 0.815950i \(-0.303785\pi\)
0.578123 + 0.815950i \(0.303785\pi\)
\(224\) 0 0
\(225\) 1743.70 0.516651
\(226\) −6091.09 −1.79280
\(227\) −5893.87 −1.72330 −0.861652 0.507499i \(-0.830570\pi\)
−0.861652 + 0.507499i \(0.830570\pi\)
\(228\) −5129.94 −1.49008
\(229\) −4219.17 −1.21751 −0.608757 0.793356i \(-0.708332\pi\)
−0.608757 + 0.793356i \(0.708332\pi\)
\(230\) −2217.82 −0.635820
\(231\) 0 0
\(232\) 5514.08 1.56042
\(233\) 3478.49 0.978042 0.489021 0.872272i \(-0.337354\pi\)
0.489021 + 0.872272i \(0.337354\pi\)
\(234\) −2943.13 −0.822215
\(235\) 2404.99 0.667593
\(236\) −7870.56 −2.17089
\(237\) 2022.90 0.554438
\(238\) 0 0
\(239\) 1188.46 0.321654 0.160827 0.986983i \(-0.448584\pi\)
0.160827 + 0.986983i \(0.448584\pi\)
\(240\) −533.906 −0.143598
\(241\) 3976.01 1.06273 0.531363 0.847144i \(-0.321680\pi\)
0.531363 + 0.847144i \(0.321680\pi\)
\(242\) 2117.24 0.562402
\(243\) 3788.68 1.00018
\(244\) 1453.69 0.381406
\(245\) 0 0
\(246\) −7121.72 −1.84579
\(247\) −3985.67 −1.02673
\(248\) −1006.93 −0.257823
\(249\) 2903.67 0.739006
\(250\) 4966.83 1.25652
\(251\) −2475.92 −0.622623 −0.311312 0.950308i \(-0.600768\pi\)
−0.311312 + 0.950308i \(0.600768\pi\)
\(252\) 0 0
\(253\) −4315.78 −1.07245
\(254\) −890.361 −0.219946
\(255\) 1304.66 0.320395
\(256\) −7094.47 −1.73205
\(257\) −6536.64 −1.58655 −0.793277 0.608861i \(-0.791627\pi\)
−0.793277 + 0.608861i \(0.791627\pi\)
\(258\) 3607.72 0.870570
\(259\) 0 0
\(260\) −2477.35 −0.590919
\(261\) −2833.98 −0.672103
\(262\) 13070.7 3.08209
\(263\) 1241.60 0.291104 0.145552 0.989351i \(-0.453504\pi\)
0.145552 + 0.989351i \(0.453504\pi\)
\(264\) −4392.44 −1.02400
\(265\) 1607.17 0.372556
\(266\) 0 0
\(267\) 674.090 0.154508
\(268\) 9180.15 2.09241
\(269\) 378.504 0.0857911 0.0428956 0.999080i \(-0.486342\pi\)
0.0428956 + 0.999080i \(0.486342\pi\)
\(270\) 3036.39 0.684402
\(271\) 5061.39 1.13453 0.567265 0.823535i \(-0.308001\pi\)
0.567265 + 0.823535i \(0.308001\pi\)
\(272\) −3289.03 −0.733187
\(273\) 0 0
\(274\) 2447.35 0.539598
\(275\) 4399.81 0.964795
\(276\) 4868.62 1.06180
\(277\) −67.5856 −0.0146600 −0.00733001 0.999973i \(-0.502333\pi\)
−0.00733001 + 0.999973i \(0.502333\pi\)
\(278\) −1122.68 −0.242208
\(279\) 517.515 0.111050
\(280\) 0 0
\(281\) −2432.05 −0.516312 −0.258156 0.966103i \(-0.583115\pi\)
−0.258156 + 0.966103i \(0.583115\pi\)
\(282\) −8132.88 −1.71740
\(283\) 2803.95 0.588966 0.294483 0.955657i \(-0.404852\pi\)
0.294483 + 0.955657i \(0.404852\pi\)
\(284\) −5884.93 −1.22960
\(285\) 1571.04 0.326528
\(286\) −7426.29 −1.53541
\(287\) 0 0
\(288\) 1413.38 0.289182
\(289\) 3124.09 0.635883
\(290\) −3674.73 −0.744096
\(291\) 996.805 0.200803
\(292\) 12813.6 2.56801
\(293\) 3534.24 0.704684 0.352342 0.935871i \(-0.385385\pi\)
0.352342 + 0.935871i \(0.385385\pi\)
\(294\) 0 0
\(295\) 2410.36 0.475717
\(296\) 9864.00 1.93694
\(297\) 5908.68 1.15440
\(298\) 14148.3 2.75030
\(299\) 3782.64 0.731625
\(300\) −4963.41 −0.955210
\(301\) 0 0
\(302\) −1542.16 −0.293845
\(303\) −3882.46 −0.736111
\(304\) −3960.59 −0.747222
\(305\) −445.193 −0.0835793
\(306\) 7146.60 1.33511
\(307\) −8447.96 −1.57052 −0.785261 0.619164i \(-0.787471\pi\)
−0.785261 + 0.619164i \(0.787471\pi\)
\(308\) 0 0
\(309\) −1023.30 −0.188394
\(310\) 671.046 0.122945
\(311\) 1143.95 0.208578 0.104289 0.994547i \(-0.466743\pi\)
0.104289 + 0.994547i \(0.466743\pi\)
\(312\) 3849.83 0.698570
\(313\) −1828.74 −0.330244 −0.165122 0.986273i \(-0.552802\pi\)
−0.165122 + 0.986273i \(0.552802\pi\)
\(314\) −12157.2 −2.18494
\(315\) 0 0
\(316\) 9327.33 1.66045
\(317\) 2927.26 0.518648 0.259324 0.965790i \(-0.416500\pi\)
0.259324 + 0.965790i \(0.416500\pi\)
\(318\) −5434.89 −0.958408
\(319\) −7150.88 −1.25509
\(320\) 3163.18 0.552584
\(321\) −3809.92 −0.662457
\(322\) 0 0
\(323\) 9678.12 1.66720
\(324\) 6.36231 0.00109093
\(325\) −3856.29 −0.658180
\(326\) 7269.18 1.23498
\(327\) −1290.34 −0.218214
\(328\) −15090.0 −2.54027
\(329\) 0 0
\(330\) 2927.24 0.488301
\(331\) −4091.87 −0.679486 −0.339743 0.940518i \(-0.610340\pi\)
−0.339743 + 0.940518i \(0.610340\pi\)
\(332\) 13388.4 2.21321
\(333\) −5069.63 −0.834277
\(334\) 6015.36 0.985467
\(335\) −2811.42 −0.458520
\(336\) 0 0
\(337\) 4590.80 0.742068 0.371034 0.928619i \(-0.379003\pi\)
0.371034 + 0.928619i \(0.379003\pi\)
\(338\) −3982.14 −0.640827
\(339\) −4094.97 −0.656072
\(340\) 6015.58 0.959532
\(341\) 1305.83 0.207374
\(342\) 8605.80 1.36067
\(343\) 0 0
\(344\) 7644.31 1.19812
\(345\) −1491.02 −0.232677
\(346\) 655.624 0.101869
\(347\) −1097.66 −0.169814 −0.0849068 0.996389i \(-0.527059\pi\)
−0.0849068 + 0.996389i \(0.527059\pi\)
\(348\) 8066.89 1.24262
\(349\) −5451.71 −0.836170 −0.418085 0.908408i \(-0.637299\pi\)
−0.418085 + 0.908408i \(0.637299\pi\)
\(350\) 0 0
\(351\) −5178.76 −0.787527
\(352\) 3566.34 0.540019
\(353\) −4456.73 −0.671976 −0.335988 0.941866i \(-0.609070\pi\)
−0.335988 + 0.941866i \(0.609070\pi\)
\(354\) −8151.02 −1.22379
\(355\) 1802.26 0.269448
\(356\) 3108.14 0.462727
\(357\) 0 0
\(358\) −17142.7 −2.53078
\(359\) 11421.2 1.67908 0.839541 0.543296i \(-0.182824\pi\)
0.839541 + 0.543296i \(0.182824\pi\)
\(360\) 2458.11 0.359872
\(361\) 4795.22 0.699114
\(362\) −10145.1 −1.47296
\(363\) 1423.40 0.205810
\(364\) 0 0
\(365\) −3924.17 −0.562741
\(366\) 1505.49 0.215009
\(367\) −2783.90 −0.395963 −0.197982 0.980206i \(-0.563439\pi\)
−0.197982 + 0.980206i \(0.563439\pi\)
\(368\) 3758.84 0.532454
\(369\) 7755.57 1.09414
\(370\) −6573.64 −0.923641
\(371\) 0 0
\(372\) −1473.10 −0.205314
\(373\) −11756.6 −1.63199 −0.815994 0.578060i \(-0.803810\pi\)
−0.815994 + 0.578060i \(0.803810\pi\)
\(374\) 18032.7 2.49318
\(375\) 3339.14 0.459820
\(376\) −17232.5 −2.36357
\(377\) 6267.51 0.856215
\(378\) 0 0
\(379\) −1926.33 −0.261079 −0.130540 0.991443i \(-0.541671\pi\)
−0.130540 + 0.991443i \(0.541671\pi\)
\(380\) 7243.86 0.977900
\(381\) −598.580 −0.0804886
\(382\) −2310.21 −0.309426
\(383\) 8852.34 1.18103 0.590514 0.807028i \(-0.298925\pi\)
0.590514 + 0.807028i \(0.298925\pi\)
\(384\) −8522.44 −1.13258
\(385\) 0 0
\(386\) 25058.4 3.30425
\(387\) −3928.82 −0.516054
\(388\) 4596.13 0.601374
\(389\) −3795.37 −0.494686 −0.247343 0.968928i \(-0.579558\pi\)
−0.247343 + 0.968928i \(0.579558\pi\)
\(390\) −2565.63 −0.333118
\(391\) −9185.13 −1.18801
\(392\) 0 0
\(393\) 8787.26 1.12788
\(394\) −12602.2 −1.61139
\(395\) −2856.49 −0.363863
\(396\) 10409.1 1.32090
\(397\) −702.612 −0.0888239 −0.0444120 0.999013i \(-0.514141\pi\)
−0.0444120 + 0.999013i \(0.514141\pi\)
\(398\) −21355.6 −2.68959
\(399\) 0 0
\(400\) −3832.03 −0.479003
\(401\) −11900.4 −1.48199 −0.740995 0.671511i \(-0.765646\pi\)
−0.740995 + 0.671511i \(0.765646\pi\)
\(402\) 9507.28 1.17955
\(403\) −1144.51 −0.141470
\(404\) −17901.5 −2.20454
\(405\) −1.94846 −0.000239061 0
\(406\) 0 0
\(407\) −12792.0 −1.55793
\(408\) −9348.28 −1.13434
\(409\) −3364.72 −0.406784 −0.203392 0.979097i \(-0.565197\pi\)
−0.203392 + 0.979097i \(0.565197\pi\)
\(410\) 10056.4 1.21134
\(411\) 1645.33 0.197465
\(412\) −4718.30 −0.564209
\(413\) 0 0
\(414\) −8167.43 −0.969583
\(415\) −4100.20 −0.484990
\(416\) −3125.78 −0.368399
\(417\) −754.764 −0.0886354
\(418\) 21714.7 2.54091
\(419\) 7695.93 0.897305 0.448652 0.893706i \(-0.351904\pi\)
0.448652 + 0.893706i \(0.351904\pi\)
\(420\) 0 0
\(421\) −6842.42 −0.792111 −0.396056 0.918226i \(-0.629621\pi\)
−0.396056 + 0.918226i \(0.629621\pi\)
\(422\) 16178.6 1.86626
\(423\) 8856.72 1.01803
\(424\) −11515.9 −1.31901
\(425\) 9363.96 1.06875
\(426\) −6094.64 −0.693160
\(427\) 0 0
\(428\) −17567.0 −1.98395
\(429\) −4992.61 −0.561878
\(430\) −5094.38 −0.571332
\(431\) −3846.91 −0.429928 −0.214964 0.976622i \(-0.568963\pi\)
−0.214964 + 0.976622i \(0.568963\pi\)
\(432\) −5146.18 −0.573138
\(433\) 6271.87 0.696090 0.348045 0.937478i \(-0.386846\pi\)
0.348045 + 0.937478i \(0.386846\pi\)
\(434\) 0 0
\(435\) −2470.48 −0.272300
\(436\) −5949.59 −0.653518
\(437\) −11060.6 −1.21075
\(438\) 13270.2 1.44766
\(439\) −522.595 −0.0568157 −0.0284078 0.999596i \(-0.509044\pi\)
−0.0284078 + 0.999596i \(0.509044\pi\)
\(440\) 6202.46 0.672024
\(441\) 0 0
\(442\) −15805.1 −1.70084
\(443\) −9818.56 −1.05303 −0.526517 0.850165i \(-0.676502\pi\)
−0.526517 + 0.850165i \(0.676502\pi\)
\(444\) 14430.6 1.54245
\(445\) −951.866 −0.101399
\(446\) 18386.4 1.95206
\(447\) 9511.75 1.00647
\(448\) 0 0
\(449\) 3995.19 0.419922 0.209961 0.977710i \(-0.432666\pi\)
0.209961 + 0.977710i \(0.432666\pi\)
\(450\) 8326.45 0.872250
\(451\) 19569.3 2.04320
\(452\) −18881.3 −1.96483
\(453\) −1036.78 −0.107532
\(454\) −28144.2 −2.90941
\(455\) 0 0
\(456\) −11257.0 −1.15605
\(457\) 14028.1 1.43590 0.717949 0.696095i \(-0.245081\pi\)
0.717949 + 0.696095i \(0.245081\pi\)
\(458\) −20147.3 −2.05550
\(459\) 12575.2 1.27878
\(460\) −6874.86 −0.696831
\(461\) 19561.3 1.97627 0.988134 0.153592i \(-0.0490841\pi\)
0.988134 + 0.153592i \(0.0490841\pi\)
\(462\) 0 0
\(463\) 14173.4 1.42266 0.711332 0.702856i \(-0.248092\pi\)
0.711332 + 0.702856i \(0.248092\pi\)
\(464\) 6228.08 0.623127
\(465\) 451.137 0.0449913
\(466\) 16610.4 1.65120
\(467\) −11183.3 −1.10814 −0.554070 0.832470i \(-0.686926\pi\)
−0.554070 + 0.832470i \(0.686926\pi\)
\(468\) −9123.20 −0.901111
\(469\) 0 0
\(470\) 11484.2 1.12708
\(471\) −8173.17 −0.799575
\(472\) −17271.0 −1.68424
\(473\) −9913.44 −0.963680
\(474\) 9659.70 0.936044
\(475\) 11275.9 1.08921
\(476\) 0 0
\(477\) 5918.61 0.568123
\(478\) 5675.12 0.543041
\(479\) 1100.76 0.105000 0.0525000 0.998621i \(-0.483281\pi\)
0.0525000 + 0.998621i \(0.483281\pi\)
\(480\) 1232.10 0.117161
\(481\) 11211.8 1.06281
\(482\) 18986.1 1.79417
\(483\) 0 0
\(484\) 6563.08 0.616368
\(485\) −1407.56 −0.131782
\(486\) 18091.6 1.68858
\(487\) −20214.1 −1.88088 −0.940442 0.339954i \(-0.889588\pi\)
−0.940442 + 0.339954i \(0.889588\pi\)
\(488\) 3189.95 0.295906
\(489\) 4886.99 0.451937
\(490\) 0 0
\(491\) −14121.1 −1.29792 −0.648959 0.760824i \(-0.724795\pi\)
−0.648959 + 0.760824i \(0.724795\pi\)
\(492\) −22076.1 −2.02290
\(493\) −15219.0 −1.39032
\(494\) −19032.2 −1.73340
\(495\) −3187.77 −0.289454
\(496\) −1137.31 −0.102957
\(497\) 0 0
\(498\) 13865.5 1.24765
\(499\) 731.102 0.0655884 0.0327942 0.999462i \(-0.489559\pi\)
0.0327942 + 0.999462i \(0.489559\pi\)
\(500\) 15396.3 1.37709
\(501\) 4044.06 0.360629
\(502\) −11822.9 −1.05116
\(503\) 7911.95 0.701345 0.350672 0.936498i \(-0.385953\pi\)
0.350672 + 0.936498i \(0.385953\pi\)
\(504\) 0 0
\(505\) 5482.33 0.483090
\(506\) −20608.6 −1.81060
\(507\) −2677.15 −0.234509
\(508\) −2759.97 −0.241051
\(509\) −19327.7 −1.68307 −0.841535 0.540202i \(-0.818348\pi\)
−0.841535 + 0.540202i \(0.818348\pi\)
\(510\) 6229.95 0.540915
\(511\) 0 0
\(512\) −12639.5 −1.09100
\(513\) 15142.9 1.30326
\(514\) −31213.5 −2.67854
\(515\) 1444.98 0.123638
\(516\) 11183.3 0.954106
\(517\) 22347.8 1.90108
\(518\) 0 0
\(519\) 440.769 0.0372786
\(520\) −5436.25 −0.458453
\(521\) 1133.21 0.0952917 0.0476459 0.998864i \(-0.484828\pi\)
0.0476459 + 0.998864i \(0.484828\pi\)
\(522\) −13532.7 −1.13470
\(523\) 18739.8 1.56679 0.783396 0.621523i \(-0.213486\pi\)
0.783396 + 0.621523i \(0.213486\pi\)
\(524\) 40516.8 3.37783
\(525\) 0 0
\(526\) 5928.85 0.491465
\(527\) 2779.14 0.229718
\(528\) −4961.20 −0.408918
\(529\) −1669.85 −0.137244
\(530\) 7674.48 0.628977
\(531\) 8876.48 0.725436
\(532\) 0 0
\(533\) −17151.9 −1.39387
\(534\) 3218.89 0.260852
\(535\) 5379.89 0.434753
\(536\) 20144.7 1.62336
\(537\) −11524.8 −0.926132
\(538\) 1807.42 0.144839
\(539\) 0 0
\(540\) 9412.28 0.750074
\(541\) 21335.2 1.69551 0.847757 0.530384i \(-0.177952\pi\)
0.847757 + 0.530384i \(0.177952\pi\)
\(542\) 24169.0 1.91540
\(543\) −6820.41 −0.539027
\(544\) 7590.11 0.598205
\(545\) 1822.06 0.143208
\(546\) 0 0
\(547\) −16423.9 −1.28379 −0.641896 0.766792i \(-0.721852\pi\)
−0.641896 + 0.766792i \(0.721852\pi\)
\(548\) 7586.38 0.591376
\(549\) −1639.49 −0.127453
\(550\) 21009.8 1.62884
\(551\) −18326.4 −1.41693
\(552\) 10683.6 0.823776
\(553\) 0 0
\(554\) −322.733 −0.0247502
\(555\) −4419.38 −0.338004
\(556\) −3480.11 −0.265449
\(557\) 15181.7 1.15489 0.577443 0.816431i \(-0.304051\pi\)
0.577443 + 0.816431i \(0.304051\pi\)
\(558\) 2471.22 0.187482
\(559\) 8688.81 0.657419
\(560\) 0 0
\(561\) 12123.2 0.912375
\(562\) −11613.4 −0.871677
\(563\) −24173.9 −1.80960 −0.904802 0.425832i \(-0.859981\pi\)
−0.904802 + 0.425832i \(0.859981\pi\)
\(564\) −25210.5 −1.88219
\(565\) 5782.41 0.430562
\(566\) 13389.3 0.994338
\(567\) 0 0
\(568\) −12913.8 −0.953961
\(569\) 4211.30 0.310276 0.155138 0.987893i \(-0.450418\pi\)
0.155138 + 0.987893i \(0.450418\pi\)
\(570\) 7501.99 0.551270
\(571\) −23848.5 −1.74786 −0.873931 0.486050i \(-0.838437\pi\)
−0.873931 + 0.486050i \(0.838437\pi\)
\(572\) −23020.2 −1.68274
\(573\) −1553.13 −0.113234
\(574\) 0 0
\(575\) −10701.5 −0.776147
\(576\) 11648.8 0.842654
\(577\) −10608.0 −0.765366 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(578\) 14918.1 1.07355
\(579\) 16846.5 1.20918
\(580\) −11391.0 −0.815496
\(581\) 0 0
\(582\) 4759.91 0.339011
\(583\) 14934.2 1.06091
\(584\) 28117.9 1.99234
\(585\) 2793.98 0.197465
\(586\) 16876.6 1.18970
\(587\) 21712.2 1.52668 0.763338 0.645999i \(-0.223559\pi\)
0.763338 + 0.645999i \(0.223559\pi\)
\(588\) 0 0
\(589\) 3346.60 0.234116
\(590\) 11509.9 0.803141
\(591\) −8472.30 −0.589685
\(592\) 11141.2 0.773484
\(593\) −4769.12 −0.330260 −0.165130 0.986272i \(-0.552804\pi\)
−0.165130 + 0.986272i \(0.552804\pi\)
\(594\) 28214.9 1.94894
\(595\) 0 0
\(596\) 43857.4 3.01421
\(597\) −14357.1 −0.984251
\(598\) 18062.7 1.23518
\(599\) 3351.27 0.228596 0.114298 0.993446i \(-0.463538\pi\)
0.114298 + 0.993446i \(0.463538\pi\)
\(600\) −10891.6 −0.741080
\(601\) 28127.1 1.90903 0.954515 0.298164i \(-0.0963743\pi\)
0.954515 + 0.298164i \(0.0963743\pi\)
\(602\) 0 0
\(603\) −10353.4 −0.699212
\(604\) −4780.43 −0.322041
\(605\) −2009.94 −0.135067
\(606\) −18539.4 −1.24276
\(607\) −16808.2 −1.12392 −0.561962 0.827163i \(-0.689953\pi\)
−0.561962 + 0.827163i \(0.689953\pi\)
\(608\) 9139.88 0.609656
\(609\) 0 0
\(610\) −2125.87 −0.141105
\(611\) −19587.2 −1.29691
\(612\) 22153.2 1.46322
\(613\) −15033.8 −0.990556 −0.495278 0.868734i \(-0.664934\pi\)
−0.495278 + 0.868734i \(0.664934\pi\)
\(614\) −40340.4 −2.65148
\(615\) 6760.81 0.443288
\(616\) 0 0
\(617\) −1222.93 −0.0797944 −0.0398972 0.999204i \(-0.512703\pi\)
−0.0398972 + 0.999204i \(0.512703\pi\)
\(618\) −4886.44 −0.318060
\(619\) −15787.3 −1.02511 −0.512557 0.858653i \(-0.671302\pi\)
−0.512557 + 0.858653i \(0.671302\pi\)
\(620\) 2080.13 0.134742
\(621\) −14371.5 −0.928677
\(622\) 5462.57 0.352137
\(623\) 0 0
\(624\) 4348.33 0.278962
\(625\) 8341.17 0.533835
\(626\) −8732.52 −0.557543
\(627\) 14598.6 0.929841
\(628\) −37685.4 −2.39460
\(629\) −27224.8 −1.72579
\(630\) 0 0
\(631\) −6302.31 −0.397608 −0.198804 0.980039i \(-0.563706\pi\)
−0.198804 + 0.980039i \(0.563706\pi\)
\(632\) 20467.7 1.28823
\(633\) 10876.7 0.682953
\(634\) 13978.2 0.875622
\(635\) 845.239 0.0528225
\(636\) −16847.2 −1.05037
\(637\) 0 0
\(638\) −34146.6 −2.11893
\(639\) 6637.07 0.410890
\(640\) 12034.3 0.743279
\(641\) 5784.13 0.356411 0.178205 0.983993i \(-0.442971\pi\)
0.178205 + 0.983993i \(0.442971\pi\)
\(642\) −18193.0 −1.11841
\(643\) 7889.01 0.483845 0.241922 0.970296i \(-0.422222\pi\)
0.241922 + 0.970296i \(0.422222\pi\)
\(644\) 0 0
\(645\) −3424.89 −0.209078
\(646\) 46214.6 2.81469
\(647\) −9604.80 −0.583623 −0.291811 0.956476i \(-0.594258\pi\)
−0.291811 + 0.956476i \(0.594258\pi\)
\(648\) 13.9613 0.000846377 0
\(649\) 22397.7 1.35468
\(650\) −18414.4 −1.11119
\(651\) 0 0
\(652\) 22533.2 1.35348
\(653\) −23654.4 −1.41756 −0.708782 0.705428i \(-0.750755\pi\)
−0.708782 + 0.705428i \(0.750755\pi\)
\(654\) −6161.60 −0.368406
\(655\) −12408.3 −0.740200
\(656\) −17044.0 −1.01441
\(657\) −14451.3 −0.858141
\(658\) 0 0
\(659\) 21660.3 1.28038 0.640188 0.768219i \(-0.278857\pi\)
0.640188 + 0.768219i \(0.278857\pi\)
\(660\) 9073.96 0.535157
\(661\) −16974.1 −0.998813 −0.499407 0.866368i \(-0.666449\pi\)
−0.499407 + 0.866368i \(0.666449\pi\)
\(662\) −19539.4 −1.14716
\(663\) −10625.6 −0.622419
\(664\) 29379.2 1.71707
\(665\) 0 0
\(666\) −24208.3 −1.40849
\(667\) 17392.9 1.00968
\(668\) 18646.6 1.08003
\(669\) 12360.9 0.714353
\(670\) −13425.0 −0.774108
\(671\) −4136.85 −0.238005
\(672\) 0 0
\(673\) 20032.1 1.14737 0.573685 0.819076i \(-0.305513\pi\)
0.573685 + 0.819076i \(0.305513\pi\)
\(674\) 21921.8 1.25282
\(675\) 14651.3 0.835451
\(676\) −12343.9 −0.702318
\(677\) −23865.4 −1.35483 −0.677415 0.735601i \(-0.736900\pi\)
−0.677415 + 0.735601i \(0.736900\pi\)
\(678\) −19554.2 −1.10763
\(679\) 0 0
\(680\) 13200.5 0.744434
\(681\) −18921.0 −1.06469
\(682\) 6235.54 0.350104
\(683\) 20669.9 1.15800 0.578999 0.815328i \(-0.303444\pi\)
0.578999 + 0.815328i \(0.303444\pi\)
\(684\) 26676.5 1.49123
\(685\) −2323.33 −0.129591
\(686\) 0 0
\(687\) −13544.8 −0.752206
\(688\) 8634.14 0.478450
\(689\) −13089.3 −0.723751
\(690\) −7119.84 −0.392823
\(691\) 19569.7 1.07738 0.538689 0.842505i \(-0.318920\pi\)
0.538689 + 0.842505i \(0.318920\pi\)
\(692\) 2032.32 0.111644
\(693\) 0 0
\(694\) −5241.49 −0.286692
\(695\) 1065.78 0.0581691
\(696\) 17701.8 0.964059
\(697\) 41648.7 2.26335
\(698\) −26032.8 −1.41169
\(699\) 11167.0 0.604254
\(700\) 0 0
\(701\) 20506.9 1.10490 0.552450 0.833546i \(-0.313693\pi\)
0.552450 + 0.833546i \(0.313693\pi\)
\(702\) −24729.5 −1.32956
\(703\) −32783.6 −1.75883
\(704\) 29393.1 1.57357
\(705\) 7720.72 0.412453
\(706\) −21281.6 −1.13448
\(707\) 0 0
\(708\) −25266.8 −1.34122
\(709\) −22997.0 −1.21815 −0.609077 0.793111i \(-0.708460\pi\)
−0.609077 + 0.793111i \(0.708460\pi\)
\(710\) 8606.08 0.454902
\(711\) −10519.4 −0.554866
\(712\) 6820.43 0.358998
\(713\) −3176.12 −0.166826
\(714\) 0 0
\(715\) 7049.95 0.368745
\(716\) −53139.3 −2.77362
\(717\) 3815.32 0.198725
\(718\) 54538.3 2.83475
\(719\) 16742.8 0.868427 0.434214 0.900810i \(-0.357026\pi\)
0.434214 + 0.900810i \(0.357026\pi\)
\(720\) 2776.40 0.143709
\(721\) 0 0
\(722\) 22898.0 1.18030
\(723\) 12764.1 0.656574
\(724\) −31447.9 −1.61430
\(725\) −17731.5 −0.908319
\(726\) 6796.95 0.347464
\(727\) −12842.0 −0.655136 −0.327568 0.944828i \(-0.606229\pi\)
−0.327568 + 0.944828i \(0.606229\pi\)
\(728\) 0 0
\(729\) 12151.2 0.617343
\(730\) −18738.5 −0.950061
\(731\) −21098.4 −1.06751
\(732\) 4666.77 0.235641
\(733\) −3756.07 −0.189268 −0.0946341 0.995512i \(-0.530168\pi\)
−0.0946341 + 0.995512i \(0.530168\pi\)
\(734\) −13293.6 −0.668495
\(735\) 0 0
\(736\) −8674.30 −0.434428
\(737\) −26124.5 −1.30571
\(738\) 37034.1 1.84722
\(739\) 201.583 0.0100343 0.00501714 0.999987i \(-0.498403\pi\)
0.00501714 + 0.999987i \(0.498403\pi\)
\(740\) −20377.2 −1.01227
\(741\) −12795.2 −0.634334
\(742\) 0 0
\(743\) 3397.05 0.167733 0.0838666 0.996477i \(-0.473273\pi\)
0.0838666 + 0.996477i \(0.473273\pi\)
\(744\) −3232.54 −0.159288
\(745\) −13431.3 −0.660517
\(746\) −56139.5 −2.75525
\(747\) −15099.5 −0.739576
\(748\) 55898.4 2.73242
\(749\) 0 0
\(750\) 15945.0 0.776304
\(751\) −9145.31 −0.444364 −0.222182 0.975005i \(-0.571318\pi\)
−0.222182 + 0.975005i \(0.571318\pi\)
\(752\) −19463.9 −0.943851
\(753\) −7948.41 −0.384670
\(754\) 29928.4 1.44553
\(755\) 1464.01 0.0705704
\(756\) 0 0
\(757\) −16040.4 −0.770145 −0.385073 0.922886i \(-0.625824\pi\)
−0.385073 + 0.922886i \(0.625824\pi\)
\(758\) −9198.56 −0.440774
\(759\) −13854.9 −0.662585
\(760\) 15895.8 0.758684
\(761\) −33464.5 −1.59407 −0.797035 0.603934i \(-0.793599\pi\)
−0.797035 + 0.603934i \(0.793599\pi\)
\(762\) −2858.32 −0.135887
\(763\) 0 0
\(764\) −7161.25 −0.339117
\(765\) −6784.42 −0.320642
\(766\) 42271.4 1.99390
\(767\) −19630.8 −0.924158
\(768\) −22775.3 −1.07010
\(769\) 20030.6 0.939302 0.469651 0.882852i \(-0.344380\pi\)
0.469651 + 0.882852i \(0.344380\pi\)
\(770\) 0 0
\(771\) −20984.5 −0.980206
\(772\) 77676.8 3.62131
\(773\) 23050.4 1.07253 0.536265 0.844050i \(-0.319835\pi\)
0.536265 + 0.844050i \(0.319835\pi\)
\(774\) −18760.8 −0.871242
\(775\) 3237.96 0.150079
\(776\) 10085.6 0.466564
\(777\) 0 0
\(778\) −18123.5 −0.835167
\(779\) 50152.7 2.30668
\(780\) −7953.02 −0.365082
\(781\) 16747.1 0.767295
\(782\) −43860.5 −2.00569
\(783\) −23812.3 −1.08682
\(784\) 0 0
\(785\) 11541.1 0.524740
\(786\) 41960.6 1.90418
\(787\) −19091.7 −0.864735 −0.432367 0.901698i \(-0.642322\pi\)
−0.432367 + 0.901698i \(0.642322\pi\)
\(788\) −39064.6 −1.76601
\(789\) 3985.90 0.179850
\(790\) −13640.2 −0.614300
\(791\) 0 0
\(792\) 22841.4 1.02479
\(793\) 3625.82 0.162366
\(794\) −3355.09 −0.149959
\(795\) 5159.47 0.230173
\(796\) −66198.7 −2.94768
\(797\) −20103.3 −0.893471 −0.446736 0.894666i \(-0.647414\pi\)
−0.446736 + 0.894666i \(0.647414\pi\)
\(798\) 0 0
\(799\) 47562.1 2.10592
\(800\) 8843.18 0.390817
\(801\) −3505.38 −0.154627
\(802\) −56826.4 −2.50201
\(803\) −36464.4 −1.60249
\(804\) 29470.9 1.29274
\(805\) 0 0
\(806\) −5465.25 −0.238840
\(807\) 1215.11 0.0530035
\(808\) −39282.7 −1.71035
\(809\) 30318.7 1.31761 0.658806 0.752313i \(-0.271062\pi\)
0.658806 + 0.752313i \(0.271062\pi\)
\(810\) −9.30420 −0.000403600 0
\(811\) 5917.70 0.256225 0.128113 0.991760i \(-0.459108\pi\)
0.128113 + 0.991760i \(0.459108\pi\)
\(812\) 0 0
\(813\) 16248.5 0.700936
\(814\) −61084.0 −2.63021
\(815\) −6900.79 −0.296594
\(816\) −10558.7 −0.452978
\(817\) −25406.3 −1.08795
\(818\) −16067.1 −0.686764
\(819\) 0 0
\(820\) 31173.1 1.32758
\(821\) 38691.9 1.64477 0.822385 0.568931i \(-0.192643\pi\)
0.822385 + 0.568931i \(0.192643\pi\)
\(822\) 7856.71 0.333375
\(823\) −1876.14 −0.0794631 −0.0397316 0.999210i \(-0.512650\pi\)
−0.0397316 + 0.999210i \(0.512650\pi\)
\(824\) −10353.7 −0.437730
\(825\) 14124.7 0.596070
\(826\) 0 0
\(827\) −15766.5 −0.662946 −0.331473 0.943465i \(-0.607546\pi\)
−0.331473 + 0.943465i \(0.607546\pi\)
\(828\) −25317.6 −1.06262
\(829\) −517.002 −0.0216601 −0.0108301 0.999941i \(-0.503447\pi\)
−0.0108301 + 0.999941i \(0.503447\pi\)
\(830\) −19579.1 −0.818796
\(831\) −216.970 −0.00905727
\(832\) −25762.1 −1.07349
\(833\) 0 0
\(834\) −3604.12 −0.149641
\(835\) −5710.52 −0.236671
\(836\) 67311.9 2.78473
\(837\) 4348.39 0.179573
\(838\) 36749.3 1.51490
\(839\) 4552.67 0.187337 0.0936684 0.995603i \(-0.470141\pi\)
0.0936684 + 0.995603i \(0.470141\pi\)
\(840\) 0 0
\(841\) 4429.45 0.181617
\(842\) −32673.7 −1.33730
\(843\) −7807.57 −0.318988
\(844\) 50150.8 2.04534
\(845\) 3780.33 0.153902
\(846\) 42292.3 1.71872
\(847\) 0 0
\(848\) −13007.0 −0.526724
\(849\) 9001.49 0.363876
\(850\) 44714.4 1.80434
\(851\) 31113.6 1.25330
\(852\) −18892.3 −0.759672
\(853\) −16827.0 −0.675436 −0.337718 0.941247i \(-0.609655\pi\)
−0.337718 + 0.941247i \(0.609655\pi\)
\(854\) 0 0
\(855\) −8169.68 −0.326780
\(856\) −38548.6 −1.53921
\(857\) 36750.8 1.46486 0.732429 0.680843i \(-0.238387\pi\)
0.732429 + 0.680843i \(0.238387\pi\)
\(858\) −23840.6 −0.948605
\(859\) 7707.99 0.306162 0.153081 0.988214i \(-0.451080\pi\)
0.153081 + 0.988214i \(0.451080\pi\)
\(860\) −15791.7 −0.626154
\(861\) 0 0
\(862\) −18369.6 −0.725837
\(863\) −25903.3 −1.02173 −0.510867 0.859660i \(-0.670676\pi\)
−0.510867 + 0.859660i \(0.670676\pi\)
\(864\) 11875.9 0.467622
\(865\) −622.399 −0.0244650
\(866\) 29949.2 1.17519
\(867\) 10029.2 0.392861
\(868\) 0 0
\(869\) −26543.3 −1.03616
\(870\) −11797.0 −0.459718
\(871\) 22897.2 0.890750
\(872\) −13055.7 −0.507019
\(873\) −5183.55 −0.200958
\(874\) −52816.0 −2.04408
\(875\) 0 0
\(876\) 41135.4 1.58657
\(877\) 20643.9 0.794861 0.397431 0.917632i \(-0.369902\pi\)
0.397431 + 0.917632i \(0.369902\pi\)
\(878\) −2495.48 −0.0959205
\(879\) 11345.9 0.435368
\(880\) 7005.59 0.268362
\(881\) −20652.4 −0.789779 −0.394890 0.918729i \(-0.629217\pi\)
−0.394890 + 0.918729i \(0.629217\pi\)
\(882\) 0 0
\(883\) 20538.5 0.782759 0.391380 0.920229i \(-0.371998\pi\)
0.391380 + 0.920229i \(0.371998\pi\)
\(884\) −48993.2 −1.86405
\(885\) 7737.95 0.293908
\(886\) −46885.2 −1.77781
\(887\) −41376.4 −1.56627 −0.783135 0.621851i \(-0.786381\pi\)
−0.783135 + 0.621851i \(0.786381\pi\)
\(888\) 31666.3 1.19668
\(889\) 0 0
\(890\) −4545.32 −0.171190
\(891\) −18.1056 −0.000680763 0
\(892\) 56994.6 2.13937
\(893\) 57273.4 2.14623
\(894\) 45420.2 1.69919
\(895\) 16273.9 0.607795
\(896\) 0 0
\(897\) 12143.4 0.452013
\(898\) 19077.7 0.708944
\(899\) −5262.56 −0.195235
\(900\) 25810.6 0.955947
\(901\) 31784.0 1.17522
\(902\) 93446.9 3.44949
\(903\) 0 0
\(904\) −41432.8 −1.52438
\(905\) 9630.92 0.353749
\(906\) −4950.78 −0.181544
\(907\) 4443.24 0.162663 0.0813315 0.996687i \(-0.474083\pi\)
0.0813315 + 0.996687i \(0.474083\pi\)
\(908\) −87242.3 −3.18859
\(909\) 20189.4 0.736679
\(910\) 0 0
\(911\) 422.602 0.0153693 0.00768466 0.999970i \(-0.497554\pi\)
0.00768466 + 0.999970i \(0.497554\pi\)
\(912\) −12714.7 −0.461649
\(913\) −38100.1 −1.38108
\(914\) 66986.4 2.42419
\(915\) −1429.20 −0.0516370
\(916\) −62453.1 −2.25274
\(917\) 0 0
\(918\) 60048.8 2.15894
\(919\) −16620.0 −0.596565 −0.298283 0.954478i \(-0.596414\pi\)
−0.298283 + 0.954478i \(0.596414\pi\)
\(920\) −15086.1 −0.540622
\(921\) −27120.4 −0.970301
\(922\) 93408.4 3.33649
\(923\) −14678.3 −0.523446
\(924\) 0 0
\(925\) −31719.4 −1.12749
\(926\) 67680.3 2.40185
\(927\) 5321.34 0.188539
\(928\) −14372.6 −0.508408
\(929\) 24878.4 0.878617 0.439308 0.898336i \(-0.355224\pi\)
0.439308 + 0.898336i \(0.355224\pi\)
\(930\) 2154.25 0.0759577
\(931\) 0 0
\(932\) 51489.4 1.80965
\(933\) 3672.42 0.128864
\(934\) −53402.1 −1.87085
\(935\) −17118.9 −0.598767
\(936\) −20019.8 −0.699109
\(937\) −14356.7 −0.500546 −0.250273 0.968175i \(-0.580520\pi\)
−0.250273 + 0.968175i \(0.580520\pi\)
\(938\) 0 0
\(939\) −5870.78 −0.204032
\(940\) 35599.2 1.23523
\(941\) 43079.9 1.49242 0.746208 0.665713i \(-0.231873\pi\)
0.746208 + 0.665713i \(0.231873\pi\)
\(942\) −39028.2 −1.34990
\(943\) −47597.9 −1.64369
\(944\) −19507.3 −0.672574
\(945\) 0 0
\(946\) −47338.3 −1.62696
\(947\) −7501.33 −0.257403 −0.128701 0.991683i \(-0.541081\pi\)
−0.128701 + 0.991683i \(0.541081\pi\)
\(948\) 29943.4 1.02586
\(949\) 31959.9 1.09322
\(950\) 53844.3 1.83888
\(951\) 9397.37 0.320432
\(952\) 0 0
\(953\) −37150.2 −1.26276 −0.631381 0.775473i \(-0.717512\pi\)
−0.631381 + 0.775473i \(0.717512\pi\)
\(954\) 28262.3 0.959148
\(955\) 2193.13 0.0743122
\(956\) 17591.9 0.595149
\(957\) −22956.4 −0.775418
\(958\) 5256.31 0.177269
\(959\) 0 0
\(960\) 10154.7 0.341398
\(961\) 961.000 0.0322581
\(962\) 53538.1 1.79432
\(963\) 19812.2 0.662969
\(964\) 58853.6 1.96634
\(965\) −23788.5 −0.793554
\(966\) 0 0
\(967\) 15771.8 0.524494 0.262247 0.965001i \(-0.415536\pi\)
0.262247 + 0.965001i \(0.415536\pi\)
\(968\) 14401.9 0.478197
\(969\) 31069.6 1.03003
\(970\) −6721.35 −0.222484
\(971\) 8802.10 0.290909 0.145455 0.989365i \(-0.453536\pi\)
0.145455 + 0.989365i \(0.453536\pi\)
\(972\) 56080.9 1.85061
\(973\) 0 0
\(974\) −96525.9 −3.17545
\(975\) −12379.8 −0.406637
\(976\) 3603.00 0.118165
\(977\) −45922.4 −1.50377 −0.751887 0.659292i \(-0.770856\pi\)
−0.751887 + 0.659292i \(0.770856\pi\)
\(978\) 23336.2 0.762994
\(979\) −8845.00 −0.288751
\(980\) 0 0
\(981\) 6710.00 0.218383
\(982\) −67430.7 −2.19124
\(983\) −11654.9 −0.378163 −0.189082 0.981961i \(-0.560551\pi\)
−0.189082 + 0.981961i \(0.560551\pi\)
\(984\) −48443.4 −1.56943
\(985\) 11963.5 0.386994
\(986\) −72673.0 −2.34724
\(987\) 0 0
\(988\) −58996.7 −1.89973
\(989\) 24112.2 0.775250
\(990\) −15222.1 −0.488678
\(991\) 24451.5 0.783781 0.391890 0.920012i \(-0.371821\pi\)
0.391890 + 0.920012i \(0.371821\pi\)
\(992\) 2624.58 0.0840026
\(993\) −13136.1 −0.419800
\(994\) 0 0
\(995\) 20273.3 0.645937
\(996\) 42980.7 1.36736
\(997\) 13644.7 0.433431 0.216716 0.976235i \(-0.430466\pi\)
0.216716 + 0.976235i \(0.430466\pi\)
\(998\) 3491.13 0.110731
\(999\) −42597.3 −1.34907
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1519.4.a.h.1.20 23
7.6 odd 2 1519.4.a.i.1.20 yes 23
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1519.4.a.h.1.20 23 1.1 even 1 trivial
1519.4.a.i.1.20 yes 23 7.6 odd 2